SlideShare a Scribd company logo
Cahen-Hodes Weizmann Inst. of Science 1-2015
Photovoltaics:
Fundamental concepts and novel systems
Cahen-Hodes Weizmann Inst. of Science 1-2015
Outline
• Energy levels  bands
• Doping of semiconductors
• Energy band alignments between different phases
• Space charge layers
• p-n junctions, Schottky barriers
• p-n cells, Si cells, thin film cells
• Schottky cells (solid and liquid junction)
• p-i-n cells
• Fundamental limits of photovoltaic cells
• How to overcome/ bypass these limits
• New generation cells (brief survey)
• PV stability, efficiencies and economics
Cahen-Hodes Weizmann Inst. of Science 1-2015
From energy levels to bands
E
If EG < ~100-150x kTB
 semiconductor
1
e
-
energy
EG
EV
EC
CB
VB
HOMO
LUMO
Cahen-Hodes Weizmann Inst. of Science 1-2015
Doping of semiconductors
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si
Si Si Si Si
Si Si Si Si
As
B C N
Al Si P
Ga Ge As
EC
E
EV
EG 1.1 eV
n-type
As5+ ---> 4e-+ e-
donors (ND)
EF = Fermi level (~electrochemical
potential of electrons
+ + + + + + + + + + + +
          
Free electrons in CB
Cahen-Hodes Weizmann Inst. of Science 1-2015
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
B C N
Al Si P
Ga Ge As
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si
B
1018
1016
DE = kTln(ND/NC)
0 or
ND=NA
1010
1
e
-
energy
Doping of semiconductors -2
p-type
B3+ ---> 3e- - e-
Acceptors (NA)
EC
EV
EF
        
Free holes
in VB
Cahen-Hodes Weizmann Inst. of Science 1-2015
Energy band alignments between different phases
n-type
semiconductor
Evac
metal
EF
work function
electron affinity
e-
space charge
layer
 Formation of a metal - semiconductor junction
n-type p-type
space charge layer
 Formation of a p-n homojunction
1
e
-
energy
1
e
-
energy
space coordinate
Cahen-Hodes Weizmann Inst. of Science 1-2015
Space Charge layers
Width of space charge layer inversely proportional
to [doping density]1/2
2ee0V
qND(A)
1/2
W =
Typical widths of space charge layer:
N = 1022/cc (metallic) Ångstroms (~ 1-2 atomic layers)
N = 1018/cc (heavily doped semiconductor) 10s of nm
N = 1016/cc (medium doped semiconductor) 100s of nm
N = 1014/cc (low doped semiconductor) few µm
In a photovoltaic cell, the width of the space charge layer should be wide enough
to absorb most of the light in the E-field region –a few 100 nm in a typical cell.
Light absorption I = I0e-ad
space charge
layer
Cahen-Hodes Weizmann Inst. of Science 1-2015
Basics of photovoltaic cells
EC
EV
EF
e-
h+
hn
Charge separation in energy
Charge separation in space
e-
hn
h+
space coordinate
1
e
-
energy
1
e
-
energy
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
hn
h+
Amps
@ short circuit
VOC
Volts
@ open-circuit
V
load
@maximum power
Basics of photovoltaic cells
Cahen-Hodes Weizmann Inst. of Science 1-2015
ISC
VOC
max power
fill factor = (I mp . Vmp) / (I SC . VOC)
mp : max power
Voltage
Current
Dark- and Photo- I-V (current-voltage)
characteristics of a PV cell
Cahen-Hodes Weizmann Inst. of Science 1-2015
Other ways of creating a built-in field to separate charges
p-n heterojunction
CdTe/CdS
CdS
CdTe
back contact (Cu/Cu2Te)
TCO front contact
CdTe
CdS
e-
h+
Silicon
homojunction
Cahen-Hodes Weizmann Inst. of Science 1-2015
space
1
e
-
energy
•Absorb light
•Absorbed light creates carriers
•Carrier collection, by diffusion, drift
Summary of how p-n junction PV cell works
Cahen-Hodes Weizmann Inst. of Science 1-2015
n-type
semiconductor
E0
metal
EF
work function
electron affinity
space charge
layer
Metal-semiconductor junction
(with semiconductor/ liquid electrolyte junction 
photoelectrochemical cell [PEC], where EF ≅ ERedox
Other ways of creating a built-in field to separate charges -2
Cahen-Hodes Weizmann Inst. of Science 1-2015
p-i-n (I = insulator) cell
EO
EC
EV
N = 1018/cc (heavily doped semiconductor)
10s of nm
N = 1016/cc (medium doped semiconductor)
100s of nm
N = 1014/cc (low doped semiconductor)
few µm
Reminder of
typical space charge layer widths
Other ways of creating a built-in field to separate charges -3
Cahen-Hodes Weizmann Inst. of Science 1-2015
2014
Cahen-Hodes Weizmann Inst. of Science 1-2015
Si (crystalline) cells : 1st generation cells
(thin film) CdTe, CIGS, α-Si : 2nd generation cells
Dye cells, organic cells and related ones : 3rd generation cells
There are newer ones and ‘generation number’ becomes fuzzy at this stage
Solar cell generations
Cahen-Hodes Weizmann Inst. of Science 1-2015
Organic
CdTe
GaAs
“the
single
crystal
divide”
Cahen-Hodes Weizmann Inst. of Science 1-2015
one
electron
energy
space
Generalized picture
•Metastable high and low energy
states
•Absorber transfers charges into
high and low energy state
•Driving force brings charges to
contacts
•Selective contacts
(1) cf. e.g., Green, M.A., Photovoltaic principles. Physica E, 14 (2002) 11-17
The Photovoltaic (PV) effect:
High
energy
state
Low
energy
state
Absorber
e-
p+
contact
contact
Cahen-Hodes Weizmann Inst. of Science 1-2015
e -
-
voltage ( qV)
e -
n-type
p-type
hn
h +
e -
useable photo -
voltage ( qV)
Energy
e -
n-type
p-type
hn
h +
Fundamental losses in single junction
solar cell
O. Niitsoo
space
high energy photon – partial loss
low energy photon – total loss
Cahen-Hodes Weizmann Inst. of Science 1-2015
>Eg
thermalized
< Eg
not absorbed
Etendu; Photon entropy –TD
~0.3eV @RT, lack of concentration
Carnot factor –TD
Emission loss- (current)
Electrical power out
Current – Voltage Characteristics
After Hirst & Ekins-Daukes
Prog.Photovolt:Res:Appl. (2010)
All fundamental losses in PV cell
0 1 2 3 4
0
10
20
30
40
50
60
70
80
Current
(mA/cm
2
)
Energy (eV)
Eg
Nayak, ……, Cahen., Energy Environ. Sci., 2012
Cahen-Hodes Weizmann Inst. of Science 1-2015
Shockley-Queisser* (SQ) Limit
0.5 1.0 1.5 2.0 2.5
5
10
15
20
25
30
OPV
CIGS
c-Si
Efficiency
(%)
Band Gap (eV)
GaAs
InP
CdTe
DSC
a-Si
SQ Limit
detailed balance,
photons-in = electrons-out + photons-
out;
on earth, @ RT,
for single absorber / junction;
cf. also Duysens (1958) “The path of light in photosynthesis”; Brookhaven Symp. Biol.
Prince, JAP 26 (1955) 534
Loferski, JAP 27 (1956) 777
Shockley & Queisser JAP (1961)
Cahen-Hodes Weizmann Inst. of Science 1-2015
How to circumvent SQ and other losses?
Better utilization of sunlight: Photon management:
Multi-bandgap, multi-junction photovoltaics
GaInP2 Eg = 1.8-1.9 eV up to 1.45 V VOC
Cahen-Hodes Weizmann Inst. of Science 1-2015
Up-conversion for a single junction
2 photons of energy 0.5 Eg< hν< Eg
are converted to 1 photon of hν> Eg
How to circumvent these losses?
Cahen-Hodes Weizmann Inst. of Science 1-2015
Down-conversion for a single junction
1 photon of energy hν > 2Eg
is converted into 2 photons of hν > Eg
How to circumvent these losses?
Cahen-Hodes Weizmann Inst. of Science 1-2015
Other ways to beat the SQ limit
e-
h+
e-
e-
h+ h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
EC
EC
*
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
EC
EC
*
e-
EF
EF
Other ways to beat the SQ limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Multiple exciton generation
Hot electrons
Intermediate bandgap
EG
EV
Ei
EC
e-
Other ways to beat the SQ limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
The principle of nanostructured cells
contact
contact
electron conductor hole conductor
absorber
light absorption
depth
e-
h+
light-absorbing
semiconductor
e-
h+
Advantage of high surface area:
Allows the use of locally thin absorber and therefore poor quality
(wider range of) absorbers
e-
h+
hole
selective
contact
electron
selective
contact
EC
EV
electron (hole) selective contact; conductor; transport medium
Cahen-Hodes Weizmann Inst. of Science 1-2015
Organic photovoltaic cells OPV
Two problems of OPV:
1. Low diffusion lengths of electron/hole
2. Low dielectric constant – high binding energy
e-
h+
Cahen-Hodes Weizmann Inst. of Science 1-2015
e-
h+
Wannier-Mott excitons – extended; low BE few/tens meV
Frenkel excitons – localized; high BE hundreds meV
Binding energy of H atom = me4
2h2ε2 = 13.6 eV
e-
e-
h+
h+
e-
e-
h+
Two problems of OPV:
1. Low diffusion lengths of electron/hole
2. Low dielectric constant and high effective mass – high binding energy
Binding energy of exciton ?
effective mass of
electrons and holes
dielectric constant
of material
Cahen-Hodes Weizmann Inst. of Science 1-2015
Notwithstanding these problems, OPV is now at ~ 11% conversion efficiency
Stability still not good enough for practical use, but improving
Advantages: Cheap (in capital and in energy)
Roll-to-roll manufacturing (large scale possible)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Dye sensitized solar cell (DSC or DSSC)
HOMO
LUMO e-
e-
h+
light
e-
I- + h+ ---> I
2I + I- ---> I3
- (I is soluble in I-)
At counter electrode, I is reduced back to I-
Important difference between this cell and “standard’ photovoltaic cells
or previous nanocrystalline cell:
Charge generation and charge separation occur in different phases:
recombination is inherently low.
semiconductor
dye
TiO2
EC
EV
TiO2
Need single monolayer
dye on TiO2
But then low absorption
Cahen-Hodes Weizmann Inst. of Science 1-2015
Solution - use high surface area semiconductor
Early attempts increased surface area by roughening electrode - several times increase
Breakthrough: porous, nanocrystalline TiO2
Made by sintering a colloid or suspension of TiO2
O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
Dye molecule bonded to TiO2
Only a monolayer of dye at most on each TiO2
Cahen-Hodes Weizmann Inst. of Science 1-2015
The most common dye: Ru(dcbpyH2)2(NCS)2 or RuL2(NCS)2
cis-bis(4,4’-dicarboxy-2,2’-bipyridine)-bis(isothiocyanato)ruthenium(II)
Ti
N
Ru
N
C
-O
O
C
-O
O
e-
Excitation of dye is a metal-to-ligand
charge transfer
Ru d-orbitals
ligand p* orbital
Ti4+/3+
ca. 1.7 eV
N=C=S
N=C=S
h+
Cahen-Hodes Weizmann Inst. of Science 1-2015
Change the dye in a DSC to a semiconductor
• Semiconductor-sensitized solar cells (quantum dot cells)
• ETA (extremely thin absorber) solar cells
Variations:
Hole conductor – liquid or solid (if solid, commonly called ETA cell)
Semiconductor may be in the form of quantum dots – increase in Eg
Semiconductor does not have to be a single monolayer – typically few nm to few tens nm
Cahen-Hodes Weizmann Inst. of Science 1-2015
Hybrid Organic-Inorganic Perovskites
most common one- CH3NH3PbI3
Preparation
CH3NH2+HI  CH3NH3I(solid) in methanol, at 0˚C
CH3NH3X + PbI2  CH3NH3PbI3 in organic solvent
Solution processable, easy to scale
Heat at ca. 100ºC
Another +: very high VOC for CH3NH3PbI3 EG = 1.55 eV, VOC up to 1.2 V
Cahen-Hodes Weizmann Inst. of Science 1-2015
Evolution of hybrid I-O perovskite
solar cells
Cahen-Hodes Weizmann Inst. of Science 1-2015
The three important parameters for commercial cells
1. Efficiency
Cahen-Hodes Weizmann Inst. of Science 1-2015
 Shockley-Queisser* (SQ) Limit
0.5 1.0 1.5 2.0 2.5
5
10
15
20
25
30
CH3
NH3
SnI3
CZTS
CZTSS
PbS
Sb2
S3
GaInP
CdTe
OPV
CIGS
c-Si
Efficiency
(%)
Band Gap (eV)
GaAs
InP
CH3
NH3
PbClx
I3-x
DSC
a-Si
SQ Limit
Cahen-Hodes Weizmann Inst. of Science 1-2015
2. Stability Long term stability of PV modules/systems
Jordan & Kurtz, 2011 (August), National Renewable Energy
Laboratory (NREL)
Photovoltaic degradation rates – An analytical review
<2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000
mean
Cahen-Hodes Weizmann Inst. of Science 1-2015
3. Cost (money and energy)
$/WP Energy payback time
$0.6/WP in 2030
Predicted cost
Cahen-Hodes Weizmann Inst. of Science 1-2015
(US)
Cahen-Hodes Weizmann Inst. of Science 1-2015
Solar PV Costs in the USA and Germany (2013)
A C O L D S H O W E R
Cahen-Hodes Weizmann Inst. of Science 1-2015
from
First Solar
website…
Peng, Lu, Yang,
Renew. Sustain. Energy Rev.
19 (2013) 255–274
Estimated Solar Cell Energy Payback Times 2013
Cahen-Hodes Weizmann Inst. of Science 1-2015
Wikipedia
And finally, PV production history and forecast
Cumulative PV
Cahen-Hodes Weizmann Inst. of Science 1-2015
World’s Largest Solar-Electric Plant
30 TWp (~ 6 TWC)
requires 1 such plant,
every HOUR, for ~ 12 years(+ storage…)
Solar Cell Power Stations TODAY
In 12/2014 Global
Cumulative Installed PV
Power ~ 0.15 TWp
PRC goal >2012
≥ 0.01 TWp/yr
0.55 GWp ( ~100 MWc) Topaz Solar farm (CA, USA)

More Related Content

What's hot

Pv i v characteristic tester(eee499.blogspot.com)
Pv i v characteristic tester(eee499.blogspot.com)Pv i v characteristic tester(eee499.blogspot.com)
Pv i v characteristic tester(eee499.blogspot.com)
slmnsvn
 
Triple junction based high efficiency tandem solar cells
Triple junction based high efficiency tandem solar cellsTriple junction based high efficiency tandem solar cells
Triple junction based high efficiency tandem solar cells
Pritam Rath
 

What's hot (20)

Raj Solar Cells
Raj Solar CellsRaj Solar Cells
Raj Solar Cells
 
Benefits of solar, Solar Module, Solar Cell, Solar Photovoltic Effect, Electr...
Benefits of solar, Solar Module, Solar Cell, Solar Photovoltic Effect, Electr...Benefits of solar, Solar Module, Solar Cell, Solar Photovoltic Effect, Electr...
Benefits of solar, Solar Module, Solar Cell, Solar Photovoltic Effect, Electr...
 
procedure sheet for the experiment " SOLAR CELL"
procedure sheet for the experiment " SOLAR CELL"procedure sheet for the experiment " SOLAR CELL"
procedure sheet for the experiment " SOLAR CELL"
 
photo voltaic 1
photo voltaic 1photo voltaic 1
photo voltaic 1
 
Solar Cells
Solar CellsSolar Cells
Solar Cells
 
Introduction To Photovoltaic Device Physics
Introduction To Photovoltaic Device PhysicsIntroduction To Photovoltaic Device Physics
Introduction To Photovoltaic Device Physics
 
Solar PV Cells, Module and Array
Solar PV Cells, Module and ArraySolar PV Cells, Module and Array
Solar PV Cells, Module and Array
 
Solar cell
Solar cellSolar cell
Solar cell
 
Pv i v characteristic tester(eee499.blogspot.com)
Pv i v characteristic tester(eee499.blogspot.com)Pv i v characteristic tester(eee499.blogspot.com)
Pv i v characteristic tester(eee499.blogspot.com)
 
physics of solar cell
physics of solar cellphysics of solar cell
physics of solar cell
 
Solar cell
Solar cellSolar cell
Solar cell
 
Solar panel ppt
Solar panel pptSolar panel ppt
Solar panel ppt
 
Solar cells
Solar cellsSolar cells
Solar cells
 
Triple junction based high efficiency tandem solar cells
Triple junction based high efficiency tandem solar cellsTriple junction based high efficiency tandem solar cells
Triple junction based high efficiency tandem solar cells
 
New innovation for increasing the efficiency of solar cell
New innovation for increasing the efficiency of solar cellNew innovation for increasing the efficiency of solar cell
New innovation for increasing the efficiency of solar cell
 
Introduction to photovoltaics powerpoint
Introduction to photovoltaics powerpointIntroduction to photovoltaics powerpoint
Introduction to photovoltaics powerpoint
 
Organic photovoltaic
Organic photovoltaicOrganic photovoltaic
Organic photovoltaic
 
LED and Solar cell
LED and Solar cellLED and Solar cell
LED and Solar cell
 
Solar cells
Solar cells Solar cells
Solar cells
 
Photovoltaic cell
Photovoltaic cellPhotovoltaic cell
Photovoltaic cell
 

Similar to Band structures

1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx
HengkiR
 
Solar Energy Presentation 0220.ppt
Solar Energy Presentation 0220.pptSolar Energy Presentation 0220.ppt
Solar Energy Presentation 0220.ppt
VyshuSonu1
 

Similar to Band structures (20)

1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx1-2015_pv_principles2.pptx
1-2015_pv_principles2.pptx
 
Photovoltaic cell
Photovoltaic cellPhotovoltaic cell
Photovoltaic cell
 
Short note on Semiconductors
Short note on SemiconductorsShort note on Semiconductors
Short note on Semiconductors
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
 
THE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODETHE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODE
 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC
 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cells
 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notes
 
Res lecture 11 solar pv
Res lecture 11 solar pvRes lecture 11 solar pv
Res lecture 11 solar pv
 
Solar Energy Presentation.ppt
Solar Energy Presentation.pptSolar Energy Presentation.ppt
Solar Energy Presentation.ppt
 
Ch1 slides-1
Ch1 slides-1Ch1 slides-1
Ch1 slides-1
 
Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1
 
Solar Energy Presentation 0220.ppt
Solar Energy Presentation 0220.pptSolar Energy Presentation 0220.ppt
Solar Energy Presentation 0220.ppt
 
Nano hub u-oed-boudouris-l4.1
Nano hub u-oed-boudouris-l4.1Nano hub u-oed-boudouris-l4.1
Nano hub u-oed-boudouris-l4.1
 
Optical Sensors
Optical SensorsOptical Sensors
Optical Sensors
 
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMSSINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
SINGLE ELECTRON TRANSISTOR: APPLICATIONS & PROBLEMS
 
Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems  Single Electron Transistor: Applications & Problems
Single Electron Transistor: Applications & Problems
 
Semiconcuctor devices introduction
Semiconcuctor devices  introductionSemiconcuctor devices  introduction
Semiconcuctor devices introduction
 
Basics of Solar Cell.pptx
Basics of Solar Cell.pptxBasics of Solar Cell.pptx
Basics of Solar Cell.pptx
 
Solar Photovoltaic.ppt
Solar Photovoltaic.pptSolar Photovoltaic.ppt
Solar Photovoltaic.ppt
 

Recently uploaded

ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
Kamal Acharya
 
Hall booking system project report .pdf
Hall booking system project report  .pdfHall booking system project report  .pdf
Hall booking system project report .pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Recently uploaded (20)

IT-601 Lecture Notes-UNIT-2.pdf Data Analysis
IT-601 Lecture Notes-UNIT-2.pdf Data AnalysisIT-601 Lecture Notes-UNIT-2.pdf Data Analysis
IT-601 Lecture Notes-UNIT-2.pdf Data Analysis
 
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
 
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data StreamKIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
 
Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
İTÜ CAD and Reverse Engineering Workshop
İTÜ CAD and Reverse Engineering WorkshopİTÜ CAD and Reverse Engineering Workshop
İTÜ CAD and Reverse Engineering Workshop
 
KIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and Clustering
KIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and ClusteringKIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and Clustering
KIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and Clustering
 
Hall booking system project report .pdf
Hall booking system project report  .pdfHall booking system project report  .pdf
Hall booking system project report .pdf
 
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdfA CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
 
Pharmacy management system project report..pdf
Pharmacy management system project report..pdfPharmacy management system project report..pdf
Pharmacy management system project report..pdf
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge
 
Construction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptxConstruction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptx
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
The Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docx
The Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docxThe Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docx
The Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docx
 

Band structures

  • 1. Cahen-Hodes Weizmann Inst. of Science 1-2015 Photovoltaics: Fundamental concepts and novel systems
  • 2. Cahen-Hodes Weizmann Inst. of Science 1-2015 Outline • Energy levels  bands • Doping of semiconductors • Energy band alignments between different phases • Space charge layers • p-n junctions, Schottky barriers • p-n cells, Si cells, thin film cells • Schottky cells (solid and liquid junction) • p-i-n cells • Fundamental limits of photovoltaic cells • How to overcome/ bypass these limits • New generation cells (brief survey) • PV stability, efficiencies and economics
  • 3. Cahen-Hodes Weizmann Inst. of Science 1-2015 From energy levels to bands E If EG < ~100-150x kTB  semiconductor 1 e - energy EG EV EC CB VB HOMO LUMO
  • 4. Cahen-Hodes Weizmann Inst. of Science 1-2015 Doping of semiconductors Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si As B C N Al Si P Ga Ge As EC E EV EG 1.1 eV n-type As5+ ---> 4e-+ e- donors (ND) EF = Fermi level (~electrochemical potential of electrons + + + + + + + + + + + +            Free electrons in CB
  • 5. Cahen-Hodes Weizmann Inst. of Science 1-2015 Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si B C N Al Si P Ga Ge As Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si B 1018 1016 DE = kTln(ND/NC) 0 or ND=NA 1010 1 e - energy Doping of semiconductors -2 p-type B3+ ---> 3e- - e- Acceptors (NA) EC EV EF          Free holes in VB
  • 6. Cahen-Hodes Weizmann Inst. of Science 1-2015 Energy band alignments between different phases n-type semiconductor Evac metal EF work function electron affinity e- space charge layer  Formation of a metal - semiconductor junction n-type p-type space charge layer  Formation of a p-n homojunction 1 e - energy 1 e - energy space coordinate
  • 7. Cahen-Hodes Weizmann Inst. of Science 1-2015 Space Charge layers Width of space charge layer inversely proportional to [doping density]1/2 2ee0V qND(A) 1/2 W = Typical widths of space charge layer: N = 1022/cc (metallic) Ångstroms (~ 1-2 atomic layers) N = 1018/cc (heavily doped semiconductor) 10s of nm N = 1016/cc (medium doped semiconductor) 100s of nm N = 1014/cc (low doped semiconductor) few µm In a photovoltaic cell, the width of the space charge layer should be wide enough to absorb most of the light in the E-field region –a few 100 nm in a typical cell. Light absorption I = I0e-ad space charge layer
  • 8. Cahen-Hodes Weizmann Inst. of Science 1-2015 Basics of photovoltaic cells EC EV EF e- h+ hn Charge separation in energy Charge separation in space e- hn h+ space coordinate 1 e - energy 1 e - energy
  • 9. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- hn h+ Amps @ short circuit VOC Volts @ open-circuit V load @maximum power Basics of photovoltaic cells
  • 10. Cahen-Hodes Weizmann Inst. of Science 1-2015 ISC VOC max power fill factor = (I mp . Vmp) / (I SC . VOC) mp : max power Voltage Current Dark- and Photo- I-V (current-voltage) characteristics of a PV cell
  • 11. Cahen-Hodes Weizmann Inst. of Science 1-2015 Other ways of creating a built-in field to separate charges p-n heterojunction CdTe/CdS CdS CdTe back contact (Cu/Cu2Te) TCO front contact CdTe CdS e- h+ Silicon homojunction
  • 12. Cahen-Hodes Weizmann Inst. of Science 1-2015 space 1 e - energy •Absorb light •Absorbed light creates carriers •Carrier collection, by diffusion, drift Summary of how p-n junction PV cell works
  • 13. Cahen-Hodes Weizmann Inst. of Science 1-2015 n-type semiconductor E0 metal EF work function electron affinity space charge layer Metal-semiconductor junction (with semiconductor/ liquid electrolyte junction  photoelectrochemical cell [PEC], where EF ≅ ERedox Other ways of creating a built-in field to separate charges -2
  • 14. Cahen-Hodes Weizmann Inst. of Science 1-2015 p-i-n (I = insulator) cell EO EC EV N = 1018/cc (heavily doped semiconductor) 10s of nm N = 1016/cc (medium doped semiconductor) 100s of nm N = 1014/cc (low doped semiconductor) few µm Reminder of typical space charge layer widths Other ways of creating a built-in field to separate charges -3
  • 15. Cahen-Hodes Weizmann Inst. of Science 1-2015 2014
  • 16. Cahen-Hodes Weizmann Inst. of Science 1-2015 Si (crystalline) cells : 1st generation cells (thin film) CdTe, CIGS, α-Si : 2nd generation cells Dye cells, organic cells and related ones : 3rd generation cells There are newer ones and ‘generation number’ becomes fuzzy at this stage Solar cell generations
  • 17. Cahen-Hodes Weizmann Inst. of Science 1-2015 Organic CdTe GaAs “the single crystal divide”
  • 18. Cahen-Hodes Weizmann Inst. of Science 1-2015 one electron energy space Generalized picture •Metastable high and low energy states •Absorber transfers charges into high and low energy state •Driving force brings charges to contacts •Selective contacts (1) cf. e.g., Green, M.A., Photovoltaic principles. Physica E, 14 (2002) 11-17 The Photovoltaic (PV) effect: High energy state Low energy state Absorber e- p+ contact contact
  • 19. Cahen-Hodes Weizmann Inst. of Science 1-2015 e - - voltage ( qV) e - n-type p-type hn h + e - useable photo - voltage ( qV) Energy e - n-type p-type hn h + Fundamental losses in single junction solar cell O. Niitsoo space high energy photon – partial loss low energy photon – total loss
  • 20. Cahen-Hodes Weizmann Inst. of Science 1-2015 >Eg thermalized < Eg not absorbed Etendu; Photon entropy –TD ~0.3eV @RT, lack of concentration Carnot factor –TD Emission loss- (current) Electrical power out Current – Voltage Characteristics After Hirst & Ekins-Daukes Prog.Photovolt:Res:Appl. (2010) All fundamental losses in PV cell 0 1 2 3 4 0 10 20 30 40 50 60 70 80 Current (mA/cm 2 ) Energy (eV) Eg Nayak, ……, Cahen., Energy Environ. Sci., 2012
  • 21. Cahen-Hodes Weizmann Inst. of Science 1-2015 Shockley-Queisser* (SQ) Limit 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 OPV CIGS c-Si Efficiency (%) Band Gap (eV) GaAs InP CdTe DSC a-Si SQ Limit detailed balance, photons-in = electrons-out + photons- out; on earth, @ RT, for single absorber / junction; cf. also Duysens (1958) “The path of light in photosynthesis”; Brookhaven Symp. Biol. Prince, JAP 26 (1955) 534 Loferski, JAP 27 (1956) 777 Shockley & Queisser JAP (1961)
  • 22. Cahen-Hodes Weizmann Inst. of Science 1-2015 How to circumvent SQ and other losses? Better utilization of sunlight: Photon management: Multi-bandgap, multi-junction photovoltaics GaInP2 Eg = 1.8-1.9 eV up to 1.45 V VOC
  • 23. Cahen-Hodes Weizmann Inst. of Science 1-2015 Up-conversion for a single junction 2 photons of energy 0.5 Eg< hν< Eg are converted to 1 photon of hν> Eg How to circumvent these losses?
  • 24. Cahen-Hodes Weizmann Inst. of Science 1-2015 Down-conversion for a single junction 1 photon of energy hν > 2Eg is converted into 2 photons of hν > Eg How to circumvent these losses?
  • 25. Cahen-Hodes Weizmann Inst. of Science 1-2015 Other ways to beat the SQ limit e- h+ e- e- h+ h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV EC EC *
  • 26. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV EC EC * e- EF EF Other ways to beat the SQ limit
  • 27. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Multiple exciton generation Hot electrons Intermediate bandgap EG EV Ei EC e- Other ways to beat the SQ limit
  • 28. Cahen-Hodes Weizmann Inst. of Science 1-2015 The principle of nanostructured cells contact contact electron conductor hole conductor absorber light absorption depth e- h+ light-absorbing semiconductor e- h+ Advantage of high surface area: Allows the use of locally thin absorber and therefore poor quality (wider range of) absorbers e- h+ hole selective contact electron selective contact EC EV electron (hole) selective contact; conductor; transport medium
  • 29. Cahen-Hodes Weizmann Inst. of Science 1-2015 Organic photovoltaic cells OPV Two problems of OPV: 1. Low diffusion lengths of electron/hole 2. Low dielectric constant – high binding energy e- h+
  • 30. Cahen-Hodes Weizmann Inst. of Science 1-2015 e- h+ Wannier-Mott excitons – extended; low BE few/tens meV Frenkel excitons – localized; high BE hundreds meV Binding energy of H atom = me4 2h2ε2 = 13.6 eV e- e- h+ h+ e- e- h+ Two problems of OPV: 1. Low diffusion lengths of electron/hole 2. Low dielectric constant and high effective mass – high binding energy Binding energy of exciton ? effective mass of electrons and holes dielectric constant of material
  • 31. Cahen-Hodes Weizmann Inst. of Science 1-2015 Notwithstanding these problems, OPV is now at ~ 11% conversion efficiency Stability still not good enough for practical use, but improving Advantages: Cheap (in capital and in energy) Roll-to-roll manufacturing (large scale possible)
  • 32. Cahen-Hodes Weizmann Inst. of Science 1-2015 Dye sensitized solar cell (DSC or DSSC) HOMO LUMO e- e- h+ light e- I- + h+ ---> I 2I + I- ---> I3 - (I is soluble in I-) At counter electrode, I is reduced back to I- Important difference between this cell and “standard’ photovoltaic cells or previous nanocrystalline cell: Charge generation and charge separation occur in different phases: recombination is inherently low. semiconductor dye TiO2 EC EV TiO2 Need single monolayer dye on TiO2 But then low absorption
  • 33. Cahen-Hodes Weizmann Inst. of Science 1-2015 Solution - use high surface area semiconductor Early attempts increased surface area by roughening electrode - several times increase Breakthrough: porous, nanocrystalline TiO2 Made by sintering a colloid or suspension of TiO2 O’Regan, B.; Grätzel, M. Nature 1991, 353, 737. Dye molecule bonded to TiO2 Only a monolayer of dye at most on each TiO2
  • 34. Cahen-Hodes Weizmann Inst. of Science 1-2015 The most common dye: Ru(dcbpyH2)2(NCS)2 or RuL2(NCS)2 cis-bis(4,4’-dicarboxy-2,2’-bipyridine)-bis(isothiocyanato)ruthenium(II) Ti N Ru N C -O O C -O O e- Excitation of dye is a metal-to-ligand charge transfer Ru d-orbitals ligand p* orbital Ti4+/3+ ca. 1.7 eV N=C=S N=C=S h+
  • 35. Cahen-Hodes Weizmann Inst. of Science 1-2015 Change the dye in a DSC to a semiconductor • Semiconductor-sensitized solar cells (quantum dot cells) • ETA (extremely thin absorber) solar cells Variations: Hole conductor – liquid or solid (if solid, commonly called ETA cell) Semiconductor may be in the form of quantum dots – increase in Eg Semiconductor does not have to be a single monolayer – typically few nm to few tens nm
  • 36. Cahen-Hodes Weizmann Inst. of Science 1-2015 Hybrid Organic-Inorganic Perovskites most common one- CH3NH3PbI3 Preparation CH3NH2+HI  CH3NH3I(solid) in methanol, at 0˚C CH3NH3X + PbI2  CH3NH3PbI3 in organic solvent Solution processable, easy to scale Heat at ca. 100ºC Another +: very high VOC for CH3NH3PbI3 EG = 1.55 eV, VOC up to 1.2 V
  • 37. Cahen-Hodes Weizmann Inst. of Science 1-2015 Evolution of hybrid I-O perovskite solar cells
  • 38. Cahen-Hodes Weizmann Inst. of Science 1-2015 The three important parameters for commercial cells 1. Efficiency
  • 39. Cahen-Hodes Weizmann Inst. of Science 1-2015  Shockley-Queisser* (SQ) Limit 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 CH3 NH3 SnI3 CZTS CZTSS PbS Sb2 S3 GaInP CdTe OPV CIGS c-Si Efficiency (%) Band Gap (eV) GaAs InP CH3 NH3 PbClx I3-x DSC a-Si SQ Limit
  • 40. Cahen-Hodes Weizmann Inst. of Science 1-2015 2. Stability Long term stability of PV modules/systems Jordan & Kurtz, 2011 (August), National Renewable Energy Laboratory (NREL) Photovoltaic degradation rates – An analytical review <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 <2000 >2000 mean
  • 41. Cahen-Hodes Weizmann Inst. of Science 1-2015 3. Cost (money and energy) $/WP Energy payback time $0.6/WP in 2030 Predicted cost
  • 42. Cahen-Hodes Weizmann Inst. of Science 1-2015 (US)
  • 43. Cahen-Hodes Weizmann Inst. of Science 1-2015 Solar PV Costs in the USA and Germany (2013) A C O L D S H O W E R
  • 44. Cahen-Hodes Weizmann Inst. of Science 1-2015 from First Solar website… Peng, Lu, Yang, Renew. Sustain. Energy Rev. 19 (2013) 255–274 Estimated Solar Cell Energy Payback Times 2013
  • 45. Cahen-Hodes Weizmann Inst. of Science 1-2015 Wikipedia And finally, PV production history and forecast Cumulative PV
  • 46. Cahen-Hodes Weizmann Inst. of Science 1-2015 World’s Largest Solar-Electric Plant 30 TWp (~ 6 TWC) requires 1 such plant, every HOUR, for ~ 12 years(+ storage…) Solar Cell Power Stations TODAY In 12/2014 Global Cumulative Installed PV Power ~ 0.15 TWp PRC goal >2012 ≥ 0.01 TWp/yr 0.55 GWp ( ~100 MWc) Topaz Solar farm (CA, USA)