Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Akihiro Kuwano
PDF, PPTX
4,852 views
ビックデータ最適解とAWSにおける新しい武器
CTO Night & Day 2016 winterでのモーニングセッションの資料です!
Technology
◦
Read more
7
Save
Share
Embed
Embed presentation
Download
Download as PDF, PPTX
1
/ 52
2
/ 52
3
/ 52
4
/ 52
5
/ 52
6
/ 52
7
/ 52
8
/ 52
9
/ 52
10
/ 52
11
/ 52
12
/ 52
13
/ 52
14
/ 52
15
/ 52
16
/ 52
17
/ 52
18
/ 52
19
/ 52
20
/ 52
21
/ 52
22
/ 52
23
/ 52
24
/ 52
25
/ 52
26
/ 52
27
/ 52
28
/ 52
29
/ 52
30
/ 52
31
/ 52
32
/ 52
33
/ 52
34
/ 52
35
/ 52
36
/ 52
37
/ 52
38
/ 52
39
/ 52
40
/ 52
41
/ 52
42
/ 52
43
/ 52
44
/ 52
45
/ 52
46
/ 52
47
/ 52
48
/ 52
49
/ 52
50
/ 52
51
/ 52
52
/ 52
More Related Content
PPTX
AWSで作る分析基盤
by
Yu Otsubo
PDF
Amazon Redshift 概要 (20分版)
by
Amazon Web Services Japan
PDF
AWSのログ管理ベストプラクティス
by
Akihiro Kuwano
PDF
オンプレミスRDBMSをAWSへ移行する手法
by
Amazon Web Services Japan
PDF
株式会社コロプラ『GKE と Cloud Spanner が躍動するドラゴンクエストウォーク』第 9 回 Google Cloud INSIDE Game...
by
Google Cloud Platform - Japan
PDF
KafkaとAWS Kinesisの比較
by
Yoshiyasu SAEKI
PDF
20200526 AWS Black Belt Online Seminar AWS X-Ray
by
Amazon Web Services Japan
PPTX
[社内勉強会]ELBとALBと数万スパイク負荷テスト
by
Takahiro Moteki
AWSで作る分析基盤
by
Yu Otsubo
Amazon Redshift 概要 (20分版)
by
Amazon Web Services Japan
AWSのログ管理ベストプラクティス
by
Akihiro Kuwano
オンプレミスRDBMSをAWSへ移行する手法
by
Amazon Web Services Japan
株式会社コロプラ『GKE と Cloud Spanner が躍動するドラゴンクエストウォーク』第 9 回 Google Cloud INSIDE Game...
by
Google Cloud Platform - Japan
KafkaとAWS Kinesisの比較
by
Yoshiyasu SAEKI
20200526 AWS Black Belt Online Seminar AWS X-Ray
by
Amazon Web Services Japan
[社内勉強会]ELBとALBと数万スパイク負荷テスト
by
Takahiro Moteki
What's hot
PDF
Hadoop/Spark で Amazon S3 を徹底的に使いこなすワザ (Hadoop / Spark Conference Japan 2019)
by
Noritaka Sekiyama
PDF
AWS Glueを使った Serverless ETL の実装パターン
by
seiichi arai
PPTX
AWS Step Functionsを使ったバックアップシステム
by
Akihiro Kamiyama
PDF
BigQuery で 150万円 使ったときの話
by
itkr
PDF
Snowflake Architecture and Performance
by
Mineaki Motohashi
PDF
データレイクを基盤としたAWS上での機械学習サービス構築
by
Amazon Web Services Japan
PDF
20191023 AWS Black Belt Online Seminar Amazon EMR
by
Amazon Web Services Japan
PDF
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)
by
Yosuke Katsuki
PDF
20210330 AWS Black Belt Online Seminar AWS Glue -Glue Studioを使ったデータ変換のベストプラクティス-
by
Amazon Web Services Japan
PDF
グラフデータベース Neptune 使ってみた
by
Yoshiyasu SAEKI
PDF
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
by
NTT DATA OSS Professional Services
PDF
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ
by
Recruit Technologies
PDF
アプリ開発者、DB 管理者視点での Cloud Spanner 活用方法 | 第 10 回 Google Cloud INSIDE Games & App...
by
Google Cloud Platform - Japan
PDF
20190806 AWS Black Belt Online Seminar AWS Glue
by
Amazon Web Services Japan
PPTX
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
by
NTT DATA Technology & Innovation
PDF
20190731 Black Belt Online Seminar Amazon ECS Deep Dive
by
Amazon Web Services Japan
PDF
Presto ベースのマネージドサービス Amazon Athena
by
Amazon Web Services Japan
PDF
Fluentdのお勧めシステム構成パターン
by
Kentaro Yoshida
PDF
はじめよう DynamoDB ハンズオン
by
Amazon Web Services Japan
PDF
20190828 AWS Black Belt Online Seminar Amazon Aurora with PostgreSQL Compatib...
by
Amazon Web Services Japan
Hadoop/Spark で Amazon S3 を徹底的に使いこなすワザ (Hadoop / Spark Conference Japan 2019)
by
Noritaka Sekiyama
AWS Glueを使った Serverless ETL の実装パターン
by
seiichi arai
AWS Step Functionsを使ったバックアップシステム
by
Akihiro Kamiyama
BigQuery で 150万円 使ったときの話
by
itkr
Snowflake Architecture and Performance
by
Mineaki Motohashi
データレイクを基盤としたAWS上での機械学習サービス構築
by
Amazon Web Services Japan
20191023 AWS Black Belt Online Seminar Amazon EMR
by
Amazon Web Services Japan
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)
by
Yosuke Katsuki
20210330 AWS Black Belt Online Seminar AWS Glue -Glue Studioを使ったデータ変換のベストプラクティス-
by
Amazon Web Services Japan
グラフデータベース Neptune 使ってみた
by
Yoshiyasu SAEKI
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
by
NTT DATA OSS Professional Services
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ
by
Recruit Technologies
アプリ開発者、DB 管理者視点での Cloud Spanner 活用方法 | 第 10 回 Google Cloud INSIDE Games & App...
by
Google Cloud Platform - Japan
20190806 AWS Black Belt Online Seminar AWS Glue
by
Amazon Web Services Japan
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
by
NTT DATA Technology & Innovation
20190731 Black Belt Online Seminar Amazon ECS Deep Dive
by
Amazon Web Services Japan
Presto ベースのマネージドサービス Amazon Athena
by
Amazon Web Services Japan
Fluentdのお勧めシステム構成パターン
by
Kentaro Yoshida
はじめよう DynamoDB ハンズオン
by
Amazon Web Services Japan
20190828 AWS Black Belt Online Seminar Amazon Aurora with PostgreSQL Compatib...
by
Amazon Web Services Japan
Viewers also liked
PDF
ログ管理のベストプラクティス
by
Akihiro Kuwano
PDF
ElasticSearch+Kibanaでログデータの検索と視覚化を実現するテクニックと運用ノウハウ
by
Kentaro Yoshida
PDF
Amazon Elasticsearch Serviceを利用したAWSのログ活用
by
真司 藤本
PPTX
Elasticsearch+nodejs+dynamodbで作る全社システム基盤
by
Recruit Technologies
PDF
fluentd を利用した大規模ウェブサービスのロギング
by
Yuichi Tateno
PDF
[Black Belt Online Seminar] AWS上でのログ管理
by
Amazon Web Services Japan
ログ管理のベストプラクティス
by
Akihiro Kuwano
ElasticSearch+Kibanaでログデータの検索と視覚化を実現するテクニックと運用ノウハウ
by
Kentaro Yoshida
Amazon Elasticsearch Serviceを利用したAWSのログ活用
by
真司 藤本
Elasticsearch+nodejs+dynamodbで作る全社システム基盤
by
Recruit Technologies
fluentd を利用した大規模ウェブサービスのロギング
by
Yuichi Tateno
[Black Belt Online Seminar] AWS上でのログ管理
by
Amazon Web Services Japan
Similar to ビックデータ最適解とAWSにおける新しい武器
PDF
【IVS CTO Night & Day】AWSにおけるビッグデータ活用
by
Amazon Web Services Japan
PDF
AWSでのビッグデータ分析
by
Amazon Web Services Japan
PDF
データ活用を加速するAWS分析サービスのご紹介
by
Amazon Web Services Japan
PDF
現場の”今”を知る、これからのビッグデータ分析・活用のすすめ
by
yuji suzuki
PDF
AWS初心者向けWebinar AWSでBig Data活用
by
Amazon Web Services Japan
PDF
ソリューションセッション#3 ビッグデータの3つのVと4つのプロセスを支えるAWS活用法
by
Amazon Web Services Japan
PDF
[CTC Forum 2019/10/25] 事例から学ぶ!AWS 移行でデータベースの管理・コストを削減する方法
by
Takanori Ohba
PDF
72 article1%20%281%29
by
浩一 望月
PDF
ビッグデータサービス群のおさらい & AWS Data Pipeline
by
Amazon Web Services Japan
PDF
Data Engineering at VOYAGE GROUP #jawsdays
by
Kenta Suzuki
PDF
Data Engineering at VOYAGE GROUP #jawsdays
by
VOYAGE GROUP
PDF
tut_pfi_2012
by
Preferred Networks
PDF
避けては通れないビッグデータ周辺の重要課題
by
kurikiyo
PDF
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
by
The Japan DataScientist Society
PDF
Effective Data Lakes - ユースケースとデザインパターン
by
Noritaka Sekiyama
PDF
Amazon Game Tech Night #22 AWSで実現するデータレイクとアナリティクス
by
Amazon Web Services Japan
PDF
クラウドストレージの基礎知識(Cloudian white paper)
by
CLOUDIAN KK
PDF
ビッグデータ・オープンデータ活用の現状〜ビッグデータ活用概要編〜
by
Takafumi Nakanishi
PDF
Cm re growth-devio-mtup11-sapporo-004
by
Satoru Ishikawa
PDF
AWSが誕生するまでの秘話
by
Yasuhiro Horiuchi
【IVS CTO Night & Day】AWSにおけるビッグデータ活用
by
Amazon Web Services Japan
AWSでのビッグデータ分析
by
Amazon Web Services Japan
データ活用を加速するAWS分析サービスのご紹介
by
Amazon Web Services Japan
現場の”今”を知る、これからのビッグデータ分析・活用のすすめ
by
yuji suzuki
AWS初心者向けWebinar AWSでBig Data活用
by
Amazon Web Services Japan
ソリューションセッション#3 ビッグデータの3つのVと4つのプロセスを支えるAWS活用法
by
Amazon Web Services Japan
[CTC Forum 2019/10/25] 事例から学ぶ!AWS 移行でデータベースの管理・コストを削減する方法
by
Takanori Ohba
72 article1%20%281%29
by
浩一 望月
ビッグデータサービス群のおさらい & AWS Data Pipeline
by
Amazon Web Services Japan
Data Engineering at VOYAGE GROUP #jawsdays
by
Kenta Suzuki
Data Engineering at VOYAGE GROUP #jawsdays
by
VOYAGE GROUP
tut_pfi_2012
by
Preferred Networks
避けては通れないビッグデータ周辺の重要課題
by
kurikiyo
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
by
The Japan DataScientist Society
Effective Data Lakes - ユースケースとデザインパターン
by
Noritaka Sekiyama
Amazon Game Tech Night #22 AWSで実現するデータレイクとアナリティクス
by
Amazon Web Services Japan
クラウドストレージの基礎知識(Cloudian white paper)
by
CLOUDIAN KK
ビッグデータ・オープンデータ活用の現状〜ビッグデータ活用概要編〜
by
Takafumi Nakanishi
Cm re growth-devio-mtup11-sapporo-004
by
Satoru Ishikawa
AWSが誕生するまでの秘話
by
Yasuhiro Horiuchi
More from Akihiro Kuwano
PDF
今日はMongoDBの話はしない
by
Akihiro Kuwano
PDF
銀河レベルのLT(とは)
by
Akihiro Kuwano
PDF
AWSのNoSQL入門
by
Akihiro Kuwano
PPTX
MongoDBの可能性の話
by
Akihiro Kuwano
PDF
実環境にTerraform導入したら驚いた
by
Akihiro Kuwano
PDF
インフラエンジニアってなんでしたっけ(仮)
by
Akihiro Kuwano
PDF
WiredTigerストレージエンジン楽しい
by
Akihiro Kuwano
PDF
NVMFS 使ってみたとか 言っちゃって マジカジュアルな奴
by
Akihiro Kuwano
PDF
Chef環境の闇
by
Akihiro Kuwano
PDF
アメーバピグにおける自作サーバ運用それからどうなった
by
Akihiro Kuwano
PDF
CyberAgentにおけるMongoDB
by
Akihiro Kuwano
PDF
後悔しないもんごもんごの使い方 〜サーバ編〜
by
Akihiro Kuwano
PDF
勉強会コミュニティがぼくの エンジニア人生にもたらした事。 あと、NoSQLとの付き合い方。
by
Akihiro Kuwano
PDF
MongoDBのはじめての運用テキスト
by
Akihiro Kuwano
PDF
AmebaのMongoDB活用事例
by
Akihiro Kuwano
PDF
MongoDBのアレをアレする
by
Akihiro Kuwano
PDF
やさぐれギンガさんのアーキテクチャ入門(ためしてガッテン)(仮)
by
Akihiro Kuwano
PDF
大規模化するピグライフを支えるインフラ ~MongoDBとChefについて~ (前編)
by
Akihiro Kuwano
PDF
オンプレエンジニアがクラウドエンジニアを夢見て。じっと手を見る。
by
Akihiro Kuwano
PDF
泥臭い運用から、プログラマブルインフラ構築(に行きたい)
by
Akihiro Kuwano
今日はMongoDBの話はしない
by
Akihiro Kuwano
銀河レベルのLT(とは)
by
Akihiro Kuwano
AWSのNoSQL入門
by
Akihiro Kuwano
MongoDBの可能性の話
by
Akihiro Kuwano
実環境にTerraform導入したら驚いた
by
Akihiro Kuwano
インフラエンジニアってなんでしたっけ(仮)
by
Akihiro Kuwano
WiredTigerストレージエンジン楽しい
by
Akihiro Kuwano
NVMFS 使ってみたとか 言っちゃって マジカジュアルな奴
by
Akihiro Kuwano
Chef環境の闇
by
Akihiro Kuwano
アメーバピグにおける自作サーバ運用それからどうなった
by
Akihiro Kuwano
CyberAgentにおけるMongoDB
by
Akihiro Kuwano
後悔しないもんごもんごの使い方 〜サーバ編〜
by
Akihiro Kuwano
勉強会コミュニティがぼくの エンジニア人生にもたらした事。 あと、NoSQLとの付き合い方。
by
Akihiro Kuwano
MongoDBのはじめての運用テキスト
by
Akihiro Kuwano
AmebaのMongoDB活用事例
by
Akihiro Kuwano
MongoDBのアレをアレする
by
Akihiro Kuwano
やさぐれギンガさんのアーキテクチャ入門(ためしてガッテン)(仮)
by
Akihiro Kuwano
大規模化するピグライフを支えるインフラ ~MongoDBとChefについて~ (前編)
by
Akihiro Kuwano
オンプレエンジニアがクラウドエンジニアを夢見て。じっと手を見る。
by
Akihiro Kuwano
泥臭い運用から、プログラマブルインフラ構築(に行きたい)
by
Akihiro Kuwano
Recently uploaded
PDF
Machine Tests Benchmark Suite. Explain github.com/alexziskind1/machine_tests #1
by
Tasuku Takahashi
PDF
エンジニアが選ぶべきAIエディタ & Antigravity 活用例@ウェビナー「触ってみてどうだった?Google Antigravity 既存IDEと...
by
NorihiroSunada
PDF
流行りに乗っかるClaris FileMaker 〜AI関連機能の紹介〜 by 合同会社イボルブ
by
Evolve LLC.
PPTX
楽々ナレッジベース「楽ナレ」3種比較 - Dify / AWS S3 Vector / Google File Search Tool
by
Kiyohide Yamaguchi
PDF
20251210_MultiDevinForEnterprise on Devin 1st Anniv Meetup
by
Masaki Yamakawa
PDF
Machine Tests Benchmark Suite. Explain github.com/alexziskind1/machine_tests #2
by
Tasuku Takahashi
Machine Tests Benchmark Suite. Explain github.com/alexziskind1/machine_tests #1
by
Tasuku Takahashi
エンジニアが選ぶべきAIエディタ & Antigravity 活用例@ウェビナー「触ってみてどうだった?Google Antigravity 既存IDEと...
by
NorihiroSunada
流行りに乗っかるClaris FileMaker 〜AI関連機能の紹介〜 by 合同会社イボルブ
by
Evolve LLC.
楽々ナレッジベース「楽ナレ」3種比較 - Dify / AWS S3 Vector / Google File Search Tool
by
Kiyohide Yamaguchi
20251210_MultiDevinForEnterprise on Devin 1st Anniv Meetup
by
Masaki Yamakawa
Machine Tests Benchmark Suite. Explain github.com/alexziskind1/machine_tests #2
by
Tasuku Takahashi
ビックデータ最適解とAWSにおける新しい武器
1.
ビックデータ最適解とAWSにおけ る新しい武器 アマゾン ウェブ サービス
ジャパン株式会社 ソリューションアーキテクト 桑野 章弘
2.
⾃⼰紹介 桑野 章弘(くわの あきひろ) ソリューションアーキテクト 主にメディア系のお客様を担当しております。 渋⾕のインフラエンジニア(仮)しておりま した 好きなAWSのサービス:ElastiCache 好きなデータストア:MongoDB
3.
Introduction AWSにはビックデータでも様々なサービスがあ ります、それらサービスを使⽤して最適なビッ グデータ処理基盤を構築する場合のベストプラ クティスについてまとめていきます
4.
ビッグデータ処理基盤 on クラウド:変わらないこと •
データを収集して、分析し、可視化 • 分析では、標準的な技術・OSSや商⽤ソフトウェアを活⽤ • AWSのマネージドサービスを活⽤することでより便利に 収集 分析 可視化 データを収集 ⼤規模データ を⾼速に分析 ⼈間が参照し やすい形に
5.
クラウド+ビッグデータ:ポイント データは加⼯せず全期間を残す スケールアウトで解決する CLOUD BIG DATA +
6.
#2. データは加⼯せず全期間を残す これまで: ディスクが⾼価で上限があ る データはサマリーだけ、も しくは期間限定で保存 処理できる内容は固定的 On クラウド: 安価・上限無しのストレー ジ オリジナルデータを全て残 す 処理対象・処理内容はビジ ネスに合わせて変わる インフラ管理者の仕事: データを活⽤して新しい課題に素 早く対応できるインフラを⽤意す る。個別リクエストへの対応 インフラ管理者の仕事: ストレージを溢れさせず、時 間内に処理が終るようにサイ ズや処理内容を調整する
7.
データレイク 多様なデータを⼀元的に保 存 データを失わない サイズ制限からの開放 決められた⽅法(API)です ぐにアクセスできる →システム全体のハブ センター データ ⾮構造化ファイル テキストファイル RDBMS データレイク API呼び出しによる連携
8.
⼤規模データ分析に必要な基盤 • データを消さずにデータレイクに集め、分析に つなげる 収集 データレイク (保存) 分析
可視化 データを収集 し、データレイ クへ格納 全期間保存。 共通APIでア クセス ニーズ #1 分析 可視化 ニーズ #2API
9.
スケールアウトで解決する スケールアップもスケールアウトも クラウドでは容易 …しかしスケールアップには限界が ある(CPU、メモリ) スケールアウト可能なテクノロジー =規模の増加に耐えうる設計 S XL スケールアップ スケールアウト
10.
スケールアウト ≠ ⾼価 クラウドではスケールアウトがコスト・時間の両⾯で効率的 必要な時に必要なだけノードを追加できる ノードを増やしても利⽤時間が短くなればコストは同じ 処理時間 8時間
処理時間 2時間 JOB 16ノードに 拡張 JOB 4ノード×8時間 =32 16ノード×2時間 =32
11.
⼤規模データ分析 on クラウド(ここまでのまとめ) データをデータレイクに集め、多様な分析につなげる 分析はスケールアウト可能なインフラの上で 収集
データレイク (保存) 分析 可視化 データを収集 し、データレイ クへ格納 全期間保存。 共通APIでア クセス 可視化 スケールアウト 可能な技術 分析 スケールアウト 可能な技術API
12.
AWS+ビッグデータ分析基盤
13.
EC2があれば何でも出来るけど… マネージドサービスで管理負荷を低減可能 電源・ネットワーク ラッキング HWメンテナンス OSパッチ ミドルウェアパッチ 定形運⽤設計 スケールアウト設計 ミドルウェア導⼊ OS導⼊ アプリケーション作成 オンプレミス 独⾃構築 on
EC2 AWSマネージドサービス お客様がご担当する作業 AWSが提供するマネージド機能 電源・ネットワーク ラッキング HWメンテナンス OSパッチ ミドルウェアパッチ 定形運⽤設計 スケールアウト設計 ミドルウェア導⼊ OS導⼊ アプリケーション作成 電源・ネットワーク ラッキング HWメンテナンス OSパッチ ミドルウェアパッチ 定形運⽤設計 スケールアウト設計 ミドルウェア導⼊ OS導⼊ アプリケーション作成
14.
分析保存 Amazon Glacier Amazon S3 Amazon DynamoDB Amazon RDS/ Aurora AWSマネージドサービス:ビッグデータ AWS Data Pipeline Amazon CloudSearch Amazon EMR Amazon EC2 Amazon Redshift Amazon Machine Learning AWS
IoT AWS Direct Connect 収集 Amazon Kinesis Amazon Kinesis Firehose Amazon Elasticsearch Amazon Kinesis Analytics Amazon QuickSight AWS DMS New!!! New!!! Snowball 可視化 Amazon EC2 Amazon Athena New!!!
15.
例)オンプレミスのデータをAWSで分析する データ・ソースがオンプレミスのDC内に複数 多種多様なシステムからEXPORTしたデータをAWSへ転送(定期的) 10年間以上のデータを保存して分析できるようにしたい(例:数100TB〜) 多くの利⽤者は直近1年間のデータしか分析しない(例:数10TB) 収集 データ レイク 分析 可視化 EXP ?
? ? ?
16.
データ収集 データの収集 様々なサービスを利⽤してデータを蓄積する APP Amazon S3 Kinesis Firehose Fluentd、Firehose、 Snowball、、、様々な 方法でS3にデータを送 信する
17.
データレイク on AWS あらゆるデータが集まるス トレージ 構造化データだけではなく ⾮構造化データも 様々なデータを跨いで分析 可能 Amazon
S3が最適 EMR/Redshift等で活⽤ 低頻度アクセスストレージ /GlacierでTiered DB 各種クライアント メディア ファイル 多様な データベース サーバ Amazon Kinesis Amazon S3 Amazon Glacier Amazon EMR Amazon Redshift Amazon Machine Learning Amazon Athena
18.
全てのログはS3へ貯め続ける S3はAWSのデータのハブ(=データレイク)と して⾮常に重要な役割を担っている あとから⾃由に分析処理(ETL)を変更可能 S3の耐久性で安全に保存可能 消したログは⼆度と帰ってこない ⾮常に安価にデータを保存できる(Glacierや、 低頻度アクセスストレージも併⽤可能)
19.
ElastiCache インメモリDB RDS RDB DynamoDB NoSQL Amazon S3 汎用ファイル データレイク Amazon Glacier 長期保存 階層化による格納 ホットデータ: 応答速度重視 限定範囲のデータ コールドデータ: 容量当たりの単価重視 膨⼤なデータ
20.
スケールアウト可能な分析サービス Amazon Redshift マネージドRDBMS SQL(標準) スケールアウト可能 Amazon Elastic MapReduce
(EMR) マネージドHadoop Hadoop/Spark(標準) スケールアウト可能 OR マネージド, 標準技術, スケールアウトが選択の鍵
21.
Amazon Redshift 特徴 データサイズ:最⼤2PBまで拡張可能 超並列(MPP)、カラムナ型DBエンジン による⾼速SQL処理 スケールアウト可能。最⼤128台 PostgreSQLとの互換性 使った分だけの利⽤料⾦。従来のデータ ウェアハウスの1/10のコストで実現 フルマネージドのデータウェアハウスサービス 10Gb Ether JDBC/ODBC Redshift
⼤規模分散処理 で分析SQLを⾼ 速実⾏
22.
SQLを分散処理(スケールアウト) SELECT * FROM
… SQLをコンピュート ノードへ配信 CPU CPU CPU CPU CPU CPU リーダーノード コンピュートノード ノードに直結した⾼ 速ストレージ
23.
SQLを分散処理(スケールアウト) SELECT * FROM
… CPU CPU CPU CPU CPU CPU リーダーノード コンピュートノード ノードに直結した⾼ 速ストレージ
24.
SQLを分散処理(スケールアウト) SELECT * FROM
… SQLをコンピュート ノードへ配信 CPU CPU CPU CPU CPU CPU リーダーノード コンピュートノード 分散して SQLを処理 ノードに直結した⾼ 速ストレージ
25.
フルマネージド型のRDBMS 運⽤管理に必要な機能をビルトイン S3からの⾼速ロード&アンロード ⾃動バックアップ&リストア モニタリング データの再編成 クエリの解析 :
26.
Amazon Elastic MapReduce (EMR) ⼤規模データ処理をHadoop/Sparkなどの 分散処理フレームワークを使って効率的に処理 AWS上の分散処理サービス •
簡単かつ安全にBig Dataを処理 • 多数のアプリケーションサポート 簡単スタート • 数クリックでセットアップ完了 • 分散処理アプリも簡単セットアップ 低コスト • ハードウェアへの投資不要 • 従量課⾦制 • 処理の完了後、クラスタ削除 • Spotインスタンスの活⽤ Hadoop 分散処理アプリ 分散処理基盤 Amazon EMRクラスタ 簡単に複製 リサイズも1クリック Spotも利⽤可能
27.
EMRFS: S3をHDFSの様に扱う “s3://” と指定するだけでHDFSと同様にS3にア クセス 計算資源とストレージを分離でき コスト⾯でもメリット⼤ クラスタのシャットダウンが可能 クラスタを消してもデータをロストしない 複数クラスタ間でデータ共有が簡単 データの⾼い耐久性(S3) EMR EMR Amazon S3
28.
EMRで稼動するSQLエンジン SQLエンジン操作アプリ ストレージ YARN Map Reduce Tez
Spark Hive Spark SQL Presto JDBC/ODBC HiveMetastore HDFS EMRFS Hue Zeppelin SELECT…
29.
データ分析プラットフォーム⽐較 Amazon Redshift Amazon
EMR 分類 大規模データ処理に特化したマネー ジドRDBMS Hadoop/Spark等分散処理フレームワー クのマネージド環境 処理系 SQL(PostgreSQLと互換性) アプリケーションに依存:Hive、Pig … Presto等でSQLでの分析も可能 スケールアウト 可能 可能 ストレージの種類 高速なローカルストレージ HDFS、もしくはEMRFSでS3上のデータ を取り込まずにアクセス ノードとストレージの分 離 ノードとストレージは同時に増加・削 減 ストレージに影響を与えずにノード増減が 可能(EMRFSの場合) 最大処理サイズ 2PB(圧縮後) 上限無し(EMRFSの場合) 処理レイテンシー Low • Presto (Low) • Hive (Midium~High) 運用管理 運用管理に必要な機能がビルトイン 分散処理系+OSSアプリ環境を容易に 分析ツール、ETL等 JDBC/ODBC+プッシュバック対応等 ネイティブレベルでの対応 JDBC/ODBC経由もしくはHive メタストア 経由で多くの環境がサポート
30.
分析サービスの選択例 Amazon Redshift SQL処理に特化・⾼速 ローカルディスク上で 処理 Amazon Elastic MapReduce
(EMR) ⾃由にアプリケーションを 選択 EMRFSでS3データにアク セス S3に直接アクセスできるEMRFSを 使い、データレイク上の全期間の データ分析に活用 頻繁にアクセスされるホットデータを 格納し、高速なSQLアクセス機能を 活用して分析
31.
分析に必要なプリプロセスをどこで実⾏するか? AWSに転送前のオンプレミス環境で実施 スケールアウトが困難 データレイクをオンプレミス側に⽤意する必要がある S3上のファイルをElastic MapReduceで変換 スケールアウト可能なインフラで処理 ⾔語・アプリを柔軟に選択可能 データレイクを含むAWSサービスへの接続性 Redshift内でSQLで変換 スケールアウト可能 Redshift内に取り込んだデータのみ操作可能
32.
EMR:プリプロセス処理に向く⾼い接続性 例)Spark on EMRとAWSサービスとの連携 Amazon
EMR Amazon S3 (データレイク) DynamoDB Amazon RDS Amazon Kinesis Amazon Redshift Elastic Search Service EMRFS Streaming Data Connector Copy from HDFS EMR-DynamoDB Connector JDBC(SparkSQL ) Elastic Search Connector
33.
例)プリプロセスの構成例 Amazon RedshiftAmazon EMR•
⾮構造化データの構造化・整形 • 構造化データのフィルタリング • S3へ変形済データを出⼒ サマリー テーブル ファクト テーブル マート・サマ リー表の更新を SQLで実⾏ Amazon S3 全データ 変形済データ
34.
Amazon Athenaリリース! Amazon S3に置いたデータをインタラクティブにSQL実⾏可能 AthenaはPrestoで提供するSQL
Engineが利⽤でき、JSON, CSV, ログファイル, 区切り⽂字のあるテキストファイル, Apache Parquet, Apache ORCに対してクエリが可能 ペタバイトクラスのデータに対するクエリをサポート、データを S3から取り込む⼿間はない、ANSI-SQLもサポート JDBCでのアクセスも可能 バージニア、オレゴンで利⽤可能 スキャンしたデータ1TBあたり$5の料⾦(⽶国)
35.
Athenaを活⽤することでプリプロセスの部分が⼤幅に 簡略化される Hadoop関連の知識も必要無い Amazon RedshiftAmazon Athena•
⾮構造化データの構造化・整形 • 構造化データのフィルタリング • S3へ変形済データを出⼒ サマリー テーブル ファクト テーブル マート・サマ リー表の更新を SQLで実⾏ Amazon S3 全データ 変形済データ
36.
マネージド故の様々な活⽤⽅法 S3に貯めたデータから必要な 結果を取得する アクセスログなどのある程度 定型的なログの集計処理 データアクセス量課⾦なので、 クラスタを⽴ち上げるよりも 価格が抑えられる場合もある 36
37.
Athena Tips Amazon Athenaはリージョンまたいだ Amazon
S3バケットにもクエリできるので、東 京リージョンにあるS3にもアクセス可 転送量とレイテンシが許容できるなら今からでも使⽤可能 37
38.
Athena Tips Amazon S3の標準
- 低頻度アクセスの活⽤ Amazon Athenaで何回もクエリしないようなデータには、 Amazon S3の標準 - 低頻度アクセスにすることで耐久性等は標 準そのままに、容量単価を節約 38
39.
Athena Tips Amazon Athenaの課⾦対象は処理したサイズ ではなくスキャンしたサイズ データを単純に圧縮するだけで安価に パーティションで対象ファイルを絞ったり、列指向フォーマッ ト(ORC、Parquet)にすることでもっと安くすることも可能 39
40.
FeedBackお願いします! 40
41.
可視化部分は⽤途に応じて選択可能 EC2+BIツール 多彩なパートナーソリュー ション・OSSをEC2上で活 ⽤ Amazon QuickSight 専⾨家不要のBIサービス AWS内外のデータソース にアクセス
42.
分析 分析データレイク 選択の例:全体図 データをAWSへ転送、S3で収集&保存、データレイクとする ホットデータ(直近データ)分析環境としてRedshift 全期間データ分析環境としてEMR 収集 可視化 Presto /EMR Redshift QuickSight EXP Amazon S3 BI+EC2 Direct Connect プリプロセス EMR 全データ 変形済 Athena
43.
事例で⾒るビッグデータ処理 on AWS
44.
事例:Nasdaq様 Redshift/EMRを使い分け Redshift:300TB分の直近データ EMR+Presto+S3:全期間データ 共通のSQLで アクセス re:Invent 2015発表資料
BDT314 「A Big Data & Analytics App on Amazon EMR & Amazon Redshift 」より引用
45.
事例:Finra様 750億イベント/⽇の処理基盤 • S3をデータ共有サービスとして定義し、EMRやRedshiftからアク セス re:Invent
2015発表資料 BDT305 「Amazon EMR Deep Dive & Best Practices」より引用
46.
Finra様:DWHアプライアンスとHive/Tez+S3⽐較 S3に置いたままのデータをHive/Tez on EMRでアクセス DWHアプライアンスとの⽐較で⼗分な速度を実現 re:Invent
2015発表資料 BDT305 「Amazon EMR Deep Dive & Best Practices」より引用
47.
事例:スマートニュース様 マネージド・サービスを中⼼とした技術選択 http://www.slideshare.net/smartnews/20160127-building-a-sustainable-data-platform-on-aws より引用
48.
スマートニュース様(Batch~Serving~Output部 分) S3に⼊った⽣データをEMRでETL処理 レポート:データはRDS→BIツール 広範囲分析:RC File形式でS3に格納し、Presto→BIツール http://www.slideshare.net/smartnews/20160127-building-a-sustainable-data-platform-on-aws より引用
49.
App Server ア プ リ ケ シ ョ ン Web Server トランザクショ ナル・データ ロ ギ ン グ デ バ イ ス コ レ ク タ Android iOS Kinesis Producer ファイル データ ストリーム データ S3 RDS Dynamo DB Amazon Redshift Kinesis Stream Lambda Pig Hive Kinesis Consumer AmazonElasticMapReduce AWS IoT 収集 分析 可視化 Quick Sight IoT Device 保存 EC2 分析SW
50.
まとめ:変化を織り込んだビッグデータ処理基盤 最適なツールを選択する データは消さずにオリジナルを残す スケールアウトで解決する
51.
ビックデータ最適解と AWSにおける新しい武器
Download