SlideShare a Scribd company logo
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279511794
Asian Journal of Biochemical and Pharmaceutical Research Recent Advances
on the Synthesis of Pyrazole-Containing Compounds of Potent Biological
Activities and Study Their Chemical...
Article · November 2014
CITATIONS
3
READS
627
1 author:
Taha Eldebss
Cairo University
41 PUBLICATIONS 746 CITATIONS
SEE PROFILE
All content following this page was uploaded by Taha Eldebss on 01 July 2015.
The user has requested enhancement of the downloaded file.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 ISSN: 2231-2560
CODEN (USA): AJBPAD
Review Article
356
Asian Journal of Biochemical and Pharmaceutical Research
Recent Advances on the Synthesis of Pyrazole-Containing Compounds of Potent
Biological Activities and Study Their Chemical Applications
Taha M.A Eldebss
Department of Chemistry, Faculty of Science, University of Cairo, Giza 12613, Egypt
Received: 16 September 2014; Revised: 14 October 2014; Accepted: 19 November 2014
Abstract: Several pyrazoles with different substitutions at different position were synthesized starting from
pyrazole and its derivatives. The biological activities of newly synthesized compounds were tested and
evaluated in vivo and vitro for different types of diseases and exhibited good results, in addition to some
examples of some Pyrazoles Containing Compounds were established as drugs such as Celecoxib Lesopitron
Sulfaphenazole Rimonabant Tebufenpyrad Betazole Tepoxalin Pyriprole Deracoxib Mavacoxib.
Keywords: Pyrazole, Celecoxib, Lesopitron, Pyriprole, Yellow 2G, Fipronil RS.
INTRODUCTION:
Structurally unique and functionality-enriched heterocyclic systems are of great significance in
chemically and biologically related research areas.[ 2-112, 187-134] In particular, pyrazole and their
derivatives are an important classes of compounds and has been widely found in biologically active
molecules and drug candidates. Moreover, diversely functionalized pyrazole have also been identified
as versatile synthetic building blocks for the construction of complex molecules and natural products.
Therefore, great efforts have been done to their preparations and chemical application.
3 -Properties of pyrazole as in Fig.1
Fig.1
Pyrazole (Systematic or IUPAC name 1,2-Diazole) It is a heterocyclic organic compound
characterized by a 5-membered ring of three carbon atoms and two adjacent nitrogen centres with the
molecular formula C3H4N2 ; molar mass, 68.08 g mol−1; melting point, 66–70 °C, boiling point,
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
357
186–188 °C ; basicity (pKb), 2.5, . Pyrazoles are also the class of compounds that have the ring
C3N2 with adjacent nitrogen centres [1].
4- Chemical reactivity and application of pyrazoles
4-1) Methods of Synthesis of pyrazoles
4-1-1) Synthesis of unsubstitute Pyrazole
Pyrazole was synthesized by the reaction of α,β-unsaturated aldehydes with hydrazine and subsequent
dehydrogenation as in Scheme1 [113].
Scheme 1
4-1-2))Knorr pyrazole synthesis The Knorr pyrazole synthesis is an organic reaction used to convert a
hydrazine or its derivatives and a 1,3-dicarbonyl compound to a pyrazole using an acid catalyst via the
following mechanism as in Scheme 2 [114].
R1
O
R3
O
R2
H3O
R1
OH
R3
O
R2
RNHNH2
-H2O
R1
OH
R3
O
R2
RNHNH2
H2O
-H3O R1
OH
R3
O
R2
RNHNH
R1 R3
O
R2
RNHN
H3O
-H2O
R1 R3
OH
R2
RNHN
-H2O N
N
R3
OH
R1
R2
R
H
N
N
R3
R1
R2
Scheme :2
4-1-3) Substituted and unsubstituted pyrazoles are prepared by condensation of 1,3-diketones with
hydrazine. For example, acetylacetone and hydrazine gives 3,5-dimethylpyrazole as in Scheme 3
[115].
CH3C(O)CH2C(O)CH3 + N2H4 → (CH3)2C3HN2H + 2 H2O
Scheme 3
Also, pyrazole was synthesized from acetylene and diazomethane[116].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
358
4-2) Synthesis of substituted pyrazole
4-2-1)Synthesis of novel pyrazole-based heterocycles via a copper(II)-catalysed domino annulations
Pyrazole-based β-aminonitriles and β-amino-carbaldehydes as bifunctional building blocks are
introduced in a facile copper(II)-catalysed one-pot domino generation of multiple N-containing
heterobi- and tricycles. This streamlined synthetic approach permits easy access to novel pyrazole-
fused imidazo- and pyrimido[1,2-c]pyrimidinones and to pyrazolo[3,4-d]pyrimidinone species with
isolated yields up to 90%. The present study also reveals a unique amine–isocyanate coupling
promotion via copper(II)-based catalytic activation as in Scheme 4 [117].
Scheme 4
4-2-2) Heterocycle formation from 1,3-dinitroalkanes. A novel pyrazole synthesis: Combinatorial
Chemistry Review.Aliphatic nitro compounds have proved to be useful starting materials in organic
synthesis. When the nitro compounds are properly substituted they can cyclize, yielding heterocyclic
compounds. 1,3-Dinitroalkanes can be viewed as synthetic equivalents for 1,3-dicarbonyl compounds
through a Nef, or equivalent, reaction, and therefore could be ultimately converted into azole
heterocycles. Application of the Nef reaction under the usual conditions (NaOH; conc. H2SO4) to 1,3-
dinitroalknes gives only trace amounts of the anticipated dione, although the yields can be increased
(up to 40%) using a secondary amine as the base. We now find that 1,3-dinitroalkanes react with
hydrazines giving rise to pyrazoles as in Scheme 5 [118].
Scheme 5
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
359
4-2-3) An efficient, general, one-pot, three-component procedure for the preparation of 3,5-
disubstituted 1H-pyrazoles includes condensation of substituted aromatic aldehydes and
tosylhydrazine followed by cycloaddition with terminal alkynes. The reaction tolerates various
functional groups and sterically hindered substrates to afford the desired pyrazoles in good yields as in
Scheme 6 [119].
Scheme 6
4-2-4) 1,3-Diketones, which were synthesized in situ from ketones and acid chlorides, were converted
into pyrazoles by the addition of hydrazine. This method allows a fast and general synthesis of
previously inaccessible pyrazoles and synthetically demanding pyrazole-containing fused rings as in
Scheme 7 [120].
Scheme 7
4-2-5) A highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles based on the
condensation of 1,3-diketones with arylhydrazines proceeds at room temperature in N,N-
dimethylacetamide and furnishes pyrazoles in good yields as in Scheme 8[121].
.
Scheme 8
4-2-6) Pyrazole or isoxazole derivatives are prepared by a palladium-catalyzed four-component
coupling of a terminal alkyne, hydrazine (hydroxylamine), carbon monoxide under ambient pressure,
and an aryl iodide as in Scheme 9[122].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
360
Scheme 9
4-2-7) Also, pyrazoles derivatives were obtained via reaction of aryl halides with 1,3-diones as in
Scheme 10[123].
Scheme 10
4-2-8) pyrazoles derivatives were obtained via one-pot, three-components synthesis as in Scheme
11[124].
Scheme 11
4-2-9) A regioselective synthesis of tri- or tetrasubstituted pyrazoles by the reaction of hydrazones
with nitroolefins mediated with strong bases such as t-BuOK exhibits a reversed, exclusive 1,3,4-
regioselectivity. Subsequent quenching with strong acids such as TFA is essential to achieve good
yields. A stepwise cycloaddition reaction mechanism is proposed as in Scheme 12[125].
Scheme 12
4-2-10) Two general protocols for the reaction of electron-deficient N-arylhydrazones with
nitroolefins allow a regioselective synthesis of 1,3,5-tri- and 1,3,4,5-tetrasubstituted pyrazoles. Studies
on the stereochemistry of the key pyrazolidine intermediate suggest a stepwise cycloaddition
mechanism as in Scheme 13[126].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
361
Scheme 13
4-2-11) A regioselective one-pot synthesis of substituted pyrazoles from N-monosubstituted
hydrazones and nitroolefins gives products in good yields. A key nitropyrazolidine intermediate is
characterized and a plausible mechanism is proposed as in Scheme 14[127].
Scheme 14
4-2-12) An unprecedented ruthenium(II)-catalyzed oxidative C-N coupling method enables a facile
intramolecular synthesis of various synthetically challenging tri- and tetrasubstituted pyrazoles in the
presence of oxygen as oxidant. The reaction demonstrates excellent reactivity, functional group
tolerance, and high yields as in Scheme 15[128].
Scheme 15
4-2-13) A general, highly flexible Cu-catalyzed domino C-N coupling/hydroamination reaction
constitutes a straightforward alternative to existing methodology for the preparation of pyrroles and
pyrazoles as in Scheme 16[129].
Scheme 16
4-2-14) Alumino-heteroles are obtained from simple precursors in a fully chemo- and regioselective
manner by a metalative cyclization. The carbon-aluminum bond is still able to react further with
several electrophiles, without the need of transmetalation providing a straightforward access to 3,4,5-
trisubstituted isoxazoles and 1,3,4,5-tetrasubstituted pyrazoles as in Scheme 17[130].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
362
Scheme 17
4-2-15) Various 1-acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles have been prepared in good yields from
the corresponding 2-alkyn-1-ones. The resulting dihydropyrazoles undergo dehydration and iodination
in the presence of ICl and Li2CO3 at room temperature to provide 1-acyl-4-iodo-1H-pyrazoles as in
Scheme 18[131].
Scheme 18
4-2-16) A tandem catalytic cross-coupling/electrocyclization allows the conversion of differentially
substituted acyclic and cyclic enol triflates and an elaborated set of diazoacetates to provide the
corresponding 3,4,5-trisubstituted pyrazoles with a high degree of structural complexity as in Scheme
19[132].
Scheme 19
4-2-17) A series of 4-substituted 1H-pyrazole-5-carboxylates was prepared from the
cyclocondensation reaction of unsymmetrical enaminodiketones with tert-butylhydrazine
hydrochloride or carboxymethylhydrazine. The compounds were obtained regiospecifically and in
very good yields as in Scheme 20[133].
Scheme 20
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
363
4-2-18) An easy and efficient copper-catalyzed reaction for the synthesis of polysubstituted pyrazoles
from phenylhydrazones and dialkyl ethylenedicarboxylates tolerates a range of functionalities, and the
corresponding adducts can be obtained in moderate to good yields as in Scheme 21[134].
Scheme 21
4-2-19) The reaction of diazo(trimethylsilyl)methylmagnesium bromide with aldehydes or ketones
gave 2-diazo-2-(trimethylsilyl)ethanols, which were applied to the synthesis of di- and trisubstituted
pyrazoles via [3+2] cycloaddition reaction with ethyl propiolate or dimethyl acetylenedicarboxylate as
in Scheme 22[135].
Scheme 22
4-2-20) In the presence of activated carbon, Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted
pyrazolines were aromatized with molecular oxygen to the corresponding pyridines and pyrazoles in
excellent yields as in Scheme 23[136].
.
Scheme 23
4-2-21) CuI-catalyzed coupling of N-acyl-N′-substituted hydrazines with aryl iodides affords N-acyl-
N′,N′-disubstituted hydrazines regioselectively. N-Acyl-N′-substituted hydrazines can also react with
2-bromoarylcarbonylic compounds in the presence of 4-hydroxy-L-proline as ligand to provide 1-aryl-
1H-indazoles as in Scheme 24[137].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
364
Scheme 24
4-2-22) Various N-aryl-1H-indazoles and benzimidazoles were synthesized from common arylamino
oximes in good to excellent yields depending upon the base used in the reaction. Triethylamine
promoted the formation of benzimidazoles, whereas 2-aminopyridine promoted the formation of N-
arylindazoles as in Scheme 25[138].
Scheme 25
4-2-23) A rapid and efficient synthesis of 2H-indazoles, which involves a [3 + 2] dipolar
cycloaddition of arynes and sydnones, proceeds under mild reaction conditions in good to excellent
yields as in Scheme 26[139].
.
Scheme 26
4-2-24) The 1H-indazole skeleton can be constructed by a [3 + 2] annulation approach from arynes
and hydrazones. Under different reaction conditions, both N-tosylhydrazones and N-
aryl/alkylhydrazones can be used to afford various indazoles as in Scheme 27[140].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
365
.
Scheme 27
4-2-25) Readily available, stable, and inexpensive N-tosylhydrazones react with arynes under mild
reaction conditions to afford 3-substituted indazoles in good yields. The reaction involves a 1,3-dipolar
cycloaddition of in situ generated diazo compounds and arynes as in Scheme 28[141].
.
Scheme 28
4-2-26) The [3+2] cycloaddition of a variety of diazo compounds with o-(trimethylsilyl)aryl triflates in
the presence of CsF or TBAF at room temperature provides a very direct, efficient approach to a wide
range of potentially biologically and pharmaceutically interesting substituted indazoles in good to
excellent yields under mild reaction conditions as in Scheme 29[142].
.
Scheme 29
4-2-27) 2H-Indazoles are synthesized using a copper-catalyzed one-pot, three-component reaction of
2-bromobenzaldehydes, primary amines, and sodium azide. The catalyst plays the key role in the
formation of C-N and N-N bonds. This method has a broad substrate scope with a high tolerance for
various functional groups as in Scheme 30[143].
Scheme 30
4-2-28) A general two-step synthesis of substituted 3-aminoindazoles from 2-bromobenzonitriles
involves a palladium-catalyzed arylation of benzophenone hydrazone followed by an acidic
deprotection/cyclization sequence. This procedure offers a general and efficient alternative to the
typical SNAr reaction of hydrazine with o-fluorobenzonitriles as in Scheme 31[144].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
366
Scheme 31
4-2-29) Compounds containing imine showed high insecticidal activity against cotton bollworm. The
compounds also had good activities against bean aphid and mosquito as in Scheme 32[145].
Scheme 32
4-2-30) One-pot three-components synthesis of benzochromeno-pyrazole derivatives as in Scheme
33[146].
Scheme 33
4-2-31) pyrazole carboxylate derivatives can be converted into pyrazolotriazolo, pyrazolo thiadiazolo,
pyrazolo oxiadiazolo and bipyrazolo derivatives as in Schemes 34, 35, 36, 37 and 38 [5].
Ph
N N
Ph
CN OC2H5
O
Ph
N
N
Ph
CN
H
N
N N
HS
NH2NH2 / R.T
S
NHNH2
H2N
KSCN
KOH
OR
Scheme 34
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
367
Ph
N N
Ph
CN OC2H5
O
Ph
N
N
Ph
CN
N
N N
Y
NH2NH2 / R.T
S
NHNH2
H2N
/ KSCN
KOH
Or
Or PhCNS/KOH/NH2NH2
Or CS2/KOH/NH2NH2
X
X = H, NH2, Ph
Y = SH, SH, NH2NH2
Scheme 35
ٍ◌Scheme 36
PhNCS
Ph
N
N
Ph
CN
S
N N
PhHN
H2SO4
Ph
N
N
Ph
CN
HN
O
NH2
Ph
N
N
Ph
CN
O
N N
HS
CS2 / KOH
Reflux
Scheme 37
O
O
O
OEt
O
Ph
N
N
Ph
NC
O
N
N
Ph
N N
Ph
NC O
N
N
O
Ph
N
N
Ph
CN
HN
O
NH2
Scheme 38
Ph
N N
Ph
CN OC2H5
O
Ph
N
N
Ph
CN
H
N
N N
HS
NH2NH2 / R.T
S
NHNH2
H2N
KSCN
KOH
OR
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
368
4-2-32) pyrazole enaminone derivatives can be converted into pyrazolo pyrazolopyradizine and
bipyrazolo derivatives as in Schemes 39, 40, 41[4].
Ph
N
N
NC
O
N
Dry benzene/
Et3N/
N
N
Ph
N
N
N
N
Ar
Ph
NC
X
NH2NH2
Ph
YCOC(Cl)NNHAr
Y
X
CH3, OMe
CH3, OH
Scheme 39
Ph
N
N
NC
O
N
Dry benzene/
Et3N/
N
N
Ph
Ph
NC
NH2NH2
Ph
PhNHCOC(Cl)NNHAr
O
N
N
NH
O
Ar
Ph
N
N
Ph
Ph
NC
O
N
N
Ph
Ph
PhC(Cl)NNHAr
Dry benzene/
Et3N/ NH2NH2
Scheme 40
Ph
N
N
Ph
NC
O Br
N NH
Ar
N
N
Ph
N
N
N
N
Ar
Ph
NC
NH
N
N CN
Ph Ph
Ph
N
N
NC
O
N
Dry benzene/
Et3N/ NH2NH2
Ph
Scheme 41
4-2-33) Enaminone reacts with hydrazines , hydroxylamine and guanidine to afford the novel
pyrazole, isoxazole and pyrimidine derivatives, respectively. It reacts also with aminopyrazole
derivatives to pyrazolo[1,5-a]pyrimidine derivatives. Reaction of the enaminone reacts with
benzoquinone and naphthoquinone led to the formation benzofuran derivatives, respectively. In
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
369
addition, it reacts with hippuric acid to afford the corresponding pyrazolyl pyranone derivative as in
Scheme 42[147].
N
X
H2N NH2
NH
NH2X
, X= O,N ,NPh
N
N
H3C
Ph
O
NMe2
N
N
H3C
Ph
N
N
H3C
Ph
N
N
NH2
N
NH
NH2
N
N
N
R2
R1
R1
R2
N
N
H3C
Ph
O
O
O
O
N
N
H3C
Ph
O
OH
O
N
N
H3C
Ph
O
OH
O
COOH
HN
O
Ph O O
H
N O
Ph
N
N
H3C
Ph
Scheme 42
4-2-34) Enaminone undergoes regioselective 1,3-dipolar cycloaddition with nitrilimines and nitrile
oxides to afford the novel pyrazole and isoxazole derivatives, respectively. It reacts also with 1H-
benzimidazole-2-acetonitrile, 2-aminobenzimidazole and 3-amino-1,2,4-triazole to afford the novel
pyrido[1,2-a]benzimidazole, pyrimido[1,2-a]benzimidazole and the triazolo[1,5-a]pyrimidine
derivatives, respectively as in Scheme 43[148].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
370
N
N
CH3
Ph
N
N
CN
N N
CH3
Ph
N
N
N
N
N N
CH3
Ph
N
N
N
N
N
N N
CH3
Ph
N
N
CH3
Ar
N
N
CH3
Ph
O
H3C
R
O
N
Z
ArHN
Z = Cl, Br
R = CH
3, OEt
-HNMe2
N
H
N CN
N
H
N
NH2
N
N
NH
NH2
Scheme 43
4-2-35) simple, facile, efficient and three-components procedure for the synthesis Pyrazolo[3,4-
b]pyridines utilizing phenylsulphone synthon, under ultrasonic irradiation as in Scheme 44[149].
abs. ethanol /
p-TsOH
))) or Reflux
+
N
N
Ph
NH2
N
N N
Ph
Ar
Ph
R R
Ph
O
S
O O
Ph
Ar
Scheme 44
4-2-36)-J. K. Sneed et.al reported[ 150, 151] that 3, 5-Di (2-pyridyl) pyrazole 26 was first obtained in
the reaction of 1, 3-di (2-pyridyl) propane-1, 3-dione 25 with hydrazine hydrate. A series of mono- and
di (4-pyridyl)-substituted pyrazoles were synthesized using the same approach as in Scheme 45.
N
N
H
N
R
N
O
R
O
NH2NH2
Scheme 45
4-2-37)-J A. Silkhankova et.al reported [152, 153] a large volume of the research was done by the
authors who synthesized a series of symmetrical and unsymmetrical 3, 5-dipyridyl-substituted
pyrazoles as in Scheme 46.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
371
N
N
R3
R2
R1
O
R2
O
R3NHNH2 R1
Scheme 46
4-2-37)-A biologically active series of substituted pyrazoles were synthesized as in Fig.2 [154].
Fig.2
4-2-38)-4-iodopyrazoles was synthesized under microwave conditions as in Scheme 47[155].
N
N
H
N
N
H
microwave or
coventional heated
75-77%
I
Scheme 47
4-2-39)-N-Substituted benzoylpyrazoles as shown below as in Scheme 48[156].
R1
F3C
OH
O
EtOH / H+
N2H4 (aq.)
R1
F3C
NH-NH2
O
R1
F3C
N
O
N
H3C
CH3
O O
Scheme 48
4-1-3) Pyrazoles as key synthon in Synthesis of alkaloids
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
372
Synthetic Photochemistry of sceptrin alkaloids: In a recent publication Professor Birman and one of
his colleagues reported a novel way to synthesize a molecule called dibromosceptrin
(C22H23Br4N10O2), shown here as in Scheme 49[157].
Scheme 49
5-Biological activities of pyrazoles
Pyrazoles are present in medicinally important compounds either for human being or for veterinary
medicine or other applications
5-1) Applications In human being medicine as in Fig.3
(a)Celecoxib ( 4-[5-(4-methylphenyl)-3-(trifluoromethyl)pyrazol-1-yl]benzenesulfonamide), it is a
highly selective COX-2 inhibitor[158-160].
(b) Lesopitron ( 2-{4-[4-(4-chloro-1H-pyrazol-1-yl)butyl]piperazin-1-yl}pyrimidine ), it is a selective
full agonist of the 5-HT1A receptor[161].
(c) Sulfaphenazole (4-amino-N-(1-phenyl-1H-pyrazol-5-yl)benzenesulfonamide Sulfaphenazole), it is
a sulfonamide antibacterial[162].
(d) O-12695 (4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-pentylpyrazole-3-carboxamide), it
acts as cannabinoid antagonist drugs [163-165].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
373
(e) Rimonabant 5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-
pyrazole-3-carboxamide is an anorectic antiobesity drug[166] .
(f) VCHSR(5-(4-chlorophenyl)- 3-[(E)-2-cyclohexylethenyl]- 1-(2,4-dichlorophenyl)- 4-methyl- 1H-
pyrazole), it is a drug acts as a selective antagonist of the cannabinoid receptor CB1[167,168].
(g) Tebufenpyrad (N-(4-tert-Butylbenzyl)-4-chloro-3-ethyl-1-methylpyrazole-5-carboxamide or4-
Chloro-N-[[4-(1,1-dimethylethyl)phenyl]]methyl]-3-ethyl-1-methyl-1H-pyrazole-5-carboxamide )is a
commonly used in commercial greenhouses[169].
(h) AM2511 (2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-
carboxamide), it is an inverse agonist at the CB1 cannabinoid receptor[170].
(i) Betazole (2-(2H-Pyrazol-3-yl)ethanamine), it is a histamine H2 receptor agonist. as a gastric
stimulant [171,172].
(j) E-55888 (N,N-dimethyl-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenethylamine) it is anti-
hyperalgesic but not analgesic[173,174].
(b) (c)
(d) (e) (f)
(g) (h) (i)
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
374
(j) Fig. 3
5-2) Applications In veterinary medicine as in Fig.4
Tepoxalin(3-[5-(4-Chlorophenyl)-1-(4-methoxyphenyl)pyrazol-3-yl]-N-hydroxy-N-
methylpropanamide), it is a nonsteroidal anti-inflammatory drug approved for veterinary use (in
dogs)[175].
(b)Pyriprole(1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(difluoromethyl)thio]-5-[(2-
pyridinylmethyl)amino]-1H-pyrazole-3-carbonitrile) it is for veterinary use on dogs against external
parasites, fleas and ticks[176].
(c)Deracoxib4-[3-(Difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazole-1-yl]
benzenesulfonamide Deracoxib used in veterinary medicine to treat osteoarthritis in dogs[177].
(d) Mavacoxib (4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide) it is a
veterinary drug used to treat pain and inflammation in dogs with degenerative joint disease[178]. It
acts as a COX-2 inhibitor[179].
(a) (b) (c)
(d) Fig.4
5-3) Applications In food chemistry as in Fig.5
(a) Yellow 2G ( Disodium 2,5-dichloro-4-[3-methyl-5-oxo-4-(4-sulfonatophenyl)diazenyl-4H-pyrazol-
1-yl]benzenesulfonate) it is a food coloring[180].
(b) Tartrazine (Trisodium (4E)-5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)hydrazono]-3-
pyrazolecarboxylate), it is used as a food coloring.[181-183].
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
375
(b) (a)
Fig.5
5-3) Applications in pesticide as in Fig.6
(a) Fipronil RS (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-
(trifluoromethylsulfinyl)-1H-pyrazole-3-carbonitrile), it is a broad-use insecticide[145,184,185].
(b) Isopropylmethylpyrazolyl dimethylcarbamate (1-Isopropyl-3-methyl-1H-pyrazol-5-yl
dimethylcarbamate), it is used as pesticide[186].
(b)
Fig.6
CONCLUSION:
In this review, we showed that over the past decades pyrazoles have achieved an important
place in the arsenal of organic chemists involved in the construction of complex molecules and natural
products as well as biologically active molecules, Synthesis of Substituted or unsubstituted pyrazole
has employed a great interest either by classical methods or by using palladium catalysed
reactions.Finally, one can reasonably anticipate that future studies will provide new applications to the
preparations of complex molecules , particularly in the area of biologically active compounds.
ACKNOWLDGEMENT:
The authors would like to thank the Chemistry Department, Cairo University, for providing the
research facilities The author wishes to express his most sincere thanks and full gratitude to Prof. Dr.
Ahmad M. Farag and Mr Mahmoud H. Yousef.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
376
REFERENCES:
1. T. Eicher, S. Hauptmann., The Chemistry of Heterocycles: Structure, Reactions, Syntheses,
and Applications. Wiley-VCH. ISBN 3-527-30720-6, 2nd
ed. 2003.
2. N. Fowden, Ridd and White., Proc. Chem. SOC.,1959, 131.
3. Noe and Fowden., Nature., 1959, 184, 4688, 69.
4. A.M. Farag, K.A.K. Ali, T.M.A. El-Debss, A.S. Mayhoub, A.E. Amr, N.A. Abdel-Hafez and
M.M. Abdulla., Eur. J. Med. Chem., 2010, 4, 55887-589.
5. A. M .Farag, A.S. Mayhoub, T.M.A. Eldebss, A.E. Amr, K.A.K. Ali, N. A. Abdel-Hafez and
M.M. Abdulla, Arch.Pharm. Chem Life., 2010, 343, 384-396.
6. K Nagarajan; V. P. J. Arya., Sci. Ind. Res., 1982, 41, 232.
7. V. P. Arya, R. S. Grewal, J. David, C. L. Kaul., Experientia., 1967, 23, 514.
8. W.T. Comer; A.W. Comell, "Burger's Medicinal chemistry, third edition, part ΙΙ" Ed.A.Burger,
wiley-Interscience, Newyork, 1970,1050.
9. V.P. Arya, R.S. Grewal, C.L. Kaul, S.P. Ghate, D.V. Mehta, T. George., J. Pharm. Sci., 1969,
58, 432.
10. R. Jakse, J. Svete, B. Stanovnik and A. Golobie., Tetrahedron., 2004, 60, 4601.
11. B. Stanovnik and J. Svete., Chem. Rev., 2004, 104, 2433.
12. E. Bejan, H. A. Haddou, J. C. Daran, G. G. A. Balavoine., Synthesis., 1996, 1012.
13. M. R. Shaaban, T. S. Saleh, A. M. Farag., Heterocycles., 2007, 71, 8.
14. R. M. Shaaban, T. S. Saleh, Faiz Osman, A. M. Farag., J. Heterocycl. Chem., 2007, 44, 177.
15. G. D. Leonard and S. M. Swain., J. Natl. Cancer Inst., 2004, 96, 906-920.
16. M. T. McDermott, F. D. Hofeldt, G. S. Kidd., South. Med. J., 1990,83, 1283-1285.
17. I. S. Fentiman, M. Caleffi, K. Brame, M. A.Chaudary and J. L Hayward., Lancet., 1986, 1,
287-288.
18. L. L. Amsterdam, Fertil Steril, 2005, 84, 300-304.
19. P. Merviel, Gynecol. Obstet. Fertil., 2006, 34, 66-39.
20. R. Homburg., Hum. Reprod., 2005, 20, 2043-2051.
21. P. Alexandersen, B. J. Riis, J. A. Stakkestad, P. D. Delmas, C. Christiansen., J. Clin.
Endocrinol. Metab., 2001, 86, 755-760.
22. W. Khovidhunkit and D. M. Shoback., Ann. Intern. Med., 1999,130, 431-439.
23. D. Clemett and C. M. Spencer., Drugs., 2000, 60, 379-411.
24. H. Yanyan, C. Michael, Y. Yate-Ching, C. Shiuan., Biochem. Pharmacol., 2008 ,75, 1161-1169.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
377
25. N. D. Jaime, and William, (Eds.), Text Book of Organic Medicinal and Pharmaceutical
Chemistry, 10th edition, Lippincott-Raven Publishers, Philadelphia, 1998, p. 745.
26. S. Martino, J. A. Cauley, E. Barrett-Connor, T. J. Powles, J. Mershon, D. Disch, R. J. Secrest, S.
R. Cummings., J. Natl. Cancer Inst., 2004, 96, 1751-1761.
27. S. R. Cummings, S. Eckert, K. A. Krueger, D . Grady, T. J. Powles, J. A. Cauley, L .Norton,
T. Nickelsen, N. H. Bjarnason, M .Morrow, M. E. Lippman, D. Black, J. E. Glusman, A.
Costa, V. C. Jordan,. J.A.M.A., 1999, 281, 2189-2197.
28. P. Neven, I. Vergote., Lancet., 1998, 351, 155-157.
29. F. A. Aleem, M..Predanic., Lancet., 1995, 3461, 292-1293.
30. S. B. Gusberg., Cancer.,1990, 651, 463-1464.
31. L. R.Wiseman and K. L. Goa., Drugs.,1997, 541, 41-160.
32. K. Holli., Oncology., 1998, 12 (suppl 5), 23-27.
33. A. M. H. Brodie., Pharmacol. Ther., 1993, 60, 501-515.
34. W. L. Miller., Endocr. Rev., 1988, 9, 295 -318.
35. L. R. Wiseman, D. McTavish., Drugs., 1993, 45, 66-84.
36. K. Ellington, D. M. Faulds., Drugs., 2002, 62, 2483.
37. U. Gruntmanis, G. D. Braunstein., Curr. Opin. Investig. Drugs., 2001,2, 643-649.
38. P. E. Goss, E. P. Winer, I. F. Tannock, L. H. Schwartz., J. Clin. Oncol., 1999, 17, 52-63.
39. C. L. Harper-Wynne, N. P. Sacks, K. Shenton, F. A. MacNeill, P. Sauven, I. J. Laidlaw, Z.
Rayter, S. Miall, A. Howes, J. Salter, M. J. Hills, F. M. Lowe, R. A'Hern, N. Nasiri, D.
Doody, J. Iqbal, M .Dowsett., J. Clin. Oncol., 2002, 20, 1026-1035.
40. A. U. Buzdar, R. Smith, C .Vogel, P. Bonomi, A. M. Keller, G. Favis, M. Mulagha, J.
Cooper, Cancer., 1996, 77, 2503-2513.
41. E. W. Leschek, J. Jones, K. M Barnes, S. C. Hill, G. B. Jr. Cutler., J. Clin. Endocrinol. Metab.,
1999 ,84, 175-178.
42. D. Simpson, M. P. and C. M. Perry., Drugs., 2004, 64, 1213- 1230.
43. J. A. Garcia-Velasco, L. Moreno, A. Pacheco, A. Guillén, L .Duque, A .Requena, A. Pellicer,
Fertil. Steril., 2005, 84, 82-87.
44. T. Naruse, Y. Nishida, N. Ishiguro., Biomed. Pharmacother., 2007, 61, 338-346.
45. T. C. Dang, A. J. Dannenberg, K. Subbaramaiah, M. N. Dickler, M. M. Moasser, A. D. Seidman,
G. M. D’Andrea, M. Theodoulou, K. S. Panageas, L. Norton and C. A. Hudis., Clin. Cancer
Res., 2004, 10, 4062-4067.
46. A. Reardon, J. A. Quinn, J. Vredenburgh, J. N. Rich, S. Gururangan, M. Badruddoja, J. E.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
378
Herndon, J. M. Dowell, A. H. Friedman, H. S. Friedman., Cancer., 2005, 103, 329-338.
47. F. W. Nugent, W. C. Mertens, S. Graziano, N .Levitan, R. Collea, A. Gajra, .J. Marshall, . J
McCann., Lung Cancer., 2005, 48, 267-273.
48. G. Gasparini, S. Meo, G. Comella, S. C. Stani, L. Mariani, T. Gamucci, A. Avallone, S. Lo
Vullo, G. Mansueto, P. Bonginelli, D. Gattuso, M. Gion., Cancer J., 2005, 11, 209-216.
49. C. X. Pan, P. Loehrer, D. Seitz, P. Helft, B. Juliar, R Ansari, W. Pletcher, J. Vinson, L. Cheng
and C. Sweeney., Oncology., 2005, 69, 63-70.
50. V. Ferrari, F. Valcamonico, V. Amoroso, E. Simoncini, L. Vassalli, P. Marpicati, G.
Rangoni, S. Grisanti, G. A. Tiberio, F. Nodari, C. Strina, G. Marini., Cancer Chemother.
Pharmacol., 2006, 57, 185-190.
51. I. Csiki, J. D. Morrow, A. Sandler, Y. Shyr, J. Oates, M. K. Williams, T. Dang, D. P.
Carbone, D. H. Johnson., Clin. Cancer Res., 2005, 11, 6634-6640.
52. L. W. Chow, C. W.Cheng, J. L. Wong and M. Toi., Biomed. Pharmacother., 59 (suppl 2),
2005, S302-305.
53. A. M. Farag, A. S. Mayhoub, S. E. Barakat, A. H .Bayomi., Bioorg. Med. Chem., 2008,16,
4569-4578.
54. A. M. Farag, A. S. Mayhoub, S. E .Barakat and A. H. Bayomi., Bioorg. Med. Chem., 2008,
16, 881-889.
55. A. S. Girgis, N. Mishriky, A. M. Farag, W. I. El-Eraky, H. Farag, Eur. J. Med. Chem., 2008, 43,
1818-1827.
56. M. R. Shaaban, T. S. Saleh, A. S. Mayhoub, A. Mansour, A. M. Farag., Bioorg. Med. Chem.,
2008, 16, 6344-6352.
57. A. M. Farag, Y. M. Elkholy, K. A. Ali., J. Heterocycl. Chem., 2008, 45, 279-283.
58. N. A. Kheder, Y. N. Mabkhot and A. M. Farag., Heterocycles., 2008, 75, 2937-2948.
59. N. A. Kheder, Y. N. Mabkhot and A. M. Farag., Heterocycles., 2008, 5, 887-897.
60. N. A . Kheder, Y. N .Mabkhot, A. M. Farag., Synth. Comm., 2008, 38, 3170-3182.
61. K. M. Dawood, A. M. Farag and N. A. Khedr., Arkivoc xv., 2008, 166-175.
62. K. M. Dawood, A. M. Farag, H. A. Abdel-Aziz., Heteroatom Chem., 2007, 18, 294.
63. M. R. Shaaban, T. S. Saleh, F. H. Osman and A. M. Farag., J. Heterocycl., Chem., 2007, 44,
177-181.
64. M. R. Shaaban, T. S. Saleh and A. M..Farag., Heterocycles., 2007, 71, 1765-1777.
65. A. M. Farag, K. M. Dawood and N. A. Khedr., J. Chem. Res., 2007, 472-474.
66. N. A. Hamdy, H. A. Abdel-Aziz, A. M. Farag, I. M. I. Fakhr., Monatsh. Chem., 2007, 138, 1001-
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
379
1010.
67. G. L. Beutner, J. T. Kuethe, M. M. Kim, N.Yasuda., J. Org. Chem., 2009, 74, 789.
68. J. Witherington, V. Bordas, S. L.Garland, D. M. B. Hickey, R. J. Ife, J. Liddle, M. Saunders, D.
G. Smith and R. W. Ward., Bioorg. Med. Chem. Lett., 2003, 13, 1577.
69. S. Ghosh, M. Karin., Cell., 2002, 109, S91.
70. M. Peifer, P. Polakis., Science., 2000, 287, 1606.
71. R. Bhatt, Y. Xue, S.Berg, S. Hellberg, M. Ormo, Y. Nilsson, A. C. Radesáter, E. Jerning, P. O.
Markgren, T. Borgegàrd, M. Nylof, A. Gimenez-Cassina, F. Hernández, J. L. Lucas, J. Diaz-
Nido, J. Avila., J. Biol. Chem., 2003, 278, 45937.
72. M. Malumbres, P. Pevarello, M. Barbacid and J. R. Bischoff., Trends Pharmacol. Sci., 2008,
29, 16.
73. R. N. Misra, H. Xiao, D. B. Rawlins, W. Shan, K. A. Kellar, J. G. Mulheron, J. S. Sack, J. S.
Tokarski, S. D. Kimball, K. R. Webster, Bioorg. Med. Chem. Lett., 2003, 13, 2405.
74. A. Schmidt, A. Dreger., Curr. Org. Chem., 2011, 15, 1423-1463
75. A. Hauhan, P.K. Sharma, N. Kaushik., Int. J. Chem.Tech. Res., 2011,3, 11-17.
76. P.C. Lv, H.Q. Li, J. Sun, H.L. Zhou., Bioorg. Med. Chem., 2010, 18, 4606-4614.
77. R. Lin, G.Chiu, Y. Yu, P.J. Connolly, S. Li, Y. Lu , M. Adams, A.R. Fuentes-Pesquera, E.L.
Stuart, L.M. Greenberger., Bioorg. Med. Chem. Lett., 2007, 17, 4557-4561.
78. Al-Saadi, M. S. M., Saudi Pharm. J., 2008, 16, 135-145.
79. M. Bonesi, M.R. Loizzo, G. Statti, S. Michel, F. Tillequin, F. Menichini., Bioorg.Med. Chem.
Lett., 2010, 20, 1990-1993.
80. S. Sahu, M. Banerjee, A. Samantray, C. Behera, M. Azam., Trop. J. Pharm. Res., 2008, 7,
961-968.
81. R.V. Ragavan, V. Vijayakumar, N.S. Kumaric., Eur. J. Med. Chem., 2010, 45, 1173-1180.
82. W. Krohs., Chem. Ber., 1955, 88, 866–874.
83. M.E. Wolff., Burger’s Medicinal Chemistry, vol. I, Wiley, NewYork, 3rd edn., 1970, col. I, p.
964.
84. G. Mazzone, G. Puglisi, A. Corsaro, A. Panico, F. Bonina, M. Amico-Roxas, A.Caruso, S.
Trombadone., Eur. J. Med. Chem. Chim. Ther., 1986, 21(4), 277–284.
85. A. Oznur, N. Cesur., Acta Pharm. Turc., 1987, 29 (2), 51–64.
86. A. Gursoy and S. Demirayak., Acta Pharm. Turc., 1988, 30, 115–128.
87. S. Demirayak , M.I. Cingi, K. Erol., J. Health Sci., 1990, 2, 59–62 .
88. A. Gursoy, S. Demirayak, G. Capan, K. Erol, K. Vural., Eur. J. Chem., 2000, 35, 359–364.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
380
89. G. Turan-Zitouni, M. Sıvacı, F.S. Kılıc, K. Erol., Eur. J. Med. Chem., 2001, 36, 685–689.
90. A. Bekhit and H.T.Y. Fahmy., Arch. Pharm. Pharm. Med. Chem., 2003, 2, 111–118.
91. A.A. Bekhit and T. Abdel-Azeim., Bioorg. Med. Chem., 2004, 12, 1935–1945.
92. E. Banoglu, C. Akoglu, S. Unlu, E. Kupeli, E. Yesilada, M.F. Sahin., Arch.
Pharm. Med. Chem., 2004, 337,
93. S.A.M. El-Hawash, E.A.M. Badawey, I.M. El-Ashmawy., Eur. J. Med. Chem., 2006, 41,
155–165.
94. O. Rosati, M. Curini, M.C. Marcotullio, A. Macchiarulo, M. Perfumi, L. Mattioli, F.
Rismondo, G. Cravotto., Bioorg. Med. Chem., 2007, 15, 3463–3473.
95. G. Szabo, J. Fischer, A. Kis-Varga, K. Gyires., J. Med. Chem., 2008, 51, 142–147
96. N. Benaamane, B. Nedjar-Kolli, Y. Bentarzi, L. Hammal, A. Geronikaki, P. Eleftheriou, A.
Lagunin., Bioorg. Med. Chem., 2008, 6, 3059–3066.
97. H. Foks, D. Pancechowska-Ksepko, A. Kedzia, Z. Zwolska, M. Janowiec,
98. E. Augustynowicz-Kopec., Il Farmaco., 2005, 60, 513–517.
99. A.M. Gilbert, A. Failli, J. Shumsky, Y. Yang, A. Severin, G. Singh, W. Hu,
100. D. Keeney, P.J. Petersen, A.H. Katz., J. Med. Chem., 2006, 49, 6027–6036.
101. A.H. Shamroukh, M.E.A. Zaki, E.M.H. Morsy, F.M. Abdel-Motti,F.M.E. Abdel-
Megeid., Arch. Pharm. Chem. Life Sci., 2007, 340, 345–35
102. O. Prakash, R. Kumar, V. Parkash., Eur. J. Med. Chem., 2008, 43, 435–440.
103. S. Kuettel, A. Zambon, M. Kaiser, R. Brun, L. Scapozza, R. Perozzo., J. Med.Chem., 2007,
50, 5833–5839.
104. R.Z. Yan, X.Y. Liu, W.F. Xu, C. Pannecouque, M. Witvrouw, De Clercq., E. Arch. Pharm.
Res., 2006, 29, 957–962.
105. A.F. Rostom, M.A. Shalaby, M.A. El-Demellawy., Eur. J. Med. Chem. 2003, 38, 959–974
106. P. Diana, A. Carbone, P. Barraja, A. Martorana, O. Gia, L. DallaVia.,G. Cirrincione.,
Bioorg. Med. Chem. Lett., 2007, 17, 6134–6137.
107. A.M. Farag, A.S. Mayhoub, S.E. Barakat, A. H. Bayomi, Bioorg. Med. Chem., 2008, 16, 881.
108. J. Elguero, P. Goya, N. Jagerovic, A.M.S Silva, Italian Society of Chemistry., Roma, 2002,
6, 167-203.
109. Q. Han, C.H. Chang, R. Li, Y. Ru, P.K. Jadhav, P.Y.S. Lam., J. Med. Chem., 1998, 41, 2019.
(A) A. Weber, A. Casini, A. Heine, D. Kuhn, C.T. Supura., A.Scozzafava, G. Klebe., J.
Med. Chem., 2004, 47, 550. [b] S.F. Vasilevsky, S.V. Klyatskaya, Elguero., J.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
381
Tetrahedron., 2004, 60, 6685.D.R. Sliskovic, B.D. Roth, M.W. Wilson, M.L. Hoefle,
R.S. Newton., J. Med. Chem., 1990, 33, 31.
(B) S. Manfredini, R. Bazzanini, P.G. Baraldi, D. Simone, S. Vertuani, A. Pani,E. Pinna, F .Scintu,
D. Lichino, P. La Colla., Bioorg. Med. Chem. Lett., 1996, 6, 1279.
110. S.R. Stauffer, Y. Huang, C.J. Coletta, R. Tesdesco, J. Katzenellenbogen., J. Bioorg. Med.
Chem. Lett., 2001, 9, 141.
111. M.I. Rodríguez-Franco, I. Dorrosonro, A. Martínez., Synthesis., 2001, 11, 1711.
112. A. Schmidt, A. Dreger., Curr. Org. Chem., 2011,15(9), 1423–1463.
113. L. Knorr., Ber. Dtsch. Chem. Ges., 1883, 16, 2597–2599.
114. S. William Johnson and J. Robert J. Highet., Org. Synth. Coll., 1963, 4, 351
115. Pyrazol aus Acetylen and Diazomethan H. V. Pechmann Berichte der deutschen chemischen
Gesellschaft., 1898, 31 (3), 2950–51.
116. Mario Gyuris, Laszlo G. Puskas, A. Gabor K. Tothb and Ivan Kanizsai., Org. Biomol. Chem.,
2013, 11, 6320-632.
117. F. Gabrera Escribano, M. P. Derri Alcantara and A. Gomez-Senchez., Tetrahedron Letters.,
1988, 29(46), 6001-6004.
118. L.L. Wu, Y.C. Ge, T. He, L. Zhang, X.-L. Fu, H.-Y. Fu, H. Chen, R.-X. Li., Synthesis.,
2012, 1577-1583.
119. S. T. Heller and S. R. Natarajan., Org. Lett., 2006, 8, 2675-2678.
120. F. Gosselin, P. D. OShea, R. A. Webster, R. A. Reamer, R. D. Tillyer, E. J. J. Grabowski.,
Synlett., 2006, 3267-3270.
121. M. S. M. Ahmed, K. Kobayashi and A. Mori., Org. Lett., 2005, 7, 4487-4489.
122. B. S. Gerstenberger, M. R. Rauckhorst and J. T. Starr., Org. Lett., 2009, 11, 2097-2100.
123. M. S. M. Ahmed, K. Kobayashi and A. Mori, Org. Lett., 2005, 7, 4487-4489.
124. X. Deng, N. S. Mani., Org. Lett., 2008, 10, 1307-1310.
125. X. Deng and N. S. Mani, J. Org. Chem., 2008, 73, 2412-2415.
126. X. Deng and N. S. Mani., Org. Lett., 2006, 8, 3505-3508.
127. J.Hu, S.Chen,Y.Sun, J.Yang, Y.Rao., Org. Lett., 2012, 14, 5030-5033.
128. R . Martin, M. R. Rivero, S. L. Buchwald, Angew. Chem. Int. Ed., 2006, 45, 7079-7082.
129. O. Jackowski, T. Lecourt, L. Micouin., Org. Lett., 2011, 13, 5664-5667.
130. J. P. Waldo, S. Mehta, R. C. Larock., J. Org. Chem., 2008, 73, 6666-6670.
131. D. J. Babinski, H. R. Aguilar, R. Still, D. E. Frantz, J. Org. Chem., 2011, 76, 5915-5923.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
382
132. F. A. Rosa, P. Machado, P. S. Vargas, H. G. Bonacorso, N. Zanatta, M. A. P. Martins, Synlett.,
2008, 1673-1678.
133. C. Ma, Y. Li, P. Wen, R. Yan, Z. Ren, G. Huang., Synlett., 2011, 1321-1323.
134. Y. Hari, S. Tsuchida, R. Sone, T. Aoyama., Synthesis., 2007, 3371-3375.
135. N. Nakamichi, Y. Kawashita, M. Hayashi., Synthesis., 2004, 1015-1020.
136. X. Xiong, Y. Jiang, D. Ma, Org. Lett., 2012, 14, 2552-2555.
137. B. C. Wray, J. P. Stambuli., Org. Lett., 2010, 12, 4576-4579.
138. C. Wu, Y. Fang, R. C. Larock, F. Shi., Org. Lett., 2010, 12, 2171-2173.
139. P. Li, C. Wu, J. Zhao, D. C. Rogness, F. Shi., J. Org. Chem., 2012, 77, 3127-3133.
140. P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, Org. Lett., 2011, 13, 3340-3343.
141. Z. Liu, F. Shi, P. D. G. Martinze, C. Raminelli, R. C. Larock., J. Org. Chem., 2008, 73, 219-
226.
142. M. R. Kumar, A. Park, N. Park, S. Lee., Org. Lett., 2011, 13, 3542-3545.
143. V. Lefebvre, T. Cailly, F. Fabis and S. Rault, J. Org. Chem., 2010, 75, 2730-2732.
144. Hongjian Song , Yuxiu Liu, Lixia Xiong , Yongqiang Li, Na Yang , and Qingmin Wang J.
Agric. Food Chem., 2013, 61 (37), 8730–8736.
145. Majid M.Heravi, Mina Saeedi Yahya S. Beheshtiha, Hossein A. OskooieMo., Divers.
2011,15(1) , 239-243.
146. M. R. Shaaban, T.M.A. Eldebss, A .F.Darweesh and A.M.Farag., J. of Chemical Research.,
2010, 8 -11.
147. M. R. Shaaban, T.M.A. Eldebss, A .F. Darweesh and A.M.Farag., J. Heterocyclic Chem. 2008,
45,1739.
148. Tamer S. Saleh, Taha M.A. Eldebss and Hassan M. Albishri., Ultrasonics Sonochemistry.,
2012, 19, 49–55.
149. R. Levine and J.K.Sneed., J. Am. Chem. Soc., 1951, 73, 5614.
150. L. Fabbrini., Farmaco Ed. Sci., 1954, 9, 603.
151. M. Ferles, S. Kafka and A. Silkhankova., Coll. Czech. Chem. Commun., 1981, 46, 1167.
152. M. Ferles, R. Liboska and P. Trska., Coll. Czech. Chem. Commun., 1990, 55, 1228.
153. A. F. Rostom, Ibrahim M. El-Ashmawy, A. Heba, Abd El Razik, H. Mona, H. Badr, M.A.
Hayam., Ashour Bioorganic & Medicinal Chemistry., 2009, 17(2), 882–895.
154. M.P.Claudio M. P. Pereira Frank H. Quina, Filipe A. N. Silva, Daniel J. Emmerich, and
Amilcar Machulek Jr. Mini-Reviews in Organic Chemistry., 2008, 5, 331-335.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
383
155. Li Ming, Wen Lirong, Wang Xiao, Yao ChangCheng, Fu Weijun, Zhao Guilong, Hu
Fangzhong & Yang Huazheng., Indian Journal of Chemistry.,2006, 45B, 483-488.
156. V.B. Birman and X.T. Jiang., Organic Letters., 2004, 6, 2369-2371.
157. Rita D Brandao, Jurgen Veeck, Koen K Van de Vijver, Patrick Lindsey, Bart de
Vries,Catharina HMJ van Elssen, Marinus J Blok, Kristien Keymeulen, Torik Ayoubi, Hubert
JM Smeets,Vivianne C Tjan-Heijnen and Pierre S Hupperets., Breast Cancer Research., 2013,
15, R29.
158. D. Mukherjee,S.E.Nissen,E.J.Topol.,JAMA.,2001,286(8),954-959.
159. J.K. Jenkins, P.J. Seligman., (2005-04-06). "Analysis and recommendations for Agency action
regarding non-steroidal anti-inflammatory drugs and cardiovascular risk [decision
memorandum]" (PDF). FDA Center for Drug Evaluation and Research
160. S. Haj-Dahmane, T. Jolas, A.M. Laporte., et al. European Journal of Pharmacology., 1994,
255 (1-3), 185–96.
161. Billy R. Martin, Raj K. Razdan, Anu Mahadevan., Pyrazole cannabinoid agonist and
antagonists. US Patent 6509367, filed Sep 22, 2001, issued Jan 21, 2003.
162. J.Y. Shim, W.J. Welsh, E. Cartier, J.L. Edwards, A.C. Howlett., Journal of Medicinal
Chemistry., 2002,45(7),1447-59.
163. M.E Francisco, H.H.Seltzman, A.F. Gilliam, R.A. Mitchell, S.L. Rider, R.G. Pertwee,
L.A.Stevenson, B.F. Thomas., Journal of Medicinal Chemistry., 2002, 45(13), 2708-19.
164. T.M. Fong and S.B Heymsfield., Int J Obes (Lond)., 2009, 33 (9), 947–55.
165. D.P. Hurst, D.L. Lynch, J. Barnett-Norris, S.M. Hyatt, H.H.Seltzman., M. Zhong,Z.H. Song, J.
Nie., Molecular Pharmacology.,2008,62(6),1274–87.
166. D. Hurst, U. Umejiego, D. Lynch, H. Seltzman, S. Hyatt, M. Roche, S. McAllister, D.
Fleischer., et al., Journal of Medical Chemistry.,2006,49(20),5969–87.
167. W. Graham Thwaite Colin, C. Bower, Anne M. Hately., Danuta Swist-Swirski., 1996, 20(4),
177-191.
168. R. Lan, Q. Liu, P. Fan, et al. J Med Chem.,1999, 42, 769-776.
169. L.D.Wruble, A.J. Cummins, J. Goldenberg, H. Schapiro., Digestive Diseases and Sciences.,
1967, 12(11), 1087–1090.
170. G. Stacher and Doris Starker., Journal List Gut.1974, 15(2), 974.
171. A. Brenchat, L.Romero, M. García, M. Pujol, J. Burgueno, A. Torrens, M. Hamon, J.M.
Baeyens, H. Buschmann, D. Zamanillo, J.M. Vela.,Pain., 2009,141(3), 239–47.
172. A. Brenchat, M. Ejarque, D. Zamanillo, J.M. Vela, L. Romero., Journal of Pharmacological
Sciences.,2007, 116 (4), 388–91.
173. D.C. Argentieri, D.M. Ritchie, M.P. Ferro, T. Kirchner, M.P. Wachter, D.W. Anderson, M.E.
Rosenthale, R.J. Capetola., J Pharmacol Exp Ther., 1994, 271(3), 1399-408
174. http://www.ah.novartis.com/products/en/prac-tic_dog.shtml.
Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014
CODEN(USA) : AJBPAD
384
175. D.L. Millis, J.P. Weigel, T. Moyers, F.C. Buonomo., Vet Ther., 2002,3(4), 453-64.
176. European Public Assessment Report (EPAR): Trocoxil, European Medicines Agency
177. S.R.Cox, S.P. Lesman, J.F. Boucher, M.J. Krautmann, B.D. Hummel, M. Savides, S. Marsh.,
A. Fielder., et al., Journal of Veterinary Pharmacology and Therapeutics., 2010, 33(5),461–70.
178. I.F. Gaunt, F.M.B. Carpanini, Ida S. Kiss,P. Grasso., Food and Cosmetics Toxicology., 1971,
9(3), 343–353.
179. Food Standards Australia New Zealand. "Food Additives- Numerical List". Retrieved 2
December., 2009.
180. J .Current EU approved additives and their E Numbers", Food Standards Agency website,
retrieved 15 Dec 201.1
181. MS Bhatia., Medical Journal Year., 1996, 9(8), 285-286.
182. V. Raymond-Delpech, K. Matsuda, B.M. Sattelle, J.J. Rauh, D.B. Sattelle., Invert Neurosci.,
2005, 1-15
183. Ana Csuma, Cornelia Pirlog Medicamentul Veterinar / Veterinary Drug., 5(2), 2011.
184. Isopropylmethylpyrazolyl dimethylcarbamate at cameochemicals.noaa.gov.
185. Jia-Jia Liu, Juan Sun, Yun-Bin Fang, Yong-An Yang, Rui-Hua Jiao and Hai-Liang Zhu
Org. Biomol. Chem., 2014, 12, 998-1008.
186. S. K. Mishraa, P. Majumdara, R. K. Beheraa & A. K.r Beheraa, Synthetic Communications:
An International Journal for Rapid Communication of Synthetic Organic Chemistry, 2014 , 44,
(1), 32-41.
187. K.O. Mohammed and Y. M. Nissan., Chemical Biology & Drug Design., 2014, 84(4), 473–
488,
188. J. Jaunzems , M.X. Braun, S. F. GmbH, H. B. Allee., 20, 30
189. Hannover., Germany Org. Process Res. Dev., 2014, 18(8), 1055–1059.
190. Jia-Jia Liu, Juan Sun, Yun-Bin Fang, Yong-An Yang, Rui-Hua Jiao and Hai-Liang Zhu
Org. Biomol. Chem., 2014, 12, 998-1008.
191. M. Su, M. Tomas-Gamasaa and T. Carell., Chemical Science., 2014, S1, 001.
192. M. A Abdelgawad, K. RA Abdellatif and O. M. Ahmed., Medicinal Chemistry., 2014, S1,001.
*Correspondence Author: Taha M.A Eldebss,, Department of Chemistry, Faculty of Science,
University of Cairo, Giza 12613, Egypt
View publication stats

More Related Content

Similar to Asian Journal of Biochemical and Pharmaceutical Research Recent Advances on the Synthesis of Pyrazole-Containing Compounds of Potent Biological Activities and Study Their Chemical Applications

Synthesis, Characterization and Biological evaluation of substituted Pyrazole...
Synthesis, Characterization and Biological evaluation of substituted Pyrazole...Synthesis, Characterization and Biological evaluation of substituted Pyrazole...
Synthesis, Characterization and Biological evaluation of substituted Pyrazole...
SriramNagarajan15
 
Ijaret 06 10_001
Ijaret 06 10_001Ijaret 06 10_001
Ijaret 06 10_001
IAEME Publication
 
Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...
Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...
Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...
ijtsrd
 
Ea24804807
Ea24804807Ea24804807
Ea24804807
IJERA Editor
 
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...
IOSR Journals
 
iasj
iasjiasj
Molecules 17-01074
Molecules 17-01074Molecules 17-01074
Molecules 17-01074
Idalia Estevam
 
Ijsea04021001
Ijsea04021001Ijsea04021001
Ijsea04021001
Editor IJCATR
 
Study of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its DerivativesStudy of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its Derivatives
ijtsrd
 
Reduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOPReduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOP
Sowmya B U Jain
 
pyrazole ...by saikat hossain....SEU
pyrazole ...by saikat hossain....SEUpyrazole ...by saikat hossain....SEU
pyrazole ...by saikat hossain....SEU
Shaikat Hossain
 
Synthesis and Characterization of Some Pyrazole Based Heterocyclic Compounds
Synthesis and Characterization of Some Pyrazole Based Heterocyclic CompoundsSynthesis and Characterization of Some Pyrazole Based Heterocyclic Compounds
Synthesis and Characterization of Some Pyrazole Based Heterocyclic Compounds
ijtsrd
 
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
International journal of pharmacy research and science (IJPRSONLINE)
 
Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357
elshimaa eid
 
tA04 04 0106
tA04 04 0106tA04 04 0106
A Study of Synthesis and Characterization of Liquid Crystalline Substances
A Study of Synthesis and Characterization of Liquid Crystalline SubstancesA Study of Synthesis and Characterization of Liquid Crystalline Substances
A Study of Synthesis and Characterization of Liquid Crystalline Substances
ijtsrd
 
Synthesis of 1,5 Benzodiazepines A Review
Synthesis of 1,5 Benzodiazepines A ReviewSynthesis of 1,5 Benzodiazepines A Review
Synthesis of 1,5 Benzodiazepines A Review
YogeshIJTSRD
 
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
inventionjournals
 
Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...
Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...
Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...
Pawan Kumar
 
Summary_Detistov
Summary_DetistovSummary_Detistov
Summary_Detistov
Alexander Detistoff
 

Similar to Asian Journal of Biochemical and Pharmaceutical Research Recent Advances on the Synthesis of Pyrazole-Containing Compounds of Potent Biological Activities and Study Their Chemical Applications (20)

Synthesis, Characterization and Biological evaluation of substituted Pyrazole...
Synthesis, Characterization and Biological evaluation of substituted Pyrazole...Synthesis, Characterization and Biological evaluation of substituted Pyrazole...
Synthesis, Characterization and Biological evaluation of substituted Pyrazole...
 
Ijaret 06 10_001
Ijaret 06 10_001Ijaret 06 10_001
Ijaret 06 10_001
 
Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...
Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...
Sodium Hypophosphite An Efficient Catalyst for the Synthesis of 2 Substituted...
 
Ea24804807
Ea24804807Ea24804807
Ea24804807
 
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1- Pyridoyl-Δ 2 - Pyr...
 
iasj
iasjiasj
iasj
 
Molecules 17-01074
Molecules 17-01074Molecules 17-01074
Molecules 17-01074
 
Ijsea04021001
Ijsea04021001Ijsea04021001
Ijsea04021001
 
Study of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its DerivativesStudy of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its Derivatives
 
Reduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOPReduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOP
 
pyrazole ...by saikat hossain....SEU
pyrazole ...by saikat hossain....SEUpyrazole ...by saikat hossain....SEU
pyrazole ...by saikat hossain....SEU
 
Synthesis and Characterization of Some Pyrazole Based Heterocyclic Compounds
Synthesis and Characterization of Some Pyrazole Based Heterocyclic CompoundsSynthesis and Characterization of Some Pyrazole Based Heterocyclic Compounds
Synthesis and Characterization of Some Pyrazole Based Heterocyclic Compounds
 
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
 
Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357
 
tA04 04 0106
tA04 04 0106tA04 04 0106
tA04 04 0106
 
A Study of Synthesis and Characterization of Liquid Crystalline Substances
A Study of Synthesis and Characterization of Liquid Crystalline SubstancesA Study of Synthesis and Characterization of Liquid Crystalline Substances
A Study of Synthesis and Characterization of Liquid Crystalline Substances
 
Synthesis of 1,5 Benzodiazepines A Review
Synthesis of 1,5 Benzodiazepines A ReviewSynthesis of 1,5 Benzodiazepines A Review
Synthesis of 1,5 Benzodiazepines A Review
 
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
 
Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...
Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...
Carbon Nitride Grafted Cobalt Complex (Co@npg-C3N4) for Visible LightAssiste...
 
Summary_Detistov
Summary_DetistovSummary_Detistov
Summary_Detistov
 

Recently uploaded

Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
sammy700571
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
Ritik83251
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Selcen Ozturkcan
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
ABHISHEK SONI NIMT INSTITUTE OF MEDICAL AND PARAMEDCIAL SCIENCES , GOVT PG COLLEGE NOIDA
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
Sérgio Sacani
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills MN
 
HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1
Shashank Shekhar Pandey
 
Methods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdfMethods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdf
PirithiRaju
 
Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
Frédéric Baudron
 
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Sérgio Sacani
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Sérgio Sacani
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
yourprojectpartner05
 

Recently uploaded (20)

Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
 
HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1
 
Methods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdfMethods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdf
 
Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
 
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
 

Asian Journal of Biochemical and Pharmaceutical Research Recent Advances on the Synthesis of Pyrazole-Containing Compounds of Potent Biological Activities and Study Their Chemical Applications

  • 1. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279511794 Asian Journal of Biochemical and Pharmaceutical Research Recent Advances on the Synthesis of Pyrazole-Containing Compounds of Potent Biological Activities and Study Their Chemical... Article · November 2014 CITATIONS 3 READS 627 1 author: Taha Eldebss Cairo University 41 PUBLICATIONS 746 CITATIONS SEE PROFILE All content following this page was uploaded by Taha Eldebss on 01 July 2015. The user has requested enhancement of the downloaded file.
  • 2. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 ISSN: 2231-2560 CODEN (USA): AJBPAD Review Article 356 Asian Journal of Biochemical and Pharmaceutical Research Recent Advances on the Synthesis of Pyrazole-Containing Compounds of Potent Biological Activities and Study Their Chemical Applications Taha M.A Eldebss Department of Chemistry, Faculty of Science, University of Cairo, Giza 12613, Egypt Received: 16 September 2014; Revised: 14 October 2014; Accepted: 19 November 2014 Abstract: Several pyrazoles with different substitutions at different position were synthesized starting from pyrazole and its derivatives. The biological activities of newly synthesized compounds were tested and evaluated in vivo and vitro for different types of diseases and exhibited good results, in addition to some examples of some Pyrazoles Containing Compounds were established as drugs such as Celecoxib Lesopitron Sulfaphenazole Rimonabant Tebufenpyrad Betazole Tepoxalin Pyriprole Deracoxib Mavacoxib. Keywords: Pyrazole, Celecoxib, Lesopitron, Pyriprole, Yellow 2G, Fipronil RS. INTRODUCTION: Structurally unique and functionality-enriched heterocyclic systems are of great significance in chemically and biologically related research areas.[ 2-112, 187-134] In particular, pyrazole and their derivatives are an important classes of compounds and has been widely found in biologically active molecules and drug candidates. Moreover, diversely functionalized pyrazole have also been identified as versatile synthetic building blocks for the construction of complex molecules and natural products. Therefore, great efforts have been done to their preparations and chemical application. 3 -Properties of pyrazole as in Fig.1 Fig.1 Pyrazole (Systematic or IUPAC name 1,2-Diazole) It is a heterocyclic organic compound characterized by a 5-membered ring of three carbon atoms and two adjacent nitrogen centres with the molecular formula C3H4N2 ; molar mass, 68.08 g mol−1; melting point, 66–70 °C, boiling point,
  • 3. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 357 186–188 °C ; basicity (pKb), 2.5, . Pyrazoles are also the class of compounds that have the ring C3N2 with adjacent nitrogen centres [1]. 4- Chemical reactivity and application of pyrazoles 4-1) Methods of Synthesis of pyrazoles 4-1-1) Synthesis of unsubstitute Pyrazole Pyrazole was synthesized by the reaction of α,β-unsaturated aldehydes with hydrazine and subsequent dehydrogenation as in Scheme1 [113]. Scheme 1 4-1-2))Knorr pyrazole synthesis The Knorr pyrazole synthesis is an organic reaction used to convert a hydrazine or its derivatives and a 1,3-dicarbonyl compound to a pyrazole using an acid catalyst via the following mechanism as in Scheme 2 [114]. R1 O R3 O R2 H3O R1 OH R3 O R2 RNHNH2 -H2O R1 OH R3 O R2 RNHNH2 H2O -H3O R1 OH R3 O R2 RNHNH R1 R3 O R2 RNHN H3O -H2O R1 R3 OH R2 RNHN -H2O N N R3 OH R1 R2 R H N N R3 R1 R2 Scheme :2 4-1-3) Substituted and unsubstituted pyrazoles are prepared by condensation of 1,3-diketones with hydrazine. For example, acetylacetone and hydrazine gives 3,5-dimethylpyrazole as in Scheme 3 [115]. CH3C(O)CH2C(O)CH3 + N2H4 → (CH3)2C3HN2H + 2 H2O Scheme 3 Also, pyrazole was synthesized from acetylene and diazomethane[116].
  • 4. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 358 4-2) Synthesis of substituted pyrazole 4-2-1)Synthesis of novel pyrazole-based heterocycles via a copper(II)-catalysed domino annulations Pyrazole-based β-aminonitriles and β-amino-carbaldehydes as bifunctional building blocks are introduced in a facile copper(II)-catalysed one-pot domino generation of multiple N-containing heterobi- and tricycles. This streamlined synthetic approach permits easy access to novel pyrazole- fused imidazo- and pyrimido[1,2-c]pyrimidinones and to pyrazolo[3,4-d]pyrimidinone species with isolated yields up to 90%. The present study also reveals a unique amine–isocyanate coupling promotion via copper(II)-based catalytic activation as in Scheme 4 [117]. Scheme 4 4-2-2) Heterocycle formation from 1,3-dinitroalkanes. A novel pyrazole synthesis: Combinatorial Chemistry Review.Aliphatic nitro compounds have proved to be useful starting materials in organic synthesis. When the nitro compounds are properly substituted they can cyclize, yielding heterocyclic compounds. 1,3-Dinitroalkanes can be viewed as synthetic equivalents for 1,3-dicarbonyl compounds through a Nef, or equivalent, reaction, and therefore could be ultimately converted into azole heterocycles. Application of the Nef reaction under the usual conditions (NaOH; conc. H2SO4) to 1,3- dinitroalknes gives only trace amounts of the anticipated dione, although the yields can be increased (up to 40%) using a secondary amine as the base. We now find that 1,3-dinitroalkanes react with hydrazines giving rise to pyrazoles as in Scheme 5 [118]. Scheme 5
  • 5. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 359 4-2-3) An efficient, general, one-pot, three-component procedure for the preparation of 3,5- disubstituted 1H-pyrazoles includes condensation of substituted aromatic aldehydes and tosylhydrazine followed by cycloaddition with terminal alkynes. The reaction tolerates various functional groups and sterically hindered substrates to afford the desired pyrazoles in good yields as in Scheme 6 [119]. Scheme 6 4-2-4) 1,3-Diketones, which were synthesized in situ from ketones and acid chlorides, were converted into pyrazoles by the addition of hydrazine. This method allows a fast and general synthesis of previously inaccessible pyrazoles and synthetically demanding pyrazole-containing fused rings as in Scheme 7 [120]. Scheme 7 4-2-5) A highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles based on the condensation of 1,3-diketones with arylhydrazines proceeds at room temperature in N,N- dimethylacetamide and furnishes pyrazoles in good yields as in Scheme 8[121]. . Scheme 8 4-2-6) Pyrazole or isoxazole derivatives are prepared by a palladium-catalyzed four-component coupling of a terminal alkyne, hydrazine (hydroxylamine), carbon monoxide under ambient pressure, and an aryl iodide as in Scheme 9[122].
  • 6. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 360 Scheme 9 4-2-7) Also, pyrazoles derivatives were obtained via reaction of aryl halides with 1,3-diones as in Scheme 10[123]. Scheme 10 4-2-8) pyrazoles derivatives were obtained via one-pot, three-components synthesis as in Scheme 11[124]. Scheme 11 4-2-9) A regioselective synthesis of tri- or tetrasubstituted pyrazoles by the reaction of hydrazones with nitroolefins mediated with strong bases such as t-BuOK exhibits a reversed, exclusive 1,3,4- regioselectivity. Subsequent quenching with strong acids such as TFA is essential to achieve good yields. A stepwise cycloaddition reaction mechanism is proposed as in Scheme 12[125]. Scheme 12 4-2-10) Two general protocols for the reaction of electron-deficient N-arylhydrazones with nitroolefins allow a regioselective synthesis of 1,3,5-tri- and 1,3,4,5-tetrasubstituted pyrazoles. Studies on the stereochemistry of the key pyrazolidine intermediate suggest a stepwise cycloaddition mechanism as in Scheme 13[126].
  • 7. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 361 Scheme 13 4-2-11) A regioselective one-pot synthesis of substituted pyrazoles from N-monosubstituted hydrazones and nitroolefins gives products in good yields. A key nitropyrazolidine intermediate is characterized and a plausible mechanism is proposed as in Scheme 14[127]. Scheme 14 4-2-12) An unprecedented ruthenium(II)-catalyzed oxidative C-N coupling method enables a facile intramolecular synthesis of various synthetically challenging tri- and tetrasubstituted pyrazoles in the presence of oxygen as oxidant. The reaction demonstrates excellent reactivity, functional group tolerance, and high yields as in Scheme 15[128]. Scheme 15 4-2-13) A general, highly flexible Cu-catalyzed domino C-N coupling/hydroamination reaction constitutes a straightforward alternative to existing methodology for the preparation of pyrroles and pyrazoles as in Scheme 16[129]. Scheme 16 4-2-14) Alumino-heteroles are obtained from simple precursors in a fully chemo- and regioselective manner by a metalative cyclization. The carbon-aluminum bond is still able to react further with several electrophiles, without the need of transmetalation providing a straightforward access to 3,4,5- trisubstituted isoxazoles and 1,3,4,5-tetrasubstituted pyrazoles as in Scheme 17[130].
  • 8. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 362 Scheme 17 4-2-15) Various 1-acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles have been prepared in good yields from the corresponding 2-alkyn-1-ones. The resulting dihydropyrazoles undergo dehydration and iodination in the presence of ICl and Li2CO3 at room temperature to provide 1-acyl-4-iodo-1H-pyrazoles as in Scheme 18[131]. Scheme 18 4-2-16) A tandem catalytic cross-coupling/electrocyclization allows the conversion of differentially substituted acyclic and cyclic enol triflates and an elaborated set of diazoacetates to provide the corresponding 3,4,5-trisubstituted pyrazoles with a high degree of structural complexity as in Scheme 19[132]. Scheme 19 4-2-17) A series of 4-substituted 1H-pyrazole-5-carboxylates was prepared from the cyclocondensation reaction of unsymmetrical enaminodiketones with tert-butylhydrazine hydrochloride or carboxymethylhydrazine. The compounds were obtained regiospecifically and in very good yields as in Scheme 20[133]. Scheme 20
  • 9. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 363 4-2-18) An easy and efficient copper-catalyzed reaction for the synthesis of polysubstituted pyrazoles from phenylhydrazones and dialkyl ethylenedicarboxylates tolerates a range of functionalities, and the corresponding adducts can be obtained in moderate to good yields as in Scheme 21[134]. Scheme 21 4-2-19) The reaction of diazo(trimethylsilyl)methylmagnesium bromide with aldehydes or ketones gave 2-diazo-2-(trimethylsilyl)ethanols, which were applied to the synthesis of di- and trisubstituted pyrazoles via [3+2] cycloaddition reaction with ethyl propiolate or dimethyl acetylenedicarboxylate as in Scheme 22[135]. Scheme 22 4-2-20) In the presence of activated carbon, Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines were aromatized with molecular oxygen to the corresponding pyridines and pyrazoles in excellent yields as in Scheme 23[136]. . Scheme 23 4-2-21) CuI-catalyzed coupling of N-acyl-N′-substituted hydrazines with aryl iodides affords N-acyl- N′,N′-disubstituted hydrazines regioselectively. N-Acyl-N′-substituted hydrazines can also react with 2-bromoarylcarbonylic compounds in the presence of 4-hydroxy-L-proline as ligand to provide 1-aryl- 1H-indazoles as in Scheme 24[137].
  • 10. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 364 Scheme 24 4-2-22) Various N-aryl-1H-indazoles and benzimidazoles were synthesized from common arylamino oximes in good to excellent yields depending upon the base used in the reaction. Triethylamine promoted the formation of benzimidazoles, whereas 2-aminopyridine promoted the formation of N- arylindazoles as in Scheme 25[138]. Scheme 25 4-2-23) A rapid and efficient synthesis of 2H-indazoles, which involves a [3 + 2] dipolar cycloaddition of arynes and sydnones, proceeds under mild reaction conditions in good to excellent yields as in Scheme 26[139]. . Scheme 26 4-2-24) The 1H-indazole skeleton can be constructed by a [3 + 2] annulation approach from arynes and hydrazones. Under different reaction conditions, both N-tosylhydrazones and N- aryl/alkylhydrazones can be used to afford various indazoles as in Scheme 27[140].
  • 11. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 365 . Scheme 27 4-2-25) Readily available, stable, and inexpensive N-tosylhydrazones react with arynes under mild reaction conditions to afford 3-substituted indazoles in good yields. The reaction involves a 1,3-dipolar cycloaddition of in situ generated diazo compounds and arynes as in Scheme 28[141]. . Scheme 28 4-2-26) The [3+2] cycloaddition of a variety of diazo compounds with o-(trimethylsilyl)aryl triflates in the presence of CsF or TBAF at room temperature provides a very direct, efficient approach to a wide range of potentially biologically and pharmaceutically interesting substituted indazoles in good to excellent yields under mild reaction conditions as in Scheme 29[142]. . Scheme 29 4-2-27) 2H-Indazoles are synthesized using a copper-catalyzed one-pot, three-component reaction of 2-bromobenzaldehydes, primary amines, and sodium azide. The catalyst plays the key role in the formation of C-N and N-N bonds. This method has a broad substrate scope with a high tolerance for various functional groups as in Scheme 30[143]. Scheme 30 4-2-28) A general two-step synthesis of substituted 3-aminoindazoles from 2-bromobenzonitriles involves a palladium-catalyzed arylation of benzophenone hydrazone followed by an acidic deprotection/cyclization sequence. This procedure offers a general and efficient alternative to the typical SNAr reaction of hydrazine with o-fluorobenzonitriles as in Scheme 31[144].
  • 12. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 366 Scheme 31 4-2-29) Compounds containing imine showed high insecticidal activity against cotton bollworm. The compounds also had good activities against bean aphid and mosquito as in Scheme 32[145]. Scheme 32 4-2-30) One-pot three-components synthesis of benzochromeno-pyrazole derivatives as in Scheme 33[146]. Scheme 33 4-2-31) pyrazole carboxylate derivatives can be converted into pyrazolotriazolo, pyrazolo thiadiazolo, pyrazolo oxiadiazolo and bipyrazolo derivatives as in Schemes 34, 35, 36, 37 and 38 [5]. Ph N N Ph CN OC2H5 O Ph N N Ph CN H N N N HS NH2NH2 / R.T S NHNH2 H2N KSCN KOH OR Scheme 34
  • 13. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 367 Ph N N Ph CN OC2H5 O Ph N N Ph CN N N N Y NH2NH2 / R.T S NHNH2 H2N / KSCN KOH Or Or PhCNS/KOH/NH2NH2 Or CS2/KOH/NH2NH2 X X = H, NH2, Ph Y = SH, SH, NH2NH2 Scheme 35 ٍ◌Scheme 36 PhNCS Ph N N Ph CN S N N PhHN H2SO4 Ph N N Ph CN HN O NH2 Ph N N Ph CN O N N HS CS2 / KOH Reflux Scheme 37 O O O OEt O Ph N N Ph NC O N N Ph N N Ph NC O N N O Ph N N Ph CN HN O NH2 Scheme 38 Ph N N Ph CN OC2H5 O Ph N N Ph CN H N N N HS NH2NH2 / R.T S NHNH2 H2N KSCN KOH OR
  • 14. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 368 4-2-32) pyrazole enaminone derivatives can be converted into pyrazolo pyrazolopyradizine and bipyrazolo derivatives as in Schemes 39, 40, 41[4]. Ph N N NC O N Dry benzene/ Et3N/ N N Ph N N N N Ar Ph NC X NH2NH2 Ph YCOC(Cl)NNHAr Y X CH3, OMe CH3, OH Scheme 39 Ph N N NC O N Dry benzene/ Et3N/ N N Ph Ph NC NH2NH2 Ph PhNHCOC(Cl)NNHAr O N N NH O Ar Ph N N Ph Ph NC O N N Ph Ph PhC(Cl)NNHAr Dry benzene/ Et3N/ NH2NH2 Scheme 40 Ph N N Ph NC O Br N NH Ar N N Ph N N N N Ar Ph NC NH N N CN Ph Ph Ph N N NC O N Dry benzene/ Et3N/ NH2NH2 Ph Scheme 41 4-2-33) Enaminone reacts with hydrazines , hydroxylamine and guanidine to afford the novel pyrazole, isoxazole and pyrimidine derivatives, respectively. It reacts also with aminopyrazole derivatives to pyrazolo[1,5-a]pyrimidine derivatives. Reaction of the enaminone reacts with benzoquinone and naphthoquinone led to the formation benzofuran derivatives, respectively. In
  • 15. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 369 addition, it reacts with hippuric acid to afford the corresponding pyrazolyl pyranone derivative as in Scheme 42[147]. N X H2N NH2 NH NH2X , X= O,N ,NPh N N H3C Ph O NMe2 N N H3C Ph N N H3C Ph N N NH2 N NH NH2 N N N R2 R1 R1 R2 N N H3C Ph O O O O N N H3C Ph O OH O N N H3C Ph O OH O COOH HN O Ph O O H N O Ph N N H3C Ph Scheme 42 4-2-34) Enaminone undergoes regioselective 1,3-dipolar cycloaddition with nitrilimines and nitrile oxides to afford the novel pyrazole and isoxazole derivatives, respectively. It reacts also with 1H- benzimidazole-2-acetonitrile, 2-aminobenzimidazole and 3-amino-1,2,4-triazole to afford the novel pyrido[1,2-a]benzimidazole, pyrimido[1,2-a]benzimidazole and the triazolo[1,5-a]pyrimidine derivatives, respectively as in Scheme 43[148].
  • 16. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 370 N N CH3 Ph N N CN N N CH3 Ph N N N N N N CH3 Ph N N N N N N N CH3 Ph N N CH3 Ar N N CH3 Ph O H3C R O N Z ArHN Z = Cl, Br R = CH 3, OEt -HNMe2 N H N CN N H N NH2 N N NH NH2 Scheme 43 4-2-35) simple, facile, efficient and three-components procedure for the synthesis Pyrazolo[3,4- b]pyridines utilizing phenylsulphone synthon, under ultrasonic irradiation as in Scheme 44[149]. abs. ethanol / p-TsOH ))) or Reflux + N N Ph NH2 N N N Ph Ar Ph R R Ph O S O O Ph Ar Scheme 44 4-2-36)-J. K. Sneed et.al reported[ 150, 151] that 3, 5-Di (2-pyridyl) pyrazole 26 was first obtained in the reaction of 1, 3-di (2-pyridyl) propane-1, 3-dione 25 with hydrazine hydrate. A series of mono- and di (4-pyridyl)-substituted pyrazoles were synthesized using the same approach as in Scheme 45. N N H N R N O R O NH2NH2 Scheme 45 4-2-37)-J A. Silkhankova et.al reported [152, 153] a large volume of the research was done by the authors who synthesized a series of symmetrical and unsymmetrical 3, 5-dipyridyl-substituted pyrazoles as in Scheme 46.
  • 17. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 371 N N R3 R2 R1 O R2 O R3NHNH2 R1 Scheme 46 4-2-37)-A biologically active series of substituted pyrazoles were synthesized as in Fig.2 [154]. Fig.2 4-2-38)-4-iodopyrazoles was synthesized under microwave conditions as in Scheme 47[155]. N N H N N H microwave or coventional heated 75-77% I Scheme 47 4-2-39)-N-Substituted benzoylpyrazoles as shown below as in Scheme 48[156]. R1 F3C OH O EtOH / H+ N2H4 (aq.) R1 F3C NH-NH2 O R1 F3C N O N H3C CH3 O O Scheme 48 4-1-3) Pyrazoles as key synthon in Synthesis of alkaloids
  • 18. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 372 Synthetic Photochemistry of sceptrin alkaloids: In a recent publication Professor Birman and one of his colleagues reported a novel way to synthesize a molecule called dibromosceptrin (C22H23Br4N10O2), shown here as in Scheme 49[157]. Scheme 49 5-Biological activities of pyrazoles Pyrazoles are present in medicinally important compounds either for human being or for veterinary medicine or other applications 5-1) Applications In human being medicine as in Fig.3 (a)Celecoxib ( 4-[5-(4-methylphenyl)-3-(trifluoromethyl)pyrazol-1-yl]benzenesulfonamide), it is a highly selective COX-2 inhibitor[158-160]. (b) Lesopitron ( 2-{4-[4-(4-chloro-1H-pyrazol-1-yl)butyl]piperazin-1-yl}pyrimidine ), it is a selective full agonist of the 5-HT1A receptor[161]. (c) Sulfaphenazole (4-amino-N-(1-phenyl-1H-pyrazol-5-yl)benzenesulfonamide Sulfaphenazole), it is a sulfonamide antibacterial[162]. (d) O-12695 (4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-pentylpyrazole-3-carboxamide), it acts as cannabinoid antagonist drugs [163-165].
  • 19. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 373 (e) Rimonabant 5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H- pyrazole-3-carboxamide is an anorectic antiobesity drug[166] . (f) VCHSR(5-(4-chlorophenyl)- 3-[(E)-2-cyclohexylethenyl]- 1-(2,4-dichlorophenyl)- 4-methyl- 1H- pyrazole), it is a drug acts as a selective antagonist of the cannabinoid receptor CB1[167,168]. (g) Tebufenpyrad (N-(4-tert-Butylbenzyl)-4-chloro-3-ethyl-1-methylpyrazole-5-carboxamide or4- Chloro-N-[[4-(1,1-dimethylethyl)phenyl]]methyl]-3-ethyl-1-methyl-1H-pyrazole-5-carboxamide )is a commonly used in commercial greenhouses[169]. (h) AM2511 (2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3- carboxamide), it is an inverse agonist at the CB1 cannabinoid receptor[170]. (i) Betazole (2-(2H-Pyrazol-3-yl)ethanamine), it is a histamine H2 receptor agonist. as a gastric stimulant [171,172]. (j) E-55888 (N,N-dimethyl-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenethylamine) it is anti- hyperalgesic but not analgesic[173,174]. (b) (c) (d) (e) (f) (g) (h) (i)
  • 20. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 374 (j) Fig. 3 5-2) Applications In veterinary medicine as in Fig.4 Tepoxalin(3-[5-(4-Chlorophenyl)-1-(4-methoxyphenyl)pyrazol-3-yl]-N-hydroxy-N- methylpropanamide), it is a nonsteroidal anti-inflammatory drug approved for veterinary use (in dogs)[175]. (b)Pyriprole(1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(difluoromethyl)thio]-5-[(2- pyridinylmethyl)amino]-1H-pyrazole-3-carbonitrile) it is for veterinary use on dogs against external parasites, fleas and ticks[176]. (c)Deracoxib4-[3-(Difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazole-1-yl] benzenesulfonamide Deracoxib used in veterinary medicine to treat osteoarthritis in dogs[177]. (d) Mavacoxib (4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide) it is a veterinary drug used to treat pain and inflammation in dogs with degenerative joint disease[178]. It acts as a COX-2 inhibitor[179]. (a) (b) (c) (d) Fig.4 5-3) Applications In food chemistry as in Fig.5 (a) Yellow 2G ( Disodium 2,5-dichloro-4-[3-methyl-5-oxo-4-(4-sulfonatophenyl)diazenyl-4H-pyrazol- 1-yl]benzenesulfonate) it is a food coloring[180]. (b) Tartrazine (Trisodium (4E)-5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)hydrazono]-3- pyrazolecarboxylate), it is used as a food coloring.[181-183].
  • 21. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 375 (b) (a) Fig.5 5-3) Applications in pesticide as in Fig.6 (a) Fipronil RS (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4- (trifluoromethylsulfinyl)-1H-pyrazole-3-carbonitrile), it is a broad-use insecticide[145,184,185]. (b) Isopropylmethylpyrazolyl dimethylcarbamate (1-Isopropyl-3-methyl-1H-pyrazol-5-yl dimethylcarbamate), it is used as pesticide[186]. (b) Fig.6 CONCLUSION: In this review, we showed that over the past decades pyrazoles have achieved an important place in the arsenal of organic chemists involved in the construction of complex molecules and natural products as well as biologically active molecules, Synthesis of Substituted or unsubstituted pyrazole has employed a great interest either by classical methods or by using palladium catalysed reactions.Finally, one can reasonably anticipate that future studies will provide new applications to the preparations of complex molecules , particularly in the area of biologically active compounds. ACKNOWLDGEMENT: The authors would like to thank the Chemistry Department, Cairo University, for providing the research facilities The author wishes to express his most sincere thanks and full gratitude to Prof. Dr. Ahmad M. Farag and Mr Mahmoud H. Yousef.
  • 22. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 376 REFERENCES: 1. T. Eicher, S. Hauptmann., The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications. Wiley-VCH. ISBN 3-527-30720-6, 2nd ed. 2003. 2. N. Fowden, Ridd and White., Proc. Chem. SOC.,1959, 131. 3. Noe and Fowden., Nature., 1959, 184, 4688, 69. 4. A.M. Farag, K.A.K. Ali, T.M.A. El-Debss, A.S. Mayhoub, A.E. Amr, N.A. Abdel-Hafez and M.M. Abdulla., Eur. J. Med. Chem., 2010, 4, 55887-589. 5. A. M .Farag, A.S. Mayhoub, T.M.A. Eldebss, A.E. Amr, K.A.K. Ali, N. A. Abdel-Hafez and M.M. Abdulla, Arch.Pharm. Chem Life., 2010, 343, 384-396. 6. K Nagarajan; V. P. J. Arya., Sci. Ind. Res., 1982, 41, 232. 7. V. P. Arya, R. S. Grewal, J. David, C. L. Kaul., Experientia., 1967, 23, 514. 8. W.T. Comer; A.W. Comell, "Burger's Medicinal chemistry, third edition, part ΙΙ" Ed.A.Burger, wiley-Interscience, Newyork, 1970,1050. 9. V.P. Arya, R.S. Grewal, C.L. Kaul, S.P. Ghate, D.V. Mehta, T. George., J. Pharm. Sci., 1969, 58, 432. 10. R. Jakse, J. Svete, B. Stanovnik and A. Golobie., Tetrahedron., 2004, 60, 4601. 11. B. Stanovnik and J. Svete., Chem. Rev., 2004, 104, 2433. 12. E. Bejan, H. A. Haddou, J. C. Daran, G. G. A. Balavoine., Synthesis., 1996, 1012. 13. M. R. Shaaban, T. S. Saleh, A. M. Farag., Heterocycles., 2007, 71, 8. 14. R. M. Shaaban, T. S. Saleh, Faiz Osman, A. M. Farag., J. Heterocycl. Chem., 2007, 44, 177. 15. G. D. Leonard and S. M. Swain., J. Natl. Cancer Inst., 2004, 96, 906-920. 16. M. T. McDermott, F. D. Hofeldt, G. S. Kidd., South. Med. J., 1990,83, 1283-1285. 17. I. S. Fentiman, M. Caleffi, K. Brame, M. A.Chaudary and J. L Hayward., Lancet., 1986, 1, 287-288. 18. L. L. Amsterdam, Fertil Steril, 2005, 84, 300-304. 19. P. Merviel, Gynecol. Obstet. Fertil., 2006, 34, 66-39. 20. R. Homburg., Hum. Reprod., 2005, 20, 2043-2051. 21. P. Alexandersen, B. J. Riis, J. A. Stakkestad, P. D. Delmas, C. Christiansen., J. Clin. Endocrinol. Metab., 2001, 86, 755-760. 22. W. Khovidhunkit and D. M. Shoback., Ann. Intern. Med., 1999,130, 431-439. 23. D. Clemett and C. M. Spencer., Drugs., 2000, 60, 379-411. 24. H. Yanyan, C. Michael, Y. Yate-Ching, C. Shiuan., Biochem. Pharmacol., 2008 ,75, 1161-1169.
  • 23. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 377 25. N. D. Jaime, and William, (Eds.), Text Book of Organic Medicinal and Pharmaceutical Chemistry, 10th edition, Lippincott-Raven Publishers, Philadelphia, 1998, p. 745. 26. S. Martino, J. A. Cauley, E. Barrett-Connor, T. J. Powles, J. Mershon, D. Disch, R. J. Secrest, S. R. Cummings., J. Natl. Cancer Inst., 2004, 96, 1751-1761. 27. S. R. Cummings, S. Eckert, K. A. Krueger, D . Grady, T. J. Powles, J. A. Cauley, L .Norton, T. Nickelsen, N. H. Bjarnason, M .Morrow, M. E. Lippman, D. Black, J. E. Glusman, A. Costa, V. C. Jordan,. J.A.M.A., 1999, 281, 2189-2197. 28. P. Neven, I. Vergote., Lancet., 1998, 351, 155-157. 29. F. A. Aleem, M..Predanic., Lancet., 1995, 3461, 292-1293. 30. S. B. Gusberg., Cancer.,1990, 651, 463-1464. 31. L. R.Wiseman and K. L. Goa., Drugs.,1997, 541, 41-160. 32. K. Holli., Oncology., 1998, 12 (suppl 5), 23-27. 33. A. M. H. Brodie., Pharmacol. Ther., 1993, 60, 501-515. 34. W. L. Miller., Endocr. Rev., 1988, 9, 295 -318. 35. L. R. Wiseman, D. McTavish., Drugs., 1993, 45, 66-84. 36. K. Ellington, D. M. Faulds., Drugs., 2002, 62, 2483. 37. U. Gruntmanis, G. D. Braunstein., Curr. Opin. Investig. Drugs., 2001,2, 643-649. 38. P. E. Goss, E. P. Winer, I. F. Tannock, L. H. Schwartz., J. Clin. Oncol., 1999, 17, 52-63. 39. C. L. Harper-Wynne, N. P. Sacks, K. Shenton, F. A. MacNeill, P. Sauven, I. J. Laidlaw, Z. Rayter, S. Miall, A. Howes, J. Salter, M. J. Hills, F. M. Lowe, R. A'Hern, N. Nasiri, D. Doody, J. Iqbal, M .Dowsett., J. Clin. Oncol., 2002, 20, 1026-1035. 40. A. U. Buzdar, R. Smith, C .Vogel, P. Bonomi, A. M. Keller, G. Favis, M. Mulagha, J. Cooper, Cancer., 1996, 77, 2503-2513. 41. E. W. Leschek, J. Jones, K. M Barnes, S. C. Hill, G. B. Jr. Cutler., J. Clin. Endocrinol. Metab., 1999 ,84, 175-178. 42. D. Simpson, M. P. and C. M. Perry., Drugs., 2004, 64, 1213- 1230. 43. J. A. Garcia-Velasco, L. Moreno, A. Pacheco, A. Guillén, L .Duque, A .Requena, A. Pellicer, Fertil. Steril., 2005, 84, 82-87. 44. T. Naruse, Y. Nishida, N. Ishiguro., Biomed. Pharmacother., 2007, 61, 338-346. 45. T. C. Dang, A. J. Dannenberg, K. Subbaramaiah, M. N. Dickler, M. M. Moasser, A. D. Seidman, G. M. D’Andrea, M. Theodoulou, K. S. Panageas, L. Norton and C. A. Hudis., Clin. Cancer Res., 2004, 10, 4062-4067. 46. A. Reardon, J. A. Quinn, J. Vredenburgh, J. N. Rich, S. Gururangan, M. Badruddoja, J. E.
  • 24. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 378 Herndon, J. M. Dowell, A. H. Friedman, H. S. Friedman., Cancer., 2005, 103, 329-338. 47. F. W. Nugent, W. C. Mertens, S. Graziano, N .Levitan, R. Collea, A. Gajra, .J. Marshall, . J McCann., Lung Cancer., 2005, 48, 267-273. 48. G. Gasparini, S. Meo, G. Comella, S. C. Stani, L. Mariani, T. Gamucci, A. Avallone, S. Lo Vullo, G. Mansueto, P. Bonginelli, D. Gattuso, M. Gion., Cancer J., 2005, 11, 209-216. 49. C. X. Pan, P. Loehrer, D. Seitz, P. Helft, B. Juliar, R Ansari, W. Pletcher, J. Vinson, L. Cheng and C. Sweeney., Oncology., 2005, 69, 63-70. 50. V. Ferrari, F. Valcamonico, V. Amoroso, E. Simoncini, L. Vassalli, P. Marpicati, G. Rangoni, S. Grisanti, G. A. Tiberio, F. Nodari, C. Strina, G. Marini., Cancer Chemother. Pharmacol., 2006, 57, 185-190. 51. I. Csiki, J. D. Morrow, A. Sandler, Y. Shyr, J. Oates, M. K. Williams, T. Dang, D. P. Carbone, D. H. Johnson., Clin. Cancer Res., 2005, 11, 6634-6640. 52. L. W. Chow, C. W.Cheng, J. L. Wong and M. Toi., Biomed. Pharmacother., 59 (suppl 2), 2005, S302-305. 53. A. M. Farag, A. S. Mayhoub, S. E. Barakat, A. H .Bayomi., Bioorg. Med. Chem., 2008,16, 4569-4578. 54. A. M. Farag, A. S. Mayhoub, S. E .Barakat and A. H. Bayomi., Bioorg. Med. Chem., 2008, 16, 881-889. 55. A. S. Girgis, N. Mishriky, A. M. Farag, W. I. El-Eraky, H. Farag, Eur. J. Med. Chem., 2008, 43, 1818-1827. 56. M. R. Shaaban, T. S. Saleh, A. S. Mayhoub, A. Mansour, A. M. Farag., Bioorg. Med. Chem., 2008, 16, 6344-6352. 57. A. M. Farag, Y. M. Elkholy, K. A. Ali., J. Heterocycl. Chem., 2008, 45, 279-283. 58. N. A. Kheder, Y. N. Mabkhot and A. M. Farag., Heterocycles., 2008, 75, 2937-2948. 59. N. A. Kheder, Y. N. Mabkhot and A. M. Farag., Heterocycles., 2008, 5, 887-897. 60. N. A . Kheder, Y. N .Mabkhot, A. M. Farag., Synth. Comm., 2008, 38, 3170-3182. 61. K. M. Dawood, A. M. Farag and N. A. Khedr., Arkivoc xv., 2008, 166-175. 62. K. M. Dawood, A. M. Farag, H. A. Abdel-Aziz., Heteroatom Chem., 2007, 18, 294. 63. M. R. Shaaban, T. S. Saleh, F. H. Osman and A. M. Farag., J. Heterocycl., Chem., 2007, 44, 177-181. 64. M. R. Shaaban, T. S. Saleh and A. M..Farag., Heterocycles., 2007, 71, 1765-1777. 65. A. M. Farag, K. M. Dawood and N. A. Khedr., J. Chem. Res., 2007, 472-474. 66. N. A. Hamdy, H. A. Abdel-Aziz, A. M. Farag, I. M. I. Fakhr., Monatsh. Chem., 2007, 138, 1001-
  • 25. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 379 1010. 67. G. L. Beutner, J. T. Kuethe, M. M. Kim, N.Yasuda., J. Org. Chem., 2009, 74, 789. 68. J. Witherington, V. Bordas, S. L.Garland, D. M. B. Hickey, R. J. Ife, J. Liddle, M. Saunders, D. G. Smith and R. W. Ward., Bioorg. Med. Chem. Lett., 2003, 13, 1577. 69. S. Ghosh, M. Karin., Cell., 2002, 109, S91. 70. M. Peifer, P. Polakis., Science., 2000, 287, 1606. 71. R. Bhatt, Y. Xue, S.Berg, S. Hellberg, M. Ormo, Y. Nilsson, A. C. Radesáter, E. Jerning, P. O. Markgren, T. Borgegàrd, M. Nylof, A. Gimenez-Cassina, F. Hernández, J. L. Lucas, J. Diaz- Nido, J. Avila., J. Biol. Chem., 2003, 278, 45937. 72. M. Malumbres, P. Pevarello, M. Barbacid and J. R. Bischoff., Trends Pharmacol. Sci., 2008, 29, 16. 73. R. N. Misra, H. Xiao, D. B. Rawlins, W. Shan, K. A. Kellar, J. G. Mulheron, J. S. Sack, J. S. Tokarski, S. D. Kimball, K. R. Webster, Bioorg. Med. Chem. Lett., 2003, 13, 2405. 74. A. Schmidt, A. Dreger., Curr. Org. Chem., 2011, 15, 1423-1463 75. A. Hauhan, P.K. Sharma, N. Kaushik., Int. J. Chem.Tech. Res., 2011,3, 11-17. 76. P.C. Lv, H.Q. Li, J. Sun, H.L. Zhou., Bioorg. Med. Chem., 2010, 18, 4606-4614. 77. R. Lin, G.Chiu, Y. Yu, P.J. Connolly, S. Li, Y. Lu , M. Adams, A.R. Fuentes-Pesquera, E.L. Stuart, L.M. Greenberger., Bioorg. Med. Chem. Lett., 2007, 17, 4557-4561. 78. Al-Saadi, M. S. M., Saudi Pharm. J., 2008, 16, 135-145. 79. M. Bonesi, M.R. Loizzo, G. Statti, S. Michel, F. Tillequin, F. Menichini., Bioorg.Med. Chem. Lett., 2010, 20, 1990-1993. 80. S. Sahu, M. Banerjee, A. Samantray, C. Behera, M. Azam., Trop. J. Pharm. Res., 2008, 7, 961-968. 81. R.V. Ragavan, V. Vijayakumar, N.S. Kumaric., Eur. J. Med. Chem., 2010, 45, 1173-1180. 82. W. Krohs., Chem. Ber., 1955, 88, 866–874. 83. M.E. Wolff., Burger’s Medicinal Chemistry, vol. I, Wiley, NewYork, 3rd edn., 1970, col. I, p. 964. 84. G. Mazzone, G. Puglisi, A. Corsaro, A. Panico, F. Bonina, M. Amico-Roxas, A.Caruso, S. Trombadone., Eur. J. Med. Chem. Chim. Ther., 1986, 21(4), 277–284. 85. A. Oznur, N. Cesur., Acta Pharm. Turc., 1987, 29 (2), 51–64. 86. A. Gursoy and S. Demirayak., Acta Pharm. Turc., 1988, 30, 115–128. 87. S. Demirayak , M.I. Cingi, K. Erol., J. Health Sci., 1990, 2, 59–62 . 88. A. Gursoy, S. Demirayak, G. Capan, K. Erol, K. Vural., Eur. J. Chem., 2000, 35, 359–364.
  • 26. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 380 89. G. Turan-Zitouni, M. Sıvacı, F.S. Kılıc, K. Erol., Eur. J. Med. Chem., 2001, 36, 685–689. 90. A. Bekhit and H.T.Y. Fahmy., Arch. Pharm. Pharm. Med. Chem., 2003, 2, 111–118. 91. A.A. Bekhit and T. Abdel-Azeim., Bioorg. Med. Chem., 2004, 12, 1935–1945. 92. E. Banoglu, C. Akoglu, S. Unlu, E. Kupeli, E. Yesilada, M.F. Sahin., Arch. Pharm. Med. Chem., 2004, 337, 93. S.A.M. El-Hawash, E.A.M. Badawey, I.M. El-Ashmawy., Eur. J. Med. Chem., 2006, 41, 155–165. 94. O. Rosati, M. Curini, M.C. Marcotullio, A. Macchiarulo, M. Perfumi, L. Mattioli, F. Rismondo, G. Cravotto., Bioorg. Med. Chem., 2007, 15, 3463–3473. 95. G. Szabo, J. Fischer, A. Kis-Varga, K. Gyires., J. Med. Chem., 2008, 51, 142–147 96. N. Benaamane, B. Nedjar-Kolli, Y. Bentarzi, L. Hammal, A. Geronikaki, P. Eleftheriou, A. Lagunin., Bioorg. Med. Chem., 2008, 6, 3059–3066. 97. H. Foks, D. Pancechowska-Ksepko, A. Kedzia, Z. Zwolska, M. Janowiec, 98. E. Augustynowicz-Kopec., Il Farmaco., 2005, 60, 513–517. 99. A.M. Gilbert, A. Failli, J. Shumsky, Y. Yang, A. Severin, G. Singh, W. Hu, 100. D. Keeney, P.J. Petersen, A.H. Katz., J. Med. Chem., 2006, 49, 6027–6036. 101. A.H. Shamroukh, M.E.A. Zaki, E.M.H. Morsy, F.M. Abdel-Motti,F.M.E. Abdel- Megeid., Arch. Pharm. Chem. Life Sci., 2007, 340, 345–35 102. O. Prakash, R. Kumar, V. Parkash., Eur. J. Med. Chem., 2008, 43, 435–440. 103. S. Kuettel, A. Zambon, M. Kaiser, R. Brun, L. Scapozza, R. Perozzo., J. Med.Chem., 2007, 50, 5833–5839. 104. R.Z. Yan, X.Y. Liu, W.F. Xu, C. Pannecouque, M. Witvrouw, De Clercq., E. Arch. Pharm. Res., 2006, 29, 957–962. 105. A.F. Rostom, M.A. Shalaby, M.A. El-Demellawy., Eur. J. Med. Chem. 2003, 38, 959–974 106. P. Diana, A. Carbone, P. Barraja, A. Martorana, O. Gia, L. DallaVia.,G. Cirrincione., Bioorg. Med. Chem. Lett., 2007, 17, 6134–6137. 107. A.M. Farag, A.S. Mayhoub, S.E. Barakat, A. H. Bayomi, Bioorg. Med. Chem., 2008, 16, 881. 108. J. Elguero, P. Goya, N. Jagerovic, A.M.S Silva, Italian Society of Chemistry., Roma, 2002, 6, 167-203. 109. Q. Han, C.H. Chang, R. Li, Y. Ru, P.K. Jadhav, P.Y.S. Lam., J. Med. Chem., 1998, 41, 2019. (A) A. Weber, A. Casini, A. Heine, D. Kuhn, C.T. Supura., A.Scozzafava, G. Klebe., J. Med. Chem., 2004, 47, 550. [b] S.F. Vasilevsky, S.V. Klyatskaya, Elguero., J.
  • 27. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 381 Tetrahedron., 2004, 60, 6685.D.R. Sliskovic, B.D. Roth, M.W. Wilson, M.L. Hoefle, R.S. Newton., J. Med. Chem., 1990, 33, 31. (B) S. Manfredini, R. Bazzanini, P.G. Baraldi, D. Simone, S. Vertuani, A. Pani,E. Pinna, F .Scintu, D. Lichino, P. La Colla., Bioorg. Med. Chem. Lett., 1996, 6, 1279. 110. S.R. Stauffer, Y. Huang, C.J. Coletta, R. Tesdesco, J. Katzenellenbogen., J. Bioorg. Med. Chem. Lett., 2001, 9, 141. 111. M.I. Rodríguez-Franco, I. Dorrosonro, A. Martínez., Synthesis., 2001, 11, 1711. 112. A. Schmidt, A. Dreger., Curr. Org. Chem., 2011,15(9), 1423–1463. 113. L. Knorr., Ber. Dtsch. Chem. Ges., 1883, 16, 2597–2599. 114. S. William Johnson and J. Robert J. Highet., Org. Synth. Coll., 1963, 4, 351 115. Pyrazol aus Acetylen and Diazomethan H. V. Pechmann Berichte der deutschen chemischen Gesellschaft., 1898, 31 (3), 2950–51. 116. Mario Gyuris, Laszlo G. Puskas, A. Gabor K. Tothb and Ivan Kanizsai., Org. Biomol. Chem., 2013, 11, 6320-632. 117. F. Gabrera Escribano, M. P. Derri Alcantara and A. Gomez-Senchez., Tetrahedron Letters., 1988, 29(46), 6001-6004. 118. L.L. Wu, Y.C. Ge, T. He, L. Zhang, X.-L. Fu, H.-Y. Fu, H. Chen, R.-X. Li., Synthesis., 2012, 1577-1583. 119. S. T. Heller and S. R. Natarajan., Org. Lett., 2006, 8, 2675-2678. 120. F. Gosselin, P. D. OShea, R. A. Webster, R. A. Reamer, R. D. Tillyer, E. J. J. Grabowski., Synlett., 2006, 3267-3270. 121. M. S. M. Ahmed, K. Kobayashi and A. Mori., Org. Lett., 2005, 7, 4487-4489. 122. B. S. Gerstenberger, M. R. Rauckhorst and J. T. Starr., Org. Lett., 2009, 11, 2097-2100. 123. M. S. M. Ahmed, K. Kobayashi and A. Mori, Org. Lett., 2005, 7, 4487-4489. 124. X. Deng, N. S. Mani., Org. Lett., 2008, 10, 1307-1310. 125. X. Deng and N. S. Mani, J. Org. Chem., 2008, 73, 2412-2415. 126. X. Deng and N. S. Mani., Org. Lett., 2006, 8, 3505-3508. 127. J.Hu, S.Chen,Y.Sun, J.Yang, Y.Rao., Org. Lett., 2012, 14, 5030-5033. 128. R . Martin, M. R. Rivero, S. L. Buchwald, Angew. Chem. Int. Ed., 2006, 45, 7079-7082. 129. O. Jackowski, T. Lecourt, L. Micouin., Org. Lett., 2011, 13, 5664-5667. 130. J. P. Waldo, S. Mehta, R. C. Larock., J. Org. Chem., 2008, 73, 6666-6670. 131. D. J. Babinski, H. R. Aguilar, R. Still, D. E. Frantz, J. Org. Chem., 2011, 76, 5915-5923.
  • 28. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 382 132. F. A. Rosa, P. Machado, P. S. Vargas, H. G. Bonacorso, N. Zanatta, M. A. P. Martins, Synlett., 2008, 1673-1678. 133. C. Ma, Y. Li, P. Wen, R. Yan, Z. Ren, G. Huang., Synlett., 2011, 1321-1323. 134. Y. Hari, S. Tsuchida, R. Sone, T. Aoyama., Synthesis., 2007, 3371-3375. 135. N. Nakamichi, Y. Kawashita, M. Hayashi., Synthesis., 2004, 1015-1020. 136. X. Xiong, Y. Jiang, D. Ma, Org. Lett., 2012, 14, 2552-2555. 137. B. C. Wray, J. P. Stambuli., Org. Lett., 2010, 12, 4576-4579. 138. C. Wu, Y. Fang, R. C. Larock, F. Shi., Org. Lett., 2010, 12, 2171-2173. 139. P. Li, C. Wu, J. Zhao, D. C. Rogness, F. Shi., J. Org. Chem., 2012, 77, 3127-3133. 140. P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, Org. Lett., 2011, 13, 3340-3343. 141. Z. Liu, F. Shi, P. D. G. Martinze, C. Raminelli, R. C. Larock., J. Org. Chem., 2008, 73, 219- 226. 142. M. R. Kumar, A. Park, N. Park, S. Lee., Org. Lett., 2011, 13, 3542-3545. 143. V. Lefebvre, T. Cailly, F. Fabis and S. Rault, J. Org. Chem., 2010, 75, 2730-2732. 144. Hongjian Song , Yuxiu Liu, Lixia Xiong , Yongqiang Li, Na Yang , and Qingmin Wang J. Agric. Food Chem., 2013, 61 (37), 8730–8736. 145. Majid M.Heravi, Mina Saeedi Yahya S. Beheshtiha, Hossein A. OskooieMo., Divers. 2011,15(1) , 239-243. 146. M. R. Shaaban, T.M.A. Eldebss, A .F.Darweesh and A.M.Farag., J. of Chemical Research., 2010, 8 -11. 147. M. R. Shaaban, T.M.A. Eldebss, A .F. Darweesh and A.M.Farag., J. Heterocyclic Chem. 2008, 45,1739. 148. Tamer S. Saleh, Taha M.A. Eldebss and Hassan M. Albishri., Ultrasonics Sonochemistry., 2012, 19, 49–55. 149. R. Levine and J.K.Sneed., J. Am. Chem. Soc., 1951, 73, 5614. 150. L. Fabbrini., Farmaco Ed. Sci., 1954, 9, 603. 151. M. Ferles, S. Kafka and A. Silkhankova., Coll. Czech. Chem. Commun., 1981, 46, 1167. 152. M. Ferles, R. Liboska and P. Trska., Coll. Czech. Chem. Commun., 1990, 55, 1228. 153. A. F. Rostom, Ibrahim M. El-Ashmawy, A. Heba, Abd El Razik, H. Mona, H. Badr, M.A. Hayam., Ashour Bioorganic & Medicinal Chemistry., 2009, 17(2), 882–895. 154. M.P.Claudio M. P. Pereira Frank H. Quina, Filipe A. N. Silva, Daniel J. Emmerich, and Amilcar Machulek Jr. Mini-Reviews in Organic Chemistry., 2008, 5, 331-335.
  • 29. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 383 155. Li Ming, Wen Lirong, Wang Xiao, Yao ChangCheng, Fu Weijun, Zhao Guilong, Hu Fangzhong & Yang Huazheng., Indian Journal of Chemistry.,2006, 45B, 483-488. 156. V.B. Birman and X.T. Jiang., Organic Letters., 2004, 6, 2369-2371. 157. Rita D Brandao, Jurgen Veeck, Koen K Van de Vijver, Patrick Lindsey, Bart de Vries,Catharina HMJ van Elssen, Marinus J Blok, Kristien Keymeulen, Torik Ayoubi, Hubert JM Smeets,Vivianne C Tjan-Heijnen and Pierre S Hupperets., Breast Cancer Research., 2013, 15, R29. 158. D. Mukherjee,S.E.Nissen,E.J.Topol.,JAMA.,2001,286(8),954-959. 159. J.K. Jenkins, P.J. Seligman., (2005-04-06). "Analysis and recommendations for Agency action regarding non-steroidal anti-inflammatory drugs and cardiovascular risk [decision memorandum]" (PDF). FDA Center for Drug Evaluation and Research 160. S. Haj-Dahmane, T. Jolas, A.M. Laporte., et al. European Journal of Pharmacology., 1994, 255 (1-3), 185–96. 161. Billy R. Martin, Raj K. Razdan, Anu Mahadevan., Pyrazole cannabinoid agonist and antagonists. US Patent 6509367, filed Sep 22, 2001, issued Jan 21, 2003. 162. J.Y. Shim, W.J. Welsh, E. Cartier, J.L. Edwards, A.C. Howlett., Journal of Medicinal Chemistry., 2002,45(7),1447-59. 163. M.E Francisco, H.H.Seltzman, A.F. Gilliam, R.A. Mitchell, S.L. Rider, R.G. Pertwee, L.A.Stevenson, B.F. Thomas., Journal of Medicinal Chemistry., 2002, 45(13), 2708-19. 164. T.M. Fong and S.B Heymsfield., Int J Obes (Lond)., 2009, 33 (9), 947–55. 165. D.P. Hurst, D.L. Lynch, J. Barnett-Norris, S.M. Hyatt, H.H.Seltzman., M. Zhong,Z.H. Song, J. Nie., Molecular Pharmacology.,2008,62(6),1274–87. 166. D. Hurst, U. Umejiego, D. Lynch, H. Seltzman, S. Hyatt, M. Roche, S. McAllister, D. Fleischer., et al., Journal of Medical Chemistry.,2006,49(20),5969–87. 167. W. Graham Thwaite Colin, C. Bower, Anne M. Hately., Danuta Swist-Swirski., 1996, 20(4), 177-191. 168. R. Lan, Q. Liu, P. Fan, et al. J Med Chem.,1999, 42, 769-776. 169. L.D.Wruble, A.J. Cummins, J. Goldenberg, H. Schapiro., Digestive Diseases and Sciences., 1967, 12(11), 1087–1090. 170. G. Stacher and Doris Starker., Journal List Gut.1974, 15(2), 974. 171. A. Brenchat, L.Romero, M. García, M. Pujol, J. Burgueno, A. Torrens, M. Hamon, J.M. Baeyens, H. Buschmann, D. Zamanillo, J.M. Vela.,Pain., 2009,141(3), 239–47. 172. A. Brenchat, M. Ejarque, D. Zamanillo, J.M. Vela, L. Romero., Journal of Pharmacological Sciences.,2007, 116 (4), 388–91. 173. D.C. Argentieri, D.M. Ritchie, M.P. Ferro, T. Kirchner, M.P. Wachter, D.W. Anderson, M.E. Rosenthale, R.J. Capetola., J Pharmacol Exp Ther., 1994, 271(3), 1399-408 174. http://www.ah.novartis.com/products/en/prac-tic_dog.shtml.
  • 30. Asian Journal of Biochemical and Pharmaceutical Research Issue 3 (Vol. 4) 2014 CODEN(USA) : AJBPAD 384 175. D.L. Millis, J.P. Weigel, T. Moyers, F.C. Buonomo., Vet Ther., 2002,3(4), 453-64. 176. European Public Assessment Report (EPAR): Trocoxil, European Medicines Agency 177. S.R.Cox, S.P. Lesman, J.F. Boucher, M.J. Krautmann, B.D. Hummel, M. Savides, S. Marsh., A. Fielder., et al., Journal of Veterinary Pharmacology and Therapeutics., 2010, 33(5),461–70. 178. I.F. Gaunt, F.M.B. Carpanini, Ida S. Kiss,P. Grasso., Food and Cosmetics Toxicology., 1971, 9(3), 343–353. 179. Food Standards Australia New Zealand. "Food Additives- Numerical List". Retrieved 2 December., 2009. 180. J .Current EU approved additives and their E Numbers", Food Standards Agency website, retrieved 15 Dec 201.1 181. MS Bhatia., Medical Journal Year., 1996, 9(8), 285-286. 182. V. Raymond-Delpech, K. Matsuda, B.M. Sattelle, J.J. Rauh, D.B. Sattelle., Invert Neurosci., 2005, 1-15 183. Ana Csuma, Cornelia Pirlog Medicamentul Veterinar / Veterinary Drug., 5(2), 2011. 184. Isopropylmethylpyrazolyl dimethylcarbamate at cameochemicals.noaa.gov. 185. Jia-Jia Liu, Juan Sun, Yun-Bin Fang, Yong-An Yang, Rui-Hua Jiao and Hai-Liang Zhu Org. Biomol. Chem., 2014, 12, 998-1008. 186. S. K. Mishraa, P. Majumdara, R. K. Beheraa & A. K.r Beheraa, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 2014 , 44, (1), 32-41. 187. K.O. Mohammed and Y. M. Nissan., Chemical Biology & Drug Design., 2014, 84(4), 473– 488, 188. J. Jaunzems , M.X. Braun, S. F. GmbH, H. B. Allee., 20, 30 189. Hannover., Germany Org. Process Res. Dev., 2014, 18(8), 1055–1059. 190. Jia-Jia Liu, Juan Sun, Yun-Bin Fang, Yong-An Yang, Rui-Hua Jiao and Hai-Liang Zhu Org. Biomol. Chem., 2014, 12, 998-1008. 191. M. Su, M. Tomas-Gamasaa and T. Carell., Chemical Science., 2014, S1, 001. 192. M. A Abdelgawad, K. RA Abdellatif and O. M. Ahmed., Medicinal Chemistry., 2014, S1,001. *Correspondence Author: Taha M.A Eldebss,, Department of Chemistry, Faculty of Science, University of Cairo, Giza 12613, Egypt View publication stats