SlideShare a Scribd company logo
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 1
Prof. Dr. Christian Bizer
Evolving the Web into a Global
Dataspace
- Advances and Applications -
18th International Conference on Business Information System (BIS 2015)
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 2
Hello
Professor Christian Bizer
University of Mannheim
Research Topics
−Web Technologies
−Web Data Profiling
−Web Data Integration
−Web Mining
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 3
Data and Web Science Group @ University of Mannheim
− 6 Professors
• Heiner Stuckenschmidt
• Rainer Gemulla
• Christian Bizer
• Simone Ponzetto
• Heiko Paulheim
• Johanna Völker
− 25 researchers and PhD students
− http://dws.informatik.uni-mannheim.de/
1. Research methods for integrating and mining large
amounts of heterogeneous information from the Web.
2. Empirically analyze the content and structure of the Web.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 4
Querying the Classic Web
DB
HTML
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 5
Long Standing Goal
Query the Web like
a single, global
database
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 6
2001 Article: The Semantic Web
Envisions three things to happen:
1.people publish data in structured form
in addition to HTML pages on the Web
2.common vocabularies / ontologies are
used to represent data
3.people implement cool applications that
do smart things with the available data
Tim Berners-Lee, James Hendler and Ora Lassila:
The Semantic Web. Scientific American, May 2001.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 7
14 Years Later
There are 1.5 million publications about the
Semantic Web on Google Scholar, but
1. Do people publish structured data on the Web?
2. Do people agree on common vocabularies / ontologies?
3. What are the cool applications that do smart things
with the data?
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 8
Outline
1. Semantic Annotations in HTML Pages
2. Linked Data
3. Knowledge Graphs
4. Conclusions
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 9
1. Semantic Annotations in HTML Pages
Simple idea: Help machines to understand
Web content by marking up data in HTML
pages.
<div itemtype="http://schema.org/Hotel">
<span itemprop="name">Vienna Marriott Hotel</span>
<span itemprop="address" itemscope="" itemtype="http://schema.org/PostalAddress">
<span itemprop="streetAddress">Parkring 12a</span>
<span itemprop="addressLocality">Vienna</span>
<span itemprop="addressCountry">Austria</span>
</span>
<div itemprop="aggregateRating" itemscope itemtype="http://schema.org/AggregateRating">
<span itemprop="ratingValue"> 4 </span> stars-based on
<span itemprop="reviewCount"> 250 </span> reviews.
</div>
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 10
Semantic Annotation Formats
Microformats
Microdata
RDFa
− date back to 2003
− small set of fixed formats
− W3C Recommendation in 2008
− can represent any type of data
− proposed in 2009
− tries to be simpler than RDFa
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 11
Open Graph Protocol
− allows site owners to determine how
entities are displayed in Facebook
− relies on RDFa for marking up data in HTML pages
− available since April 2010
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 12
Schema.org
− ask site owners since 2011 to
annotate data for enriching search results
− 675 Types: Event, Place, Local Business, Product, Review, Person
− Encoding: Microdata, RDFa, JSON-LD
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 13
Usage of Schema.org Data @ Google
Rich snippets
within
search results
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 14
Event Data in Google Applications
https://developers.google.com/structured-data/
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 15
Flight Offers in Google Search Results
Annotated
webpages
directly below
Google Flights
results
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 16
Rich-Snippets Get More User Attention
− Suchen
Source: www.looktracker.com
Potential business
incentive.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 17
Motivation for Semantic Annotations
− Study by searchmetrics.com in 2013: 10.000s of search keywords
− Type of rich-snippet displayed by Google:
Source: http://www.searchmetrics.com/de/knowledge-base/schema/
Google displays Rich-Snippets for 40% of all
queries.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 18
The Common Crawl
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 19
The Web Data Commons Project
− extracts all Microformat, Microdata, RDFa data
from the Common Crawl
− analyzes and provides the extracted data for download
− four extraction runs so far
• 2014 CC Corpus: 2.0 billion HTML pages  20.4 billion RDF triples
• 2013 CC Corpus: 2.2 billion HTML pages  17.2 billion RDF triples
• 2012 CC Corpus: 3.0 billion HTML pages  7.3 billion RDF triples
• 2009/2010 CC Corpus: 2.5 billion HTML pages  5.1 billion RDF triples
− uses 100 machines on Amazon EC2
• approx. 3000 machine/hours
(spot instances of type c3.xlarge)  550 Euro
− http://www.webdatacommons.org/structureddata/
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 20
Overall Adoption 2014
620 million HTML pages out of the 2 billion pages
provide semantic annotations (30%).
2.72 million pay-level-domains (PLDs) out of the
15.68 million pay-level-domains covered by the
crawl provide annotations (17%).
Google, 2014*:
5 million websites provide Schema.org data.
* Guha in LDOW2014 Keynote
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 21
Number of PLDs providing Semantic Annotations
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 22
Most Popular Classes
RDFa
Microdata
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 23
Topical Focus – Microdata 2014
2014 2013
Class Instances # PLDs PLDs
# % # %
1 schema:WebPage 51.757.000 148,893 18,16% 69.712 15,04
2 schema:Article 54.972.000 88,7 10,82% 65.930 14,22
3 schema:Blog 3.787.000 110,663 13,50% 64.709 13,96
4 schema:Product 288.083.000 89,608 10,93% 56.388 12,16
5 schema:PostalAddress 48.804.000 101,086 12,33% 52.446 11,31
6 dv:Breadcrumb 269.088.000 76,894 9,38% 44.187 9,53
7 schema:AggregateRating 59.070.000 50,510 6,16% 36.823 7,94
8 schema:Offer 236.953.000 62,849 7,66% 35.635 7,69
9 schema:LocalBusiness 20.194.000 62,191 7,58% 35.264 7,61
10 schema:BlogPosting 11.458.000 65,397 7,98% 32.056 6,92
11 schema:Organization 101.769.000 52,733 6,43% 24.255 5,23
12 schema:Person 115.376.000 47,936 5,85% 21.107 4,55
13 schema:ImageObject 35.356.000 25,573 3,12% 16.084 3,47
14 dv:Product 12.411.000 16,003 1,95% 13.844 2,99
15 schema:Review 42.561.000 20,124 2,45% 13.137 2,83
16 dv:Review-aggregate 3.964.000 14,094 1,72% 13.075 2,82
17 dv:Organization 3.155.000 10,649 1,30% 9.582 2,07
18 dv:Offer 7.170.000 11,64 1,42% 9.298 2,01
19 dv:Address 2.138.000 9,674 1,18% 8.866 1,91
20 dv:Rating 1.732.000 9,367 1,14% 8.360 1,8
− Top Classes
− Topics:
• CMS and blog
metadata
• products and
offers
• ratings and
reviews
• business listings
• address data
• ...and a massive
long tail
schema: = Schema.org
dv: = Google Rich Snippet Vocabulary (deprecated)
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 24
Adoption by E-Commerce Websites
Distribution by Alexa Top-15 Shopping Sites
Top-Level Domain
TLD #PLDs
com 38344
co.uk 3605
net 1813
de 1333
pl 1273
com.br 1194
ru 1165
com.au 1062
nl 1002
Website schema:Product
Amazon.com 
Ebay.com 
NetFlix.com 
Amazon.co.uk 
Walmart.com 
etsy.com 
Ikea.com 
Bestbuy.com 
Homedepot.com 
Target.com 
Groupon.com 
Newegg.com 
Lowes.com 
Macys.com 
Nordstrom.com 
Adoption by Top-15:
60 %
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 25
Properties used to Describe Products
Top 15 Properties PLDs
# %
schema:Product/name 78,292 87 %
schema:Product/image 59,445 66 %
schema:Product/description 58,228 65 %
schema:Product/offers 57,633 64 %
schema:Offer/price 54,290 61 %
schema:Offer/availability 36,789 41 %
schema:Offer/priceCurrency 30,610 34 %
schema:Product/url 23,723 26 %
schema:Product/aggregateRating 21,166 24 %
schema:AggregateRating/ratingValue 20,513 23 %
schema:AggregateRating/reviewCount 14,930 17 %
schema:Product/manufacturer 10,150 11 %
schema:Product/brand 9,739 11 %
schema:Product/productID 9,221 10 %
schema:Product/sku 7955 9 %
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 26
Adoption by Travel Websites
Top 15 Travel Websites schema:Hotel Any Class
Booking.com (uses DataVoc)  
TripAdvisor  
Expedia  
Agoda  
Hotels.com  
Kayak  
Priceline  
Travelocity  
Orbitz  
ChoiceHotels  
HolidayCheck  
ChoiceHotels  
InterContinental Hotels Group  
Marriott International  
Global Hyatt Corp.  
Adoption:
73 %
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 27
Properties used to Describe Hotels
Top 10 Properties PLDs
# %
schema:Hotel/name 4173 88,35 %
schema:Hotel/address 3311 70,10 %
schema:Hotel/telephone 2488 52,68 %
schema:PostalAddress/streetAddress 2362 50,01 %
schema:PostalAddress/addressLocality 2231 47,24 %
schema:Hotel/url 2102 44,51 %
schema:PostalAddress/postalCode 2096 44,38 %
schema:AggregateRating/ratingValue 1952 41,33 %
schema:Hotel/aggregateRating 1866 39,51 %
schema:AggregateRating/bestRating 1697 35,93 %
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 28
Adoption by Job Websites
Distribution by Top-10 Employment Sites
Top-Level Domain
Adoption by Top-10: 70 %
TLD #PLDs
jobs 908
com 828
org 263
co.uk 194
net 40
nl 38
ca 33
de 32
jobs 908
Website schema:JobPosting
Indeed.com 
Monster.com 
Careerbuilder.com 
Snagajob.com 
Jobsdb.com 
Jobsearch.about.com 
Jobs.net 
Internships.com 
Jobs.aol.com 
Quintcareers.com 
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 29
Properties used to Describe Job Postings
Top 10 Properties PLDs
# %
JobPosting/title 2588 91.16 %
JobPosting/hiringOrganization 1412 49.74 %
JobPosting/description 1192 41.99 %
JobPosting/jobLocation 1062 37.41 %
Organization/name 862 30.36 %
JobPosting/datePosted 793 27.93 %
Place/address 471 16.59 %
JobPosting/baseSalary 227 8.00 %
JobPosting/industry 209 7.36 %
JobPosting/educationRequirements 145 5.11 %
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 30
Class / Property Distribution
 Only a small set of
classes / properties
is used.
 Strong focus on
Schema.org and
Facebook vocabularies.
schema.org
675 classes
965 properties
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 31
Opportunity 1: Search Engine Optimization
Get richer visibility in search results and potentially more clicks.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 32
Opportunity 2: Change Push to Pull Communication
− Current situation:
• Information providers need to
push data into multiple channels
• multiple search engines
• multiple domain-specific portals
− Web approach:
• You maintain a website
• All interested parties
crawl your data
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 33
Opportunity 3: Applications beyond Rich-Snippets
− E-Commerce
• Rich source of product data, offers, and reviews
• Opportunity to build global product catalogs
• Opportunity to mine product and rating data on global-scale
− Tourism
• Additional data for tourism applications: Nearby local businesses, nearby
landmarks, nearby hospitals, nearby events
• Search engines as new competitors put pressure on large booking portals?
− Recruitment
• Increased market transparency
• Search engines as new competitors put pressure on job portals that charge
per posting?
− High up-to-dateness of data
• as original data providers know about changes first
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 34
Main Challenge: Data Integration and Cleansing
The schema is standardized, but
1. entity names differ
2. the schema is rather shallow and a rather low number of
properties is used
3. data quality differs as the data is created by experts and
rookies
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 35
Property PLDs
# %
schema:Product/name 78,292 87%
schema:Product/description 58,228 65%
schema:Product/manufacturer 10,150 11%
schema:Product/brand 9,739 11%
schema:Product/productID 9,221 10%
Looking Deeper into the E-Commerce Data
1. The structure of the data is rather shallow
• Product features are encoded in titles and descriptions
• Example product name:
“Apple MacBook Air 11-in, Intel Core i5 1.60GHz, 64 GB”
• Example product description:
“Faster Flash Storage with 64 GB Solid State Drive and USB 3.0 …”
• Product IDs are provided by only 10% of the websites
• Categorization information is provided only by 2% of the websites.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 36
Categorization of Product Offers
− We analyzed 1.9 million product offers from 9200 shops
− We trained bag-of-words classifier for 9 product categories
on product descriptions from Amazon.
Source: Petar Petrovski, Volha Bryl, Christian Bizer: Integrating Product Data from Websites offering
Microdata Markup. In: 4th Workshop on Data Extraction and Object Search (DEOS2014)  @ WWW2014
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 37
Identity Resolution for Electronic Products
− We trained feature extractors for product descriptions on offers for
electronic products from Amazon.
− We used the Silk framework for identity resolution.
Precision= 85%
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 38
Starting Points for Further Improvements
− Identity Resolution
• Exploit product identifiers to learn better product recognizers
• 10% of the websites (9,221 PLDs) use s:Product/productID
• 1% of the websites (935 PLDs) use s:Product/gtin13
− Categorization of Products
• Exploit categorization information provided by subset of the websites
• 1,5% of the websites (1,497 PLDs) use s:Offer/category
• 0,5% of the websites (460 PLDs) use s:WebPage/breadcrumb
• Challenge: Integration of ~ 2,000 product taxonomies
Home > Shop > Outdoor & Garden > Barbecues & Outdoor Living > Garden
Furniture > Tables > Dining Tables
Home > Shop > Outdoor & Garden > Barbecues & Outdoor Living > Garden
Furniture > Tables > Dining Tables
Philadelphia Eagles > Philadelphia Eagles Mens > Philadelphia Eagles Mens Jerseys >
over $60
Philadelphia Eagles > Philadelphia Eagles Mens > Philadelphia Eagles Mens Jerseys >
over $60
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 39
Conclusion: Semantic Annotations in HTML Pages
1. Wide-spread adoption of semantic annotations
• motivated by mayor search engines
1. Strong ontology agreement driven by data consumers
• Schema.org, Open Graph Protocol
1. Main application: Rich-snippets
2. Endless data pool for
• Commercial applications
• product and travel data integration and mining
• up-to-date listings of local businesses
• job search engines that increase market transparency
• Research
• large-scale data integration and mining
• information extraction (using annotations as distant supervision*)
* Foley, et al.: Learning to Extract Local Events from the Web. SIGIR 2015
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 40
Download and Play with the Data
− http://www.webdatacommons.org/structureddata/
− Only tip of the iceberg, as each website is only partly crawled.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 41
2. Linked Data
B C
RDF
RDF
link
A D E
RDF
links
RDF
links
RDF
links
RDF
RDF
RDF
RDF
RDF RDF
RDF
RDF
RDF
• by using RDF to publish structured data directly on the Web
• by setting links between data items within different data sources.
Set of best practices for publishing structured data on
the Web in the form of a single global data graph.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 42
Links as Integration Hints
 publishing Identity Links on the Web
 publishing Vocabulary Links on the Web
<http://www4.wiwiss.fu-berlin.de/is-group/resource/persons/Person4>
owl:sameAs
<http://dblp.l3s.de/d2r/resource/authors/Christian_Bizer> .
<http://xmlns.com/foaf/0.1/Person>
owl:equivalentClass
<http://dbpedia.org/ontology/Person> .
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 43
Effort Distribution between Publisher and Consumer
Publishers or third
parties provides
identity/vocabulary links
Consumer mines missing
identity/vocabulary links
Effort
Distribution
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 44
LOD Datasets on the Web: April 2014
Growth without new category Social Networking: 94 %
Source: Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best Practices in
Different Topical Domains. In: 13th International Semantic Web Conference (ISWC2014).
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 45
Uptake in the Government Domain
− Various efforts by public sector
institutions world-wide
− Forerunners
• UK government
• US government
− Types of data published
• statistical data
• environmental data
• budget and election data
− Goals
• Make data available to the public and
other government agencies
• Ease data integration by using standards,
providing unique identifiers and by setting links
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 46
Uptake in the Libraries Community
− Institutions publishing Linked Data
• Library of Congress (subject headings)
• German National Library (PND dataset and subject headings)
• Swedish National Library (Libris - catalog)
• Hungarian National Library (OPAC and digital library)
• Europeana Digital Library (4 million artifacts)
• Springer (metadata about conference proceedings)
− Goals:
1. Interconnect resources between repositories
(by topic, by location, by historical period, by ...)
2. Integrate library catalogs on global scale
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 47
Uptake in the Life Science Domain
− Goals:
1. Connect life science datasets
in order to support
• biological knowledge discovery
• drug discovery
1. Reuse results of previous
integration efforts
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 48
Uptake in the Linguistic Research Community
http://linguistic-lod.org/llod-cloud
http://www.lider-project.eu/
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 49
Ontological Agreement
− Strong agreement on some vocabularies
− Proprietary vocabularies are used in
addition to common ones,
as data is often very specific
Widely-Used Vocabularies
Proprietary Vocabularies
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 50
RDF Links
− Some datasets put a lot of effort into linking
− Many datasets only link to a small number of
other datasets or do not set RDF links at all
Datasets with Top In-Degrees Out-Degrees per Category
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 51
RDF Links in the LOD Cloud: August 2014
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 52
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 53
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 54
Linked Data as Background Knowledge for Data Mining
Which factors correlate with unemployment in France?
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 55
Unemployment Table with Additional Attributes
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 56
RapidMiner Linked Open Data Extension
Allows you to
1. link local table to LOD data sources
2. extend local table with additional attributes
3. mine extended tables using all Rapidminer features
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 57
Finding Correlations
− Use additional attributes to find interesting correlations
− Example correlation for unemployment in France:
• African islands, islands in the Indian Ocean,
outermost regions of the EU (positive)
• Population growth (positive)
• Energy consumption (negative)
• Hospital beds/inhabitants
(negative)
• Fast food restaurants (positive)
• Police stations (positive)
Source: Petar Ristoski, Christian Bizer, and Heiko Paulheim: Mining the Web of Linked
Data with RapidMiner. Semantic Web Challenge, Winner of the Open Track, 2014.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 58
Commercial Applications: Content Management at BBC
− Interconnect content management systems of different TV and radio stations.
− Similar efforts to connect content repositories at Elsevier and Springer.
Source: http://www.w3.org/2001/sw/sweo/public/UseCases/BBC
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 59
− IBM Rational uses Linked Data
technologies to connect data
from different
• software development tools
• software lifecycle tools
− Goals:
1. Make data independent
of concrete tool (IBM or third party)
2. Allow services (reporting, discovery)
to access data from all tools
3. Distributed data space as an
alternative to central repository or
integration hub / bus
Commercial Applications: Application Integration at IBM
Source: http://www.w3.org/2001/sw/sweo/public/UseCases/IBM
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 60
Conclusion: Linked Data vs. HTML-embeded Data
Linked Data Microdata, Microformats, RDFa
~ 1000 sources millions of sources
covers wider range of specific topics
focused on search engines and
facebook
more complex
data structures
very simple and shallow
data structures
partial ontology agreement strong ontology agreement
data integration eased by RDF links
data integration often
requires NLP techniques
various application prototypes
some industrial uptake
strong application pull
by search engines
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 61
3. Knowledge Graphs
− Google Knowledge Graph
• development started 2012, builds on Freebase
• 570 million objects described by over 18 billion facts (2012)
• 1500 classes, 35,000 properties
− Microsoft Satori Knowledge Base
• revealed to the public in mid-2013
− Yahoo Knowledge Graph
• revealed to the public early-2014
− Knowledge Graphs employ RDF-style graph data models
Large cross-domain knowledge bases which
aim
to cover all “relevant” entities in the world.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 62
Data Sources used to Build Knowledge Graphs
1. Wikipedia
• infoboxes, category system, information extraction from text
1. Open license sources
• e.g. CIA World Factbook, MusicBrainz, …
1. Commercial third-party data
• e.g. IMDB, company listings, …
1. schema.org annotations in web pages
• e.g. contact information for companies
• e.g. logos of companies
Lots of effort is spend on data integration and manual data curation
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 63
Application of the Google Knowledge Graph
− Enrich search results with knowledge cards and lists
− Goal: Fulfil information need without having users navigate to other
websites
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 64
Application of the Microsoft Knowledge Graph
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 65
1. Answer fact queries: “birthdate michael douglas”
2. Compare things: ”compare eiffel tower vs empire state building”
Applications of the Google Knowledge Graph
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 66
Google Now Smart Cards
− Direct answers are especially important in the mobile context
− Google Now displays direct answers for 19.45% of the queries
(Source: Stone Temple Consulting, 2015)
− Medical facts are reviewed by an average of 11.1 doctors
(Source: Google)
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 67
New SEO Topic: How to influence Knowledge Graphs?
Source: http://searchengineland.com/
leveraging-wikidata-gain-google-
knowledge-graph-result-219706
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 68
Behind-the-Scenes Applications
− Google
• uses its knowledge graph to identity entities in web pages (Entity Linking)
• Hummingbird ranking algorithm (deployed in 2013) uses
knowledge graph as background knowledge for ranking
search results.
− Yahoo
• uses its knowledge graph to “support applications across the company:
• Web Search, Content Understanding
• Recommendation, Personalization, Advertisement”*
− Data Integration
• becomes matching data sources against knowledge graphs
as intermediate schemata.
Various tasks become easier, if you know all
entities in the world.
*Source: Nicolas Torzec, Yahoo 2014
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 69
Public Knowledge Graphs
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 70
The DBpedia Knowledge Base - Version 2014
− Describes 4.58 million things, out of which
4.22 million are classified in a consistent ontology
using 685 classes and 2679 different properties
• 1,445,000 persons
• 735,000 places
• 241,000 organizations
• 123,000 music albums
− Altogether 3 billion pieces of information (RDF triples)
• 580 million were extracted from the English edition of Wikipedia
• 29,000,000 links to external web pages
• 50,000,000 external links into other RDF datasets
− DBpedia Internationalization
• provides data from 125 Wikipedia language editions for download
• For 28 popular languages DBpedia provides cleaned infobox data
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 71
DBpedia @ BIS2015
1. Thursday, 10:00
The Past, Present & Future of DBpedia
Keynote by Dimitris Kontokostas
2. Thursday, 10:45
4th DBpedia Community Meeting
Room 2
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 72
Google Knowledge Vault
− Research project to build a knowledge base
using facts extracted from 1 billion web pages
1. Web text (TXT): Entity linking,
relationship extraction
2. HTML trees (DOM): Wrapper induction
3. HTML tables (TBL): Relational tables
4. Semantic Annotations (ANO): schema.org, OGP
− Employs probabilistic model for data fusion
− Results: 1.6 billion facts
• 271 million with confidence >90%
• 90 million not in Freebase
Source: Luna Dong, Evgeniy Gabrilovich, et al.: Knowledge Vault:
A Web-scale approach to probabilistic knowledge fusion. In SIGKDD, 2014.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 73
Data Sources for Public Research in this Space
1. Common Crawl
• ~ 2 billion HTML pages
• updated very couple of months
1. WebDataCommons HTML Tables Corpus
• 147 million relational web tables
• selected out of the 11 billion tables contained in the Common Crawl
• http://webdatacommons.org/webtables/
1. WebDataCommons Microdata and RDFa Corpora
• 20.4 billion RDF triples
• http://www.webdatacommons.org/structureddata/
1. Billion Triples Challenge Dataset 2014
• 4 billion RDF triples crawled from Linked Data sources
• http://km.aifb.kit.edu/projects/btc-2014/
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 74
Conclusion: 2001 Article - The Semantic Web
Envisions three things to happen:
1.people publish data in structured form
in addition to HTML pages on the Web
2.common vocabularies / ontologies are used
to represent data
3.people implement cool applications that
do smart things with the available data
Tim Berners-Lee, James Hendler and Ora Lassila:
The Semantic Web. Scientific American, May 2001.
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 75
4. Conclusions
1. Publication of Structured Data
• there is more data available as most people from research and industry like
• especially, schema.org annotations are currently gaining traction
• exciting test-bed for research on data profiling and data integration techniques
1. Ontological Agreement
• exists due to application-pull (Google, Facebook)
• but data source-specific attributes are also important
(e.g. in life science or government statistics domain)
1. Applications
• the big players are moving (Rich-Snippets, Knowledge Graphs)
• there is a lot of further application potential in the available data
• experimentation in industry, but many efforts are still in the prototype stage
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 76
Thanks
− References
• Robert Meusel, Petar Petrovski and Christian Bizer: The WebDataCommons Microdata, RDFa
and Microformat Dataset Series. 13th International Semantic Web Conference (ISWC2014).
• Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best
Practices in Different Topical Domains (Slides, Video). 13th International Semantic Web
Conference (ISWC2014).
• Petar Petrovski, Volha Bryl, Christian Bizer: Integrating Product Data from Websites offering
Microdata Markup. 4th Workshop on Data Extraction and Object Search (DEOS2014).
− Detailed statistics on RDFa, Microdata and Microformats adoption
• http://www.webdatacommons.org/structureddata/
− Detailed statistics on Linked Data adoption
• http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

More Related Content

What's hot

How links can make your open data even greater
How links can make your open data even greaterHow links can make your open data even greater
How links can make your open data even greater
Cristina Sarasua
 
Registration / Certification Interoperability Architecture (overlay peer-review)
Registration / Certification Interoperability Architecture (overlay peer-review)Registration / Certification Interoperability Architecture (overlay peer-review)
Registration / Certification Interoperability Architecture (overlay peer-review)
Herbert Van de Sompel
 
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
Martin Hepp
 
The web is rotting and what to do about it
The web is rotting and what to do about itThe web is rotting and what to do about it
The web is rotting and what to do about it
Herbert Van de Sompel
 
Signposting Overview (Version November 2017)
Signposting Overview (Version November 2017)Signposting Overview (Version November 2017)
Signposting Overview (Version November 2017)
Herbert Van de Sompel
 
Linked Data Overview - AGI Technical SIG
Linked Data Overview - AGI Technical SIGLinked Data Overview - AGI Technical SIG
Linked Data Overview - AGI Technical SIG
Chris Ewing
 
Linked data life cycles
Linked data life cyclesLinked data life cycles
Linked data life cycles
Michael Hausenblas
 
IN2N: Cross-institutional Authority Collaboration
IN2N: Cross-institutional Authority CollaborationIN2N: Cross-institutional Authority Collaboration
IN2N: Cross-institutional Authority Collaboration
Alexander Haffner
 
WCIT2010
WCIT2010WCIT2010
Persistent Identification: Easier Said than Done
Persistent Identification: Easier Said than DonePersistent Identification: Easier Said than Done
Persistent Identification: Easier Said than Done
Herbert Van de Sompel
 
[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...
[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...
[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...
Data Beers
 
Linked Data: turning the web into a context graph
Linked Data: turning the web into a context graphLinked Data: turning the web into a context graph
Linked Data: turning the web into a context graph
Leigh Dodds
 
Linked Data
Linked DataLinked Data
Linked Data
Danny Ayers
 
Heuristics for Fixing Common Errors in Deployed schema.org Microdata
Heuristics for Fixing Common Errors in Deployed schema.org MicrodataHeuristics for Fixing Common Errors in Deployed schema.org Microdata
Heuristics for Fixing Common Errors in Deployed schema.org Microdata
Robert Meusel
 
Achieving Link Integrity for Managed Collections
Achieving Link Integrity for Managed CollectionsAchieving Link Integrity for Managed Collections
Achieving Link Integrity for Managed Collections
Herbert Van de Sompel
 
The Semantic Data Web, Sören Auer, University of Leipzig
The Semantic Data Web, Sören Auer, University of LeipzigThe Semantic Data Web, Sören Auer, University of Leipzig
The Semantic Data Web, Sören Auer, University of Leipzig
LOD2 Creating Knowledge out of Interlinked Data
 
Data.dcs: Converting Legacy Data into Linked Data
Data.dcs: Converting Legacy Data into Linked DataData.dcs: Converting Legacy Data into Linked Data
Data.dcs: Converting Legacy Data into Linked Data
Matthew Rowe
 
Linking Open Data
Linking Open DataLinking Open Data
Linking Open Data
Stefan Gradmann
 
20180226 data driven smart governance
20180226 data driven smart governance20180226 data driven smart governance
20180226 data driven smart governance
Dongpo Deng
 
Introduction To Linked Data
Introduction To Linked DataIntroduction To Linked Data
Introduction To Linked Data
Leigh Dodds
 

What's hot (20)

How links can make your open data even greater
How links can make your open data even greaterHow links can make your open data even greater
How links can make your open data even greater
 
Registration / Certification Interoperability Architecture (overlay peer-review)
Registration / Certification Interoperability Architecture (overlay peer-review)Registration / Certification Interoperability Architecture (overlay peer-review)
Registration / Certification Interoperability Architecture (overlay peer-review)
 
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
 
The web is rotting and what to do about it
The web is rotting and what to do about itThe web is rotting and what to do about it
The web is rotting and what to do about it
 
Signposting Overview (Version November 2017)
Signposting Overview (Version November 2017)Signposting Overview (Version November 2017)
Signposting Overview (Version November 2017)
 
Linked Data Overview - AGI Technical SIG
Linked Data Overview - AGI Technical SIGLinked Data Overview - AGI Technical SIG
Linked Data Overview - AGI Technical SIG
 
Linked data life cycles
Linked data life cyclesLinked data life cycles
Linked data life cycles
 
IN2N: Cross-institutional Authority Collaboration
IN2N: Cross-institutional Authority CollaborationIN2N: Cross-institutional Authority Collaboration
IN2N: Cross-institutional Authority Collaboration
 
WCIT2010
WCIT2010WCIT2010
WCIT2010
 
Persistent Identification: Easier Said than Done
Persistent Identification: Easier Said than DonePersistent Identification: Easier Said than Done
Persistent Identification: Easier Said than Done
 
[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...
[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...
[Databeers] 06/05/2014 - Boris Villazon: “Data Integration - A Linked Data ap...
 
Linked Data: turning the web into a context graph
Linked Data: turning the web into a context graphLinked Data: turning the web into a context graph
Linked Data: turning the web into a context graph
 
Linked Data
Linked DataLinked Data
Linked Data
 
Heuristics for Fixing Common Errors in Deployed schema.org Microdata
Heuristics for Fixing Common Errors in Deployed schema.org MicrodataHeuristics for Fixing Common Errors in Deployed schema.org Microdata
Heuristics for Fixing Common Errors in Deployed schema.org Microdata
 
Achieving Link Integrity for Managed Collections
Achieving Link Integrity for Managed CollectionsAchieving Link Integrity for Managed Collections
Achieving Link Integrity for Managed Collections
 
The Semantic Data Web, Sören Auer, University of Leipzig
The Semantic Data Web, Sören Auer, University of LeipzigThe Semantic Data Web, Sören Auer, University of Leipzig
The Semantic Data Web, Sören Auer, University of Leipzig
 
Data.dcs: Converting Legacy Data into Linked Data
Data.dcs: Converting Legacy Data into Linked DataData.dcs: Converting Legacy Data into Linked Data
Data.dcs: Converting Legacy Data into Linked Data
 
Linking Open Data
Linking Open DataLinking Open Data
Linking Open Data
 
20180226 data driven smart governance
20180226 data driven smart governance20180226 data driven smart governance
20180226 data driven smart governance
 
Introduction To Linked Data
Introduction To Linked DataIntroduction To Linked Data
Introduction To Linked Data
 

Viewers also liked

The Academics' Guide to Social Media
The Academics' Guide to Social Media The Academics' Guide to Social Media
The Academics' Guide to Social Media
Sue Beckingham
 
Social media for Academics
Social media for AcademicsSocial media for Academics
Social media for Academics
Hugo Guyader
 
Academic Social Network Sites: a rough guide for researchers
Academic Social Network Sites: a rough guide for researchersAcademic Social Network Sites: a rough guide for researchers
Academic Social Network Sites: a rough guide for researchers
Danny Kingsley
 
Digital traces
Digital tracesDigital traces
Digital traces
Sanjana Hattotuwa
 
Using social media as academics for learning, teaching and research
Using social media as academics for learning, teaching and researchUsing social media as academics for learning, teaching and research
Using social media as academics for learning, teaching and research
Sue Beckingham
 
Academic social networking sites
Academic social networking sitesAcademic social networking sites
Academic social networking sites
Katy Jordan
 
Semantic Web Good News
Semantic Web Good NewsSemantic Web Good News
Semantic Web Good News
Frank van Harmelen
 
Social media for research and knowledge sharing
Social media for research and knowledge sharingSocial media for research and knowledge sharing
Social media for research and knowledge sharing
Hasnain Zafar
 
Social Media Benefits For Researchers
Social Media Benefits For ResearchersSocial Media Benefits For Researchers
Social Media Benefits For Researchers
Inge de Waard
 
The Digital Academic: Social and Other Digital Media for Academics
The Digital Academic: Social and Other Digital Media for AcademicsThe Digital Academic: Social and Other Digital Media for Academics
The Digital Academic: Social and Other Digital Media for Academics
Deborah Lupton
 
Skills Development Through Authentic Assessment
Skills Development Through Authentic AssessmentSkills Development Through Authentic Assessment
Skills Development Through Authentic Assessment
Alan Cann
 
Networking and the importance of a professional online presence
Networking and the importance of a professional online presenceNetworking and the importance of a professional online presence
Networking and the importance of a professional online presence
Sue Beckingham
 
Social media for researchers - maximizing your personal impact
Social media for researchers - maximizing your personal impactSocial media for researchers - maximizing your personal impact
Social media for researchers - maximizing your personal impact
Alan Cann
 
Social Media for Researchers
Social Media for ResearchersSocial Media for Researchers
Social Media for Researchers
Lancaster University Library
 
Using social media for learning and teaching #Bett2017 #ALiSOnline
Using social media for learning and teaching #Bett2017 #ALiSOnlineUsing social media for learning and teaching #Bett2017 #ALiSOnline
Using social media for learning and teaching #Bett2017 #ALiSOnline
Sue Beckingham
 
Football and graph theory
Football and graph theoryFootball and graph theory
Football and graph theory
Umang Aggarwal
 
Best Practice for Social Media in Teaching & Learning Contexts - Nicola Osborne
Best Practice for Social Media in Teaching & Learning Contexts - Nicola OsborneBest Practice for Social Media in Teaching & Learning Contexts - Nicola Osborne
Best Practice for Social Media in Teaching & Learning Contexts - Nicola Osborne
EDINA, University of Edinburgh
 
Graph theory
Graph theoryGraph theory
Graph theory
Kumar
 
The role and importance of social media in science
The role and importance of social media in science The role and importance of social media in science
The role and importance of social media in science
Jari Laru
 
Using social media to build your academic career
Using social media to build your academic careerUsing social media to build your academic career
Using social media to build your academic career
lisbk
 

Viewers also liked (20)

The Academics' Guide to Social Media
The Academics' Guide to Social Media The Academics' Guide to Social Media
The Academics' Guide to Social Media
 
Social media for Academics
Social media for AcademicsSocial media for Academics
Social media for Academics
 
Academic Social Network Sites: a rough guide for researchers
Academic Social Network Sites: a rough guide for researchersAcademic Social Network Sites: a rough guide for researchers
Academic Social Network Sites: a rough guide for researchers
 
Digital traces
Digital tracesDigital traces
Digital traces
 
Using social media as academics for learning, teaching and research
Using social media as academics for learning, teaching and researchUsing social media as academics for learning, teaching and research
Using social media as academics for learning, teaching and research
 
Academic social networking sites
Academic social networking sitesAcademic social networking sites
Academic social networking sites
 
Semantic Web Good News
Semantic Web Good NewsSemantic Web Good News
Semantic Web Good News
 
Social media for research and knowledge sharing
Social media for research and knowledge sharingSocial media for research and knowledge sharing
Social media for research and knowledge sharing
 
Social Media Benefits For Researchers
Social Media Benefits For ResearchersSocial Media Benefits For Researchers
Social Media Benefits For Researchers
 
The Digital Academic: Social and Other Digital Media for Academics
The Digital Academic: Social and Other Digital Media for AcademicsThe Digital Academic: Social and Other Digital Media for Academics
The Digital Academic: Social and Other Digital Media for Academics
 
Skills Development Through Authentic Assessment
Skills Development Through Authentic AssessmentSkills Development Through Authentic Assessment
Skills Development Through Authentic Assessment
 
Networking and the importance of a professional online presence
Networking and the importance of a professional online presenceNetworking and the importance of a professional online presence
Networking and the importance of a professional online presence
 
Social media for researchers - maximizing your personal impact
Social media for researchers - maximizing your personal impactSocial media for researchers - maximizing your personal impact
Social media for researchers - maximizing your personal impact
 
Social Media for Researchers
Social Media for ResearchersSocial Media for Researchers
Social Media for Researchers
 
Using social media for learning and teaching #Bett2017 #ALiSOnline
Using social media for learning and teaching #Bett2017 #ALiSOnlineUsing social media for learning and teaching #Bett2017 #ALiSOnline
Using social media for learning and teaching #Bett2017 #ALiSOnline
 
Football and graph theory
Football and graph theoryFootball and graph theory
Football and graph theory
 
Best Practice for Social Media in Teaching & Learning Contexts - Nicola Osborne
Best Practice for Social Media in Teaching & Learning Contexts - Nicola OsborneBest Practice for Social Media in Teaching & Learning Contexts - Nicola Osborne
Best Practice for Social Media in Teaching & Learning Contexts - Nicola Osborne
 
Graph theory
Graph theoryGraph theory
Graph theory
 
The role and importance of social media in science
The role and importance of social media in science The role and importance of social media in science
The role and importance of social media in science
 
Using social media to build your academic career
Using social media to build your academic careerUsing social media to build your academic career
Using social media to build your academic career
 

Similar to Evolving the Web into a Global Dataspace – Advances and Applications

TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"
TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"
TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"
TourismFastForward
 
Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...
Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...
Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...
Chris Bizer
 
Integrating Product Data from the Semantic Web using Deep Learning Techniques
Integrating Product Data from the Semantic Web using Deep Learning TechniquesIntegrating Product Data from the Semantic Web using Deep Learning Techniques
Integrating Product Data from the Semantic Web using Deep Learning Techniques
Chris Bizer
 
Big Data – Marketing Challenge or Opportunity?
Big Data – Marketing Challenge or Opportunity?Big Data – Marketing Challenge or Opportunity?
Big Data – Marketing Challenge or Opportunity?
edynamic
 
Web 2008
Web 2008Web 2008
Web 2008
Galit Fein
 
Schema and Open Graph 101 - SMX Munich
Schema and Open Graph 101 - SMX MunichSchema and Open Graph 101 - SMX Munich
Schema and Open Graph 101 - SMX Munich
Matthew Brown
 
Digital Transformation of Civil Engineering and Construction
Digital Transformation of Civil Engineering and ConstructionDigital Transformation of Civil Engineering and Construction
Digital Transformation of Civil Engineering and Construction
pdemian
 
Produktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4jProduktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4j
Neo4j
 
A possible future role of schema.org for business reporting
A possible future role of schema.org for business reportingA possible future role of schema.org for business reporting
A possible future role of schema.org for business reporting
sopekmir
 
Digital dealer conference automotive guerrilla marketing using social media v2
Digital dealer conference   automotive guerrilla marketing using social media v2Digital dealer conference   automotive guerrilla marketing using social media v2
Digital dealer conference automotive guerrilla marketing using social media v2
Ralph Paglia
 
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive Digital Marketing Professional Community
 
Digital dealer6 web20-guerrillamarketing-v2
Digital dealer6 web20-guerrillamarketing-v2Digital dealer6 web20-guerrillamarketing-v2
Digital dealer6 web20-guerrillamarketing-v2
Ralph Paglia
 
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0
Ralph Paglia
 
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0
Social Media Marketing
 
Acs Presentation Thinking Outside Of Inbox V2
Acs Presentation   Thinking Outside Of Inbox V2Acs Presentation   Thinking Outside Of Inbox V2
Acs Presentation Thinking Outside Of Inbox V2
Johnny Teoh
 
Building for success on the capable web - t3imd 2020
Building for success on the capable web -  t3imd 2020Building for success on the capable web -  t3imd 2020
Building for success on the capable web - t3imd 2020
Andrey Lipattsev
 
Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...
Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...
Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...
Martin Kaltenböck
 
Alphabet (Google) SWOT Analysis 2018
Alphabet (Google) SWOT Analysis 2018Alphabet (Google) SWOT Analysis 2018
Alphabet (Google) SWOT Analysis 2018
Ovidijus Jurevicius
 
Web analyticsandbigdata techweek2011
Web analyticsandbigdata techweek2011Web analyticsandbigdata techweek2011
Web analyticsandbigdata techweek2011
Raghu Kashyap
 
Big data analytics enterprise and cloud computing
Big data analytics enterprise and cloud computingBig data analytics enterprise and cloud computing
Big data analytics enterprise and cloud computing
Cloud Credential Council
 

Similar to Evolving the Web into a Global Dataspace – Advances and Applications (20)

TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"
TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"
TFF2015, Christian Bizer, Uni Mannheim "Schema.org-Annotationen in Webseiten"
 
Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...
Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...
Schema.org Annotations and Web Tables: Underexploited Semantic Nuggets on the...
 
Integrating Product Data from the Semantic Web using Deep Learning Techniques
Integrating Product Data from the Semantic Web using Deep Learning TechniquesIntegrating Product Data from the Semantic Web using Deep Learning Techniques
Integrating Product Data from the Semantic Web using Deep Learning Techniques
 
Big Data – Marketing Challenge or Opportunity?
Big Data – Marketing Challenge or Opportunity?Big Data – Marketing Challenge or Opportunity?
Big Data – Marketing Challenge or Opportunity?
 
Web 2008
Web 2008Web 2008
Web 2008
 
Schema and Open Graph 101 - SMX Munich
Schema and Open Graph 101 - SMX MunichSchema and Open Graph 101 - SMX Munich
Schema and Open Graph 101 - SMX Munich
 
Digital Transformation of Civil Engineering and Construction
Digital Transformation of Civil Engineering and ConstructionDigital Transformation of Civil Engineering and Construction
Digital Transformation of Civil Engineering and Construction
 
Produktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4jProduktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4j
 
A possible future role of schema.org for business reporting
A possible future role of schema.org for business reportingA possible future role of schema.org for business reporting
A possible future role of schema.org for business reporting
 
Digital dealer conference automotive guerrilla marketing using social media v2
Digital dealer conference   automotive guerrilla marketing using social media v2Digital dealer conference   automotive guerrilla marketing using social media v2
Digital dealer conference automotive guerrilla marketing using social media v2
 
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0
 
Digital dealer6 web20-guerrillamarketing-v2
Digital dealer6 web20-guerrillamarketing-v2Digital dealer6 web20-guerrillamarketing-v2
Digital dealer6 web20-guerrillamarketing-v2
 
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0
 
Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0Automotive guerrilla marketing for car dealers using social media and web 2 0
Automotive guerrilla marketing for car dealers using social media and web 2 0
 
Acs Presentation Thinking Outside Of Inbox V2
Acs Presentation   Thinking Outside Of Inbox V2Acs Presentation   Thinking Outside Of Inbox V2
Acs Presentation Thinking Outside Of Inbox V2
 
Building for success on the capable web - t3imd 2020
Building for success on the capable web -  t3imd 2020Building for success on the capable web -  t3imd 2020
Building for success on the capable web - t3imd 2020
 
Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...
Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...
Knowledge Graph Implementation into Drupal Content Management System (CMS) fo...
 
Alphabet (Google) SWOT Analysis 2018
Alphabet (Google) SWOT Analysis 2018Alphabet (Google) SWOT Analysis 2018
Alphabet (Google) SWOT Analysis 2018
 
Web analyticsandbigdata techweek2011
Web analyticsandbigdata techweek2011Web analyticsandbigdata techweek2011
Web analyticsandbigdata techweek2011
 
Big data analytics enterprise and cloud computing
Big data analytics enterprise and cloud computingBig data analytics enterprise and cloud computing
Big data analytics enterprise and cloud computing
 

More from Chris Bizer

GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?
GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?
GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?
Chris Bizer
 
Using the Semantic Web as Training Data for Product Matching
Using the Semantic Web as Training Data for Product MatchingUsing the Semantic Web as Training Data for Product Matching
Using the Semantic Web as Training Data for Product Matching
Chris Bizer
 
JIST2019 Keynote: Completing Knowledge Graphs using Data from the Open Web
JIST2019 Keynote: Completing Knowledge Graphs using Data from the Open WebJIST2019 Keynote: Completing Knowledge Graphs using Data from the Open Web
JIST2019 Keynote: Completing Knowledge Graphs using Data from the Open Web
Chris Bizer
 
Data Search and Search Joins (Universität Heidelberg 2015)
Data Search and Search Joins (Universität Heidelberg 2015)Data Search and Search Joins (Universität Heidelberg 2015)
Data Search and Search Joins (Universität Heidelberg 2015)
Chris Bizer
 
Exploring the Application Potential of Relational Web Tables
Exploring the Application Potential of Relational Web TablesExploring the Application Potential of Relational Web Tables
Exploring the Application Potential of Relational Web Tables
Chris Bizer
 
Evolving the Web into a Global Database - Advances and Applications.
Evolving the Web into a Global Database - Advances and Applications. Evolving the Web into a Global Database - Advances and Applications.
Evolving the Web into a Global Database - Advances and Applications.
Chris Bizer
 

More from Chris Bizer (6)

GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?
GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?
GPT4 versus BERT: Which Foundation Model is better for Web Data Integration?
 
Using the Semantic Web as Training Data for Product Matching
Using the Semantic Web as Training Data for Product MatchingUsing the Semantic Web as Training Data for Product Matching
Using the Semantic Web as Training Data for Product Matching
 
JIST2019 Keynote: Completing Knowledge Graphs using Data from the Open Web
JIST2019 Keynote: Completing Knowledge Graphs using Data from the Open WebJIST2019 Keynote: Completing Knowledge Graphs using Data from the Open Web
JIST2019 Keynote: Completing Knowledge Graphs using Data from the Open Web
 
Data Search and Search Joins (Universität Heidelberg 2015)
Data Search and Search Joins (Universität Heidelberg 2015)Data Search and Search Joins (Universität Heidelberg 2015)
Data Search and Search Joins (Universität Heidelberg 2015)
 
Exploring the Application Potential of Relational Web Tables
Exploring the Application Potential of Relational Web TablesExploring the Application Potential of Relational Web Tables
Exploring the Application Potential of Relational Web Tables
 
Evolving the Web into a Global Database - Advances and Applications.
Evolving the Web into a Global Database - Advances and Applications. Evolving the Web into a Global Database - Advances and Applications.
Evolving the Web into a Global Database - Advances and Applications.
 

Recently uploaded

MUMBAI MONTHLY RAINFALL CAPSTONE PROJECT
MUMBAI MONTHLY RAINFALL CAPSTONE PROJECTMUMBAI MONTHLY RAINFALL CAPSTONE PROJECT
MUMBAI MONTHLY RAINFALL CAPSTONE PROJECT
GaneshGanesh399816
 
the potential of the development of the Ford–Fulkerson algorithm to solve the...
the potential of the development of the Ford–Fulkerson algorithm to solve the...the potential of the development of the Ford–Fulkerson algorithm to solve the...
the potential of the development of the Ford–Fulkerson algorithm to solve the...
huseindihon
 
Willis Tower //Sears Tower- Supertall Building .pdf
Willis Tower //Sears Tower- Supertall Building .pdfWillis Tower //Sears Tower- Supertall Building .pdf
Willis Tower //Sears Tower- Supertall Building .pdf
LINAT
 
CHAPTER-1-Introduction-to-Marketing.pptx
CHAPTER-1-Introduction-to-Marketing.pptxCHAPTER-1-Introduction-to-Marketing.pptx
CHAPTER-1-Introduction-to-Marketing.pptx
girewiy968
 
Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...
Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...
Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...
ginni singh$A17
 
New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...
New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...
New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...
tanupasswan6
 
Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...
Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...
Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...
tanupasswan6
 
Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...
Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...
Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...
norina2645
 
🚂🚘 Premium Girls Call Bangalore 🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...
🚂🚘 Premium Girls Call Bangalore  🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...🚂🚘 Premium Girls Call Bangalore  🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...
🚂🚘 Premium Girls Call Bangalore 🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...
bhupeshkumar0889
 
potential development of the A* search algorithm specifically
potential development of the A* search algorithm specificallypotential development of the A* search algorithm specifically
potential development of the A* search algorithm specifically
huseindihon
 
Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...
Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...
Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...
birajmohan012
 
Introduction to the Red Hat Portfolio.pdf
Introduction to the Red Hat Portfolio.pdfIntroduction to the Red Hat Portfolio.pdf
Introduction to the Red Hat Portfolio.pdf
kihus38
 
VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...
VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...
VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...
44annissa
 
Harendra Singh, AI Strategy and Consulting Portfolio
Harendra Singh, AI Strategy and Consulting PortfolioHarendra Singh, AI Strategy and Consulting Portfolio
Harendra Singh, AI Strategy and Consulting Portfolio
harendmgr
 
Seamlessly Pay Online, Pay In Stores or Send Money
Seamlessly Pay Online, Pay In Stores or Send MoneySeamlessly Pay Online, Pay In Stores or Send Money
Seamlessly Pay Online, Pay In Stores or Send Money
gargtinna79
 
Artificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptx
Artificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptxArtificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptx
Artificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptx
vaishnavisharma877623
 
High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...
saadkhan1485265
 
Oracle Database Desupported Features on 23ai (Part A)
Oracle Database Desupported Features on 23ai (Part A)Oracle Database Desupported Features on 23ai (Part A)
Oracle Database Desupported Features on 23ai (Part A)
Alireza Kamrani
 
🚂🚘 Premium Girls Call Nashik 🛵🚡000XX00000 💃 Choose Best And Top Girl Service...
🚂🚘 Premium Girls Call Nashik  🛵🚡000XX00000 💃 Choose Best And Top Girl Service...🚂🚘 Premium Girls Call Nashik  🛵🚡000XX00000 💃 Choose Best And Top Girl Service...
🚂🚘 Premium Girls Call Nashik 🛵🚡000XX00000 💃 Choose Best And Top Girl Service...
kuldeepsharmaks8120
 
Supervised Learning (Data Science).pptx
Supervised Learning  (Data Science).pptxSupervised Learning  (Data Science).pptx
Supervised Learning (Data Science).pptx
TARIKU ENDALE
 

Recently uploaded (20)

MUMBAI MONTHLY RAINFALL CAPSTONE PROJECT
MUMBAI MONTHLY RAINFALL CAPSTONE PROJECTMUMBAI MONTHLY RAINFALL CAPSTONE PROJECT
MUMBAI MONTHLY RAINFALL CAPSTONE PROJECT
 
the potential of the development of the Ford–Fulkerson algorithm to solve the...
the potential of the development of the Ford–Fulkerson algorithm to solve the...the potential of the development of the Ford–Fulkerson algorithm to solve the...
the potential of the development of the Ford–Fulkerson algorithm to solve the...
 
Willis Tower //Sears Tower- Supertall Building .pdf
Willis Tower //Sears Tower- Supertall Building .pdfWillis Tower //Sears Tower- Supertall Building .pdf
Willis Tower //Sears Tower- Supertall Building .pdf
 
CHAPTER-1-Introduction-to-Marketing.pptx
CHAPTER-1-Introduction-to-Marketing.pptxCHAPTER-1-Introduction-to-Marketing.pptx
CHAPTER-1-Introduction-to-Marketing.pptx
 
Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...
Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...
Celebrity Girls Call Noida 9873940964 Unlimited Short Providing Girls Service...
 
New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...
New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...
New Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And N...
 
Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...
Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...
Busty Girls Call Delhi 🎈🔥9711199171 🔥💋🎈 Provide Best And Top Girl Service And...
 
Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...
Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...
Mumbai Girls Call Mumbai 🛵🚡9910780858 💃 Choose Best And Top Girl Service And ...
 
🚂🚘 Premium Girls Call Bangalore 🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...
🚂🚘 Premium Girls Call Bangalore  🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...🚂🚘 Premium Girls Call Bangalore  🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...
🚂🚘 Premium Girls Call Bangalore 🛵🚡000XX00000 💃 Choose Best And Top Girl Serv...
 
potential development of the A* search algorithm specifically
potential development of the A* search algorithm specificallypotential development of the A* search algorithm specifically
potential development of the A* search algorithm specifically
 
Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...
Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...
Beautiful Girls Call Pune 000XX00000 Provide Best And Top Girl Service And No...
 
Introduction to the Red Hat Portfolio.pdf
Introduction to the Red Hat Portfolio.pdfIntroduction to the Red Hat Portfolio.pdf
Introduction to the Red Hat Portfolio.pdf
 
VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...
VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...
VIP Girls Call Mumbai 9910780858 Provide Best And Top Girl Service And No1 in...
 
Harendra Singh, AI Strategy and Consulting Portfolio
Harendra Singh, AI Strategy and Consulting PortfolioHarendra Singh, AI Strategy and Consulting Portfolio
Harendra Singh, AI Strategy and Consulting Portfolio
 
Seamlessly Pay Online, Pay In Stores or Send Money
Seamlessly Pay Online, Pay In Stores or Send MoneySeamlessly Pay Online, Pay In Stores or Send Money
Seamlessly Pay Online, Pay In Stores or Send Money
 
Artificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptx
Artificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptxArtificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptx
Artificial Intelligence (AI) Technology Project Proposal _ by Slidesgo.pptx
 
High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Nagpur 000XX00000 Provide Best And Top Girl Service And No1 i...
 
Oracle Database Desupported Features on 23ai (Part A)
Oracle Database Desupported Features on 23ai (Part A)Oracle Database Desupported Features on 23ai (Part A)
Oracle Database Desupported Features on 23ai (Part A)
 
🚂🚘 Premium Girls Call Nashik 🛵🚡000XX00000 💃 Choose Best And Top Girl Service...
🚂🚘 Premium Girls Call Nashik  🛵🚡000XX00000 💃 Choose Best And Top Girl Service...🚂🚘 Premium Girls Call Nashik  🛵🚡000XX00000 💃 Choose Best And Top Girl Service...
🚂🚘 Premium Girls Call Nashik 🛵🚡000XX00000 💃 Choose Best And Top Girl Service...
 
Supervised Learning (Data Science).pptx
Supervised Learning  (Data Science).pptxSupervised Learning  (Data Science).pptx
Supervised Learning (Data Science).pptx
 

Evolving the Web into a Global Dataspace – Advances and Applications

  • 1. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 1 Prof. Dr. Christian Bizer Evolving the Web into a Global Dataspace - Advances and Applications - 18th International Conference on Business Information System (BIS 2015)
  • 2. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 2 Hello Professor Christian Bizer University of Mannheim Research Topics −Web Technologies −Web Data Profiling −Web Data Integration −Web Mining
  • 3. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 3 Data and Web Science Group @ University of Mannheim − 6 Professors • Heiner Stuckenschmidt • Rainer Gemulla • Christian Bizer • Simone Ponzetto • Heiko Paulheim • Johanna Völker − 25 researchers and PhD students − http://dws.informatik.uni-mannheim.de/ 1. Research methods for integrating and mining large amounts of heterogeneous information from the Web. 2. Empirically analyze the content and structure of the Web.
  • 4. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 4 Querying the Classic Web DB HTML
  • 5. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 5 Long Standing Goal Query the Web like a single, global database
  • 6. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 6 2001 Article: The Semantic Web Envisions three things to happen: 1.people publish data in structured form in addition to HTML pages on the Web 2.common vocabularies / ontologies are used to represent data 3.people implement cool applications that do smart things with the available data Tim Berners-Lee, James Hendler and Ora Lassila: The Semantic Web. Scientific American, May 2001.
  • 7. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 7 14 Years Later There are 1.5 million publications about the Semantic Web on Google Scholar, but 1. Do people publish structured data on the Web? 2. Do people agree on common vocabularies / ontologies? 3. What are the cool applications that do smart things with the data?
  • 8. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 8 Outline 1. Semantic Annotations in HTML Pages 2. Linked Data 3. Knowledge Graphs 4. Conclusions
  • 9. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 9 1. Semantic Annotations in HTML Pages Simple idea: Help machines to understand Web content by marking up data in HTML pages. <div itemtype="http://schema.org/Hotel"> <span itemprop="name">Vienna Marriott Hotel</span> <span itemprop="address" itemscope="" itemtype="http://schema.org/PostalAddress"> <span itemprop="streetAddress">Parkring 12a</span> <span itemprop="addressLocality">Vienna</span> <span itemprop="addressCountry">Austria</span> </span> <div itemprop="aggregateRating" itemscope itemtype="http://schema.org/AggregateRating"> <span itemprop="ratingValue"> 4 </span> stars-based on <span itemprop="reviewCount"> 250 </span> reviews. </div>
  • 10. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 10 Semantic Annotation Formats Microformats Microdata RDFa − date back to 2003 − small set of fixed formats − W3C Recommendation in 2008 − can represent any type of data − proposed in 2009 − tries to be simpler than RDFa
  • 11. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 11 Open Graph Protocol − allows site owners to determine how entities are displayed in Facebook − relies on RDFa for marking up data in HTML pages − available since April 2010
  • 12. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 12 Schema.org − ask site owners since 2011 to annotate data for enriching search results − 675 Types: Event, Place, Local Business, Product, Review, Person − Encoding: Microdata, RDFa, JSON-LD
  • 13. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 13 Usage of Schema.org Data @ Google Rich snippets within search results
  • 14. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 14 Event Data in Google Applications https://developers.google.com/structured-data/
  • 15. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 15 Flight Offers in Google Search Results Annotated webpages directly below Google Flights results
  • 16. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 16 Rich-Snippets Get More User Attention − Suchen Source: www.looktracker.com Potential business incentive.
  • 17. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 17 Motivation for Semantic Annotations − Study by searchmetrics.com in 2013: 10.000s of search keywords − Type of rich-snippet displayed by Google: Source: http://www.searchmetrics.com/de/knowledge-base/schema/ Google displays Rich-Snippets for 40% of all queries.
  • 18. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 18 The Common Crawl
  • 19. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 19 The Web Data Commons Project − extracts all Microformat, Microdata, RDFa data from the Common Crawl − analyzes and provides the extracted data for download − four extraction runs so far • 2014 CC Corpus: 2.0 billion HTML pages  20.4 billion RDF triples • 2013 CC Corpus: 2.2 billion HTML pages  17.2 billion RDF triples • 2012 CC Corpus: 3.0 billion HTML pages  7.3 billion RDF triples • 2009/2010 CC Corpus: 2.5 billion HTML pages  5.1 billion RDF triples − uses 100 machines on Amazon EC2 • approx. 3000 machine/hours (spot instances of type c3.xlarge)  550 Euro − http://www.webdatacommons.org/structureddata/
  • 20. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 20 Overall Adoption 2014 620 million HTML pages out of the 2 billion pages provide semantic annotations (30%). 2.72 million pay-level-domains (PLDs) out of the 15.68 million pay-level-domains covered by the crawl provide annotations (17%). Google, 2014*: 5 million websites provide Schema.org data. * Guha in LDOW2014 Keynote
  • 21. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 21 Number of PLDs providing Semantic Annotations
  • 22. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 22 Most Popular Classes RDFa Microdata
  • 23. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 23 Topical Focus – Microdata 2014 2014 2013 Class Instances # PLDs PLDs # % # % 1 schema:WebPage 51.757.000 148,893 18,16% 69.712 15,04 2 schema:Article 54.972.000 88,7 10,82% 65.930 14,22 3 schema:Blog 3.787.000 110,663 13,50% 64.709 13,96 4 schema:Product 288.083.000 89,608 10,93% 56.388 12,16 5 schema:PostalAddress 48.804.000 101,086 12,33% 52.446 11,31 6 dv:Breadcrumb 269.088.000 76,894 9,38% 44.187 9,53 7 schema:AggregateRating 59.070.000 50,510 6,16% 36.823 7,94 8 schema:Offer 236.953.000 62,849 7,66% 35.635 7,69 9 schema:LocalBusiness 20.194.000 62,191 7,58% 35.264 7,61 10 schema:BlogPosting 11.458.000 65,397 7,98% 32.056 6,92 11 schema:Organization 101.769.000 52,733 6,43% 24.255 5,23 12 schema:Person 115.376.000 47,936 5,85% 21.107 4,55 13 schema:ImageObject 35.356.000 25,573 3,12% 16.084 3,47 14 dv:Product 12.411.000 16,003 1,95% 13.844 2,99 15 schema:Review 42.561.000 20,124 2,45% 13.137 2,83 16 dv:Review-aggregate 3.964.000 14,094 1,72% 13.075 2,82 17 dv:Organization 3.155.000 10,649 1,30% 9.582 2,07 18 dv:Offer 7.170.000 11,64 1,42% 9.298 2,01 19 dv:Address 2.138.000 9,674 1,18% 8.866 1,91 20 dv:Rating 1.732.000 9,367 1,14% 8.360 1,8 − Top Classes − Topics: • CMS and blog metadata • products and offers • ratings and reviews • business listings • address data • ...and a massive long tail schema: = Schema.org dv: = Google Rich Snippet Vocabulary (deprecated)
  • 24. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 24 Adoption by E-Commerce Websites Distribution by Alexa Top-15 Shopping Sites Top-Level Domain TLD #PLDs com 38344 co.uk 3605 net 1813 de 1333 pl 1273 com.br 1194 ru 1165 com.au 1062 nl 1002 Website schema:Product Amazon.com  Ebay.com  NetFlix.com  Amazon.co.uk  Walmart.com  etsy.com  Ikea.com  Bestbuy.com  Homedepot.com  Target.com  Groupon.com  Newegg.com  Lowes.com  Macys.com  Nordstrom.com  Adoption by Top-15: 60 %
  • 25. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 25 Properties used to Describe Products Top 15 Properties PLDs # % schema:Product/name 78,292 87 % schema:Product/image 59,445 66 % schema:Product/description 58,228 65 % schema:Product/offers 57,633 64 % schema:Offer/price 54,290 61 % schema:Offer/availability 36,789 41 % schema:Offer/priceCurrency 30,610 34 % schema:Product/url 23,723 26 % schema:Product/aggregateRating 21,166 24 % schema:AggregateRating/ratingValue 20,513 23 % schema:AggregateRating/reviewCount 14,930 17 % schema:Product/manufacturer 10,150 11 % schema:Product/brand 9,739 11 % schema:Product/productID 9,221 10 % schema:Product/sku 7955 9 %
  • 26. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 26 Adoption by Travel Websites Top 15 Travel Websites schema:Hotel Any Class Booking.com (uses DataVoc)   TripAdvisor   Expedia   Agoda   Hotels.com   Kayak   Priceline   Travelocity   Orbitz   ChoiceHotels   HolidayCheck   ChoiceHotels   InterContinental Hotels Group   Marriott International   Global Hyatt Corp.   Adoption: 73 %
  • 27. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 27 Properties used to Describe Hotels Top 10 Properties PLDs # % schema:Hotel/name 4173 88,35 % schema:Hotel/address 3311 70,10 % schema:Hotel/telephone 2488 52,68 % schema:PostalAddress/streetAddress 2362 50,01 % schema:PostalAddress/addressLocality 2231 47,24 % schema:Hotel/url 2102 44,51 % schema:PostalAddress/postalCode 2096 44,38 % schema:AggregateRating/ratingValue 1952 41,33 % schema:Hotel/aggregateRating 1866 39,51 % schema:AggregateRating/bestRating 1697 35,93 %
  • 28. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 28 Adoption by Job Websites Distribution by Top-10 Employment Sites Top-Level Domain Adoption by Top-10: 70 % TLD #PLDs jobs 908 com 828 org 263 co.uk 194 net 40 nl 38 ca 33 de 32 jobs 908 Website schema:JobPosting Indeed.com  Monster.com  Careerbuilder.com  Snagajob.com  Jobsdb.com  Jobsearch.about.com  Jobs.net  Internships.com  Jobs.aol.com  Quintcareers.com 
  • 29. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 29 Properties used to Describe Job Postings Top 10 Properties PLDs # % JobPosting/title 2588 91.16 % JobPosting/hiringOrganization 1412 49.74 % JobPosting/description 1192 41.99 % JobPosting/jobLocation 1062 37.41 % Organization/name 862 30.36 % JobPosting/datePosted 793 27.93 % Place/address 471 16.59 % JobPosting/baseSalary 227 8.00 % JobPosting/industry 209 7.36 % JobPosting/educationRequirements 145 5.11 %
  • 30. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 30 Class / Property Distribution  Only a small set of classes / properties is used.  Strong focus on Schema.org and Facebook vocabularies. schema.org 675 classes 965 properties
  • 31. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 31 Opportunity 1: Search Engine Optimization Get richer visibility in search results and potentially more clicks.
  • 32. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 32 Opportunity 2: Change Push to Pull Communication − Current situation: • Information providers need to push data into multiple channels • multiple search engines • multiple domain-specific portals − Web approach: • You maintain a website • All interested parties crawl your data
  • 33. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 33 Opportunity 3: Applications beyond Rich-Snippets − E-Commerce • Rich source of product data, offers, and reviews • Opportunity to build global product catalogs • Opportunity to mine product and rating data on global-scale − Tourism • Additional data for tourism applications: Nearby local businesses, nearby landmarks, nearby hospitals, nearby events • Search engines as new competitors put pressure on large booking portals? − Recruitment • Increased market transparency • Search engines as new competitors put pressure on job portals that charge per posting? − High up-to-dateness of data • as original data providers know about changes first
  • 34. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 34 Main Challenge: Data Integration and Cleansing The schema is standardized, but 1. entity names differ 2. the schema is rather shallow and a rather low number of properties is used 3. data quality differs as the data is created by experts and rookies
  • 35. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 35 Property PLDs # % schema:Product/name 78,292 87% schema:Product/description 58,228 65% schema:Product/manufacturer 10,150 11% schema:Product/brand 9,739 11% schema:Product/productID 9,221 10% Looking Deeper into the E-Commerce Data 1. The structure of the data is rather shallow • Product features are encoded in titles and descriptions • Example product name: “Apple MacBook Air 11-in, Intel Core i5 1.60GHz, 64 GB” • Example product description: “Faster Flash Storage with 64 GB Solid State Drive and USB 3.0 …” • Product IDs are provided by only 10% of the websites • Categorization information is provided only by 2% of the websites.
  • 36. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 36 Categorization of Product Offers − We analyzed 1.9 million product offers from 9200 shops − We trained bag-of-words classifier for 9 product categories on product descriptions from Amazon. Source: Petar Petrovski, Volha Bryl, Christian Bizer: Integrating Product Data from Websites offering Microdata Markup. In: 4th Workshop on Data Extraction and Object Search (DEOS2014)  @ WWW2014
  • 37. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 37 Identity Resolution for Electronic Products − We trained feature extractors for product descriptions on offers for electronic products from Amazon. − We used the Silk framework for identity resolution. Precision= 85%
  • 38. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 38 Starting Points for Further Improvements − Identity Resolution • Exploit product identifiers to learn better product recognizers • 10% of the websites (9,221 PLDs) use s:Product/productID • 1% of the websites (935 PLDs) use s:Product/gtin13 − Categorization of Products • Exploit categorization information provided by subset of the websites • 1,5% of the websites (1,497 PLDs) use s:Offer/category • 0,5% of the websites (460 PLDs) use s:WebPage/breadcrumb • Challenge: Integration of ~ 2,000 product taxonomies Home > Shop > Outdoor & Garden > Barbecues & Outdoor Living > Garden Furniture > Tables > Dining Tables Home > Shop > Outdoor & Garden > Barbecues & Outdoor Living > Garden Furniture > Tables > Dining Tables Philadelphia Eagles > Philadelphia Eagles Mens > Philadelphia Eagles Mens Jerseys > over $60 Philadelphia Eagles > Philadelphia Eagles Mens > Philadelphia Eagles Mens Jerseys > over $60
  • 39. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 39 Conclusion: Semantic Annotations in HTML Pages 1. Wide-spread adoption of semantic annotations • motivated by mayor search engines 1. Strong ontology agreement driven by data consumers • Schema.org, Open Graph Protocol 1. Main application: Rich-snippets 2. Endless data pool for • Commercial applications • product and travel data integration and mining • up-to-date listings of local businesses • job search engines that increase market transparency • Research • large-scale data integration and mining • information extraction (using annotations as distant supervision*) * Foley, et al.: Learning to Extract Local Events from the Web. SIGIR 2015
  • 40. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 40 Download and Play with the Data − http://www.webdatacommons.org/structureddata/ − Only tip of the iceberg, as each website is only partly crawled.
  • 41. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 41 2. Linked Data B C RDF RDF link A D E RDF links RDF links RDF links RDF RDF RDF RDF RDF RDF RDF RDF RDF • by using RDF to publish structured data directly on the Web • by setting links between data items within different data sources. Set of best practices for publishing structured data on the Web in the form of a single global data graph.
  • 42. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 42 Links as Integration Hints  publishing Identity Links on the Web  publishing Vocabulary Links on the Web <http://www4.wiwiss.fu-berlin.de/is-group/resource/persons/Person4> owl:sameAs <http://dblp.l3s.de/d2r/resource/authors/Christian_Bizer> . <http://xmlns.com/foaf/0.1/Person> owl:equivalentClass <http://dbpedia.org/ontology/Person> .
  • 43. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 43 Effort Distribution between Publisher and Consumer Publishers or third parties provides identity/vocabulary links Consumer mines missing identity/vocabulary links Effort Distribution
  • 44. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 44 LOD Datasets on the Web: April 2014 Growth without new category Social Networking: 94 % Source: Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best Practices in Different Topical Domains. In: 13th International Semantic Web Conference (ISWC2014).
  • 45. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 45 Uptake in the Government Domain − Various efforts by public sector institutions world-wide − Forerunners • UK government • US government − Types of data published • statistical data • environmental data • budget and election data − Goals • Make data available to the public and other government agencies • Ease data integration by using standards, providing unique identifiers and by setting links
  • 46. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 46 Uptake in the Libraries Community − Institutions publishing Linked Data • Library of Congress (subject headings) • German National Library (PND dataset and subject headings) • Swedish National Library (Libris - catalog) • Hungarian National Library (OPAC and digital library) • Europeana Digital Library (4 million artifacts) • Springer (metadata about conference proceedings) − Goals: 1. Interconnect resources between repositories (by topic, by location, by historical period, by ...) 2. Integrate library catalogs on global scale
  • 47. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 47 Uptake in the Life Science Domain − Goals: 1. Connect life science datasets in order to support • biological knowledge discovery • drug discovery 1. Reuse results of previous integration efforts
  • 48. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 48 Uptake in the Linguistic Research Community http://linguistic-lod.org/llod-cloud http://www.lider-project.eu/
  • 49. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 49 Ontological Agreement − Strong agreement on some vocabularies − Proprietary vocabularies are used in addition to common ones, as data is often very specific Widely-Used Vocabularies Proprietary Vocabularies
  • 50. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 50 RDF Links − Some datasets put a lot of effort into linking − Many datasets only link to a small number of other datasets or do not set RDF links at all Datasets with Top In-Degrees Out-Degrees per Category
  • 51. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 51 RDF Links in the LOD Cloud: August 2014
  • 52. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 52
  • 53. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 53
  • 54. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 54 Linked Data as Background Knowledge for Data Mining Which factors correlate with unemployment in France?
  • 55. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 55 Unemployment Table with Additional Attributes
  • 56. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 56 RapidMiner Linked Open Data Extension Allows you to 1. link local table to LOD data sources 2. extend local table with additional attributes 3. mine extended tables using all Rapidminer features
  • 57. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 57 Finding Correlations − Use additional attributes to find interesting correlations − Example correlation for unemployment in France: • African islands, islands in the Indian Ocean, outermost regions of the EU (positive) • Population growth (positive) • Energy consumption (negative) • Hospital beds/inhabitants (negative) • Fast food restaurants (positive) • Police stations (positive) Source: Petar Ristoski, Christian Bizer, and Heiko Paulheim: Mining the Web of Linked Data with RapidMiner. Semantic Web Challenge, Winner of the Open Track, 2014.
  • 58. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 58 Commercial Applications: Content Management at BBC − Interconnect content management systems of different TV and radio stations. − Similar efforts to connect content repositories at Elsevier and Springer. Source: http://www.w3.org/2001/sw/sweo/public/UseCases/BBC
  • 59. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 59 − IBM Rational uses Linked Data technologies to connect data from different • software development tools • software lifecycle tools − Goals: 1. Make data independent of concrete tool (IBM or third party) 2. Allow services (reporting, discovery) to access data from all tools 3. Distributed data space as an alternative to central repository or integration hub / bus Commercial Applications: Application Integration at IBM Source: http://www.w3.org/2001/sw/sweo/public/UseCases/IBM
  • 60. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 60 Conclusion: Linked Data vs. HTML-embeded Data Linked Data Microdata, Microformats, RDFa ~ 1000 sources millions of sources covers wider range of specific topics focused on search engines and facebook more complex data structures very simple and shallow data structures partial ontology agreement strong ontology agreement data integration eased by RDF links data integration often requires NLP techniques various application prototypes some industrial uptake strong application pull by search engines
  • 61. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 61 3. Knowledge Graphs − Google Knowledge Graph • development started 2012, builds on Freebase • 570 million objects described by over 18 billion facts (2012) • 1500 classes, 35,000 properties − Microsoft Satori Knowledge Base • revealed to the public in mid-2013 − Yahoo Knowledge Graph • revealed to the public early-2014 − Knowledge Graphs employ RDF-style graph data models Large cross-domain knowledge bases which aim to cover all “relevant” entities in the world.
  • 62. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 62 Data Sources used to Build Knowledge Graphs 1. Wikipedia • infoboxes, category system, information extraction from text 1. Open license sources • e.g. CIA World Factbook, MusicBrainz, … 1. Commercial third-party data • e.g. IMDB, company listings, … 1. schema.org annotations in web pages • e.g. contact information for companies • e.g. logos of companies Lots of effort is spend on data integration and manual data curation
  • 63. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 63 Application of the Google Knowledge Graph − Enrich search results with knowledge cards and lists − Goal: Fulfil information need without having users navigate to other websites
  • 64. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 64 Application of the Microsoft Knowledge Graph
  • 65. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 65 1. Answer fact queries: “birthdate michael douglas” 2. Compare things: ”compare eiffel tower vs empire state building” Applications of the Google Knowledge Graph
  • 66. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 66 Google Now Smart Cards − Direct answers are especially important in the mobile context − Google Now displays direct answers for 19.45% of the queries (Source: Stone Temple Consulting, 2015) − Medical facts are reviewed by an average of 11.1 doctors (Source: Google)
  • 67. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 67 New SEO Topic: How to influence Knowledge Graphs? Source: http://searchengineland.com/ leveraging-wikidata-gain-google- knowledge-graph-result-219706
  • 68. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 68 Behind-the-Scenes Applications − Google • uses its knowledge graph to identity entities in web pages (Entity Linking) • Hummingbird ranking algorithm (deployed in 2013) uses knowledge graph as background knowledge for ranking search results. − Yahoo • uses its knowledge graph to “support applications across the company: • Web Search, Content Understanding • Recommendation, Personalization, Advertisement”* − Data Integration • becomes matching data sources against knowledge graphs as intermediate schemata. Various tasks become easier, if you know all entities in the world. *Source: Nicolas Torzec, Yahoo 2014
  • 69. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 69 Public Knowledge Graphs
  • 70. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 70 The DBpedia Knowledge Base - Version 2014 − Describes 4.58 million things, out of which 4.22 million are classified in a consistent ontology using 685 classes and 2679 different properties • 1,445,000 persons • 735,000 places • 241,000 organizations • 123,000 music albums − Altogether 3 billion pieces of information (RDF triples) • 580 million were extracted from the English edition of Wikipedia • 29,000,000 links to external web pages • 50,000,000 external links into other RDF datasets − DBpedia Internationalization • provides data from 125 Wikipedia language editions for download • For 28 popular languages DBpedia provides cleaned infobox data
  • 71. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 71 DBpedia @ BIS2015 1. Thursday, 10:00 The Past, Present & Future of DBpedia Keynote by Dimitris Kontokostas 2. Thursday, 10:45 4th DBpedia Community Meeting Room 2
  • 72. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 72 Google Knowledge Vault − Research project to build a knowledge base using facts extracted from 1 billion web pages 1. Web text (TXT): Entity linking, relationship extraction 2. HTML trees (DOM): Wrapper induction 3. HTML tables (TBL): Relational tables 4. Semantic Annotations (ANO): schema.org, OGP − Employs probabilistic model for data fusion − Results: 1.6 billion facts • 271 million with confidence >90% • 90 million not in Freebase Source: Luna Dong, Evgeniy Gabrilovich, et al.: Knowledge Vault: A Web-scale approach to probabilistic knowledge fusion. In SIGKDD, 2014.
  • 73. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 73 Data Sources for Public Research in this Space 1. Common Crawl • ~ 2 billion HTML pages • updated very couple of months 1. WebDataCommons HTML Tables Corpus • 147 million relational web tables • selected out of the 11 billion tables contained in the Common Crawl • http://webdatacommons.org/webtables/ 1. WebDataCommons Microdata and RDFa Corpora • 20.4 billion RDF triples • http://www.webdatacommons.org/structureddata/ 1. Billion Triples Challenge Dataset 2014 • 4 billion RDF triples crawled from Linked Data sources • http://km.aifb.kit.edu/projects/btc-2014/
  • 74. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 74 Conclusion: 2001 Article - The Semantic Web Envisions three things to happen: 1.people publish data in structured form in addition to HTML pages on the Web 2.common vocabularies / ontologies are used to represent data 3.people implement cool applications that do smart things with the available data Tim Berners-Lee, James Hendler and Ora Lassila: The Semantic Web. Scientific American, May 2001.
  • 75. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 75 4. Conclusions 1. Publication of Structured Data • there is more data available as most people from research and industry like • especially, schema.org annotations are currently gaining traction • exciting test-bed for research on data profiling and data integration techniques 1. Ontological Agreement • exists due to application-pull (Google, Facebook) • but data source-specific attributes are also important (e.g. in life science or government statistics domain) 1. Applications • the big players are moving (Rich-Snippets, Knowledge Graphs) • there is a lot of further application potential in the available data • experimentation in industry, but many efforts are still in the prototype stage
  • 76. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 76 Thanks − References • Robert Meusel, Petar Petrovski and Christian Bizer: The WebDataCommons Microdata, RDFa and Microformat Dataset Series. 13th International Semantic Web Conference (ISWC2014). • Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best Practices in Different Topical Domains (Slides, Video). 13th International Semantic Web Conference (ISWC2014). • Petar Petrovski, Volha Bryl, Christian Bizer: Integrating Product Data from Websites offering Microdata Markup. 4th Workshop on Data Extraction and Object Search (DEOS2014). − Detailed statistics on RDFa, Microdata and Microformats adoption • http://www.webdatacommons.org/structureddata/ − Detailed statistics on Linked Data adoption • http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

Editor's Notes

  1. Since 2012
  2. High agreement on vocabulary biggest Datasets in their category (288 million product descriptions, 42 million reviews)
  3. http://www.alexa.com/topsites/category/Top/Shopping Amazon Instant Video: Ja mit JSON-LD
  4. Potential reason: HR databases are not stuctured
  5. Hotels: 60% of booking via websites, commission 20% Tricky leagal questions involved
  6. PrecisionElectrinics = 93% PrecisionAppeal= 88%
  7. Google: 300 people Microsoft: 120 people Yahoo: 30 people
  8. Very up-to-date info (oscar nomenees)