This document presents a study on implementing an iris recognition system using a hybrid technique. The system utilizes several image processing and machine learning techniques. It begins with preprocessing the iris image, including capturing, resizing and converting to grayscale. Histogram equalization is then used for enhancement. Two-dimensional discrete wavelet transform (2D DWT) is applied for feature extraction. Various edge detection algorithms including Canny, Prewitt, Roberts and Sobel are used to detect iris boundaries. The features are then stored in a vector for classification. The system is tested on different iris images and analysis shows 2D DWT and Canny edge detection provide adequate results for feature extraction and iris recognition.