Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 1
y
x
R
2


x
5
 
0
,
2
1
2
1
2
1
y
x
x
y




-1
4
R
1
2
x
y
2
2





y
x
x
y
x
y
y
x



 2
Adama Science And Technology University ( ASTU )
School Of Applied Natural Science, Applied Mathematics Department.
Applied Mathematics II (Math 1102) Solved Problems On Multiple Integrals.
1. Let be the region between the graphs of , the x-axis and the line . Show that is
simple.
Solution
is a vertically simple region between the graphs of and for .
i) is a horizontally simple region between the graphs of and for .
ii) From i) and ii), we conclude that is simple.
2. Let be the plane region between the graphs of the equations and . Show that R is
simple.
Solution
i) is a horizontally simple region between the graphs of and for .
ii) is a vertically simple region between the graphs of √ and √ and
between and √ .
iii) From i) and ii), we conclude that is simple.
3. Evaluate each of the following iterated double integrals.
a) dx
dy
xy
x
x
 

1
0
1
Solution
 
 
 
  










 1
0
1
0
2
2
2
1
0
1
1
2
2
1
dx
x
x
x
dx
y
x
dx
dy
xy
x
x
x
x
 
 

1
0
1
2
2
dx
x
x
 







1
0
2
2
1
dx
x
x
1
0
4
3
2
3










x
x
12
7

Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 2
0 2
R
x
Y
x
y 
 2
2
R
R
0
4
2

x
2
x
y
y
x



Y
x
b) dy
dx
x
  
3
1
3
0 2
9
2
Solution dy
x
dy
dx
x 
  














3
1
1
3
1
3
0 2
3
0
3
tan
3
1
2
9
2
dy
 


















 

3
1
1
1
3
0
tan
3
3
tan
3
2
   
 dy





3
1
1
1
0
tan
1
tan
3
2
 dy
 

3
1
0
4
3
2  dy


3
1
6

3


4. Evaluate  
 
R
xy
dA
e
x
x 1 if the triangular region bounded by the lines , and .
Solution
is a vertically simple region between the graphs of and
Thus,  
  




R
x
xy
xy
dx
dy
e
x
x
dA
e
x
x
2
0
2
0
)
1
(
1  
 






 
2
0
2
0
1 dx
e
x x
xy
 
 
 


 
2
0
2
)
1
(
1
2
dx
x
e
x x
x
 
  


 
2
0
2
0
2
)
1
(
1
2
dx
x
dx
e
x x
x
2
0
2
2
0
2
2
2
1 2

















 
x
x
e x
x
= 0
5.By reversing the order of integration, evaluate  
 
4
0
2
3
cos
y
dy
dx
x .
Solution:Note that it is impossible to evaluate the integral as it is. The plane region R is given as a
horizontally simple region between the graphs of √ and for .
As a vertically simple region, is a region between the graphs of and for .
Thus ,    
 
  
2
0 0
3
4
0
2
3
2
cos
cos
x
y
dx
dy
x
dy
dx
x   dx
y
x
x
 








2
0
0
3
2
)
(
cos
 


2
0
3
2
cos dx
x
x
  2
0
3
3
sin x

3
8
sin

Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 3
z
x
Y
R
4
Y
x
R
2
4 x
y 


2
4 x
y 


6. Find the volume of the solid region bounded by the paraboloid and the plane z = 4.
Solution The intersection of the paraboloid and the plane is the circle and this determines the
region .
and R is a vertically simple region between the graphs of √ and
√ for .
Volume 

R
dA
y
x
f
V )
,
(  







2
2
4
4
2
2
2
2
)
(
x
x
dx
dy
y
x  







2
2
4
4
2
2
2
2
)
(
x
x
dx
dy
y
x
dx
y
y
x x
x




 

















2
2
4
4
3
2 2
2
3
         dx
x
x
x
x
x
x
x
x
 





























2
2
2
2
2
2
2
2
2
2
4
4
3
1
4
4
4
3
1
4
    dx
x
x
x
x












2
2
2
2
2
2
4
4
3
1
4
2 dx
x
x
 














2
2
2
2
4
3
2
3
4
2
Let (trigonometric substitution)
Also and






d
cos
2
cos
2
)
sin
4
(
3
2
3
4
2 2
2
2
 












 





d








 2
2
2
2
2
cos
sin
3
8
cos
3
4
8
  





d


 2
2
2
2
2
cos
sin
2
cos
3
32
  





d



 2
2
2
2
2
)
cos
(
)
cos
1
(
2
cos
3
32
  




d


 2
2
4
2
cos
2
cos
3
3
32
2
2
3
8
3
sin
cos
8
3
sin
cos
4
1
2
2
2
sin
2
3
3
32
































 
8

7. Find the area of the plane region bounded by the graphs of and .
Solution
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 4
1
R 2
R
y
x
0 1
-1
x
y 2

 x
y 2

2
3 x
y 

2
9 x
y 

3
-3
3
x
Y
y
x
2
1
R
is a vertically simple region between the graphs of
and for .
is also a vertically simple region between the
graphs of and for 0 .
is also a vertically simple region between the graphs of and for 0 .
Area of is 

 


2
1
1
1
1
R
R
R
dA
dA
dA
A    







0
1
3
2
0
1
3
2
2 2
x
x
x
x
dx
dy
dx
dy
 



 

















0
1
1
0
3
2
3
2
2
2
dx
y
dx
y
x
x
x
x
 
   
 
 








0
1
1
0
2
2
)
2
(
3
)
2
(
3 dx
x
x
dx
x
x
 
 









0
1
1
0
2
2
)
3
2
(
3
2 dx
x
x
dx
x
x
3
5
3
5


3
10

8.Change the integral dx
dy
y
x
x
 



3
3
9
0 2
2
2
1
to an iterated integral in polar coordinates and evaluate it
Solution: is a vertically simple region between the graphs of and √ for
√
In polar coordinates, is a region between the polar graphs of for
Thus, 

d
dr
r
r
dx
dy
y
x
x



 
 


0
3
0
3
3
9
0 2
2
1
1
2


d
dr
 

0
3
0

3

9. Let be the region bounded by the circles and for
Evaluate  
 
R
dA
y
x2
.
Solution      
  



d
dr
r
r
r
dA
y
x
R
   


2
0
2
1
2
2
sin
cos
  



d
dr
r
r
r
  

2
0
2
1
2
2
sin
cos
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 5


r
 

 

2
1
r
Y
x
R
z
x
y
R
1

2

  



d
dr
r
r
  

2
0
2
1
2
2
3
sin
cos  



















2
0
2
1
3
4
2
3
)
(sin
4
)
(cos d
r
r
 











2
0
2
sin
3
7
cos
4
15
d  











 





2
0
sin
3
7
2
2
cos
1
4
15
d
 
 












2
0
sin
3
7
2
cos
1
8
15
d





2
0
2
0
cos
3
7
2
2
sin
8
15








 
4
15

10. Find the volume of the solid region bounded by the paraboloid and the plane
Solution :Note that we have solved this problem by using rectangular coordinates and we have seen how
tedious the calculation is.
is a region between the polar graphs of and for
 

 


R
R
dA
y
x
dA
y
x
f
V 2
2
)
,
(   



2
0
2
0
2
d
dr
r
r  



2
0
2
0
3
d
dr
r 

d
r
 








2
0
2
0
4
4
1


d


2
0
4


2
0
4
 
8

11. Find the area of the shaded region shown below.
Solution
Area or is
8
1
3
0
)
(
2
1
0


 



  


d
dr
r
dA
A
R
12. Find the surface area of the portion of the sphere that lies inside the cylinder
.
Solution
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 6
x
x
Y
x
R
 
0
,
2  
0
,
4
The surface is the sum of the surface and which are of equal surface areas. is the graph of the
function √ on where is the cylinder .
In polar coordinates, R is a region between the polar graphs of and
for ⁄ ⁄ .
Thus, the surface area S of is given by  
   
 
 


R
dA
y
x
fy
y
x
fx
S 1
,
,
2
2
2
√
and
√
 
























R
dA
y
x
y
y
x
x
S 1
16
16
2
2
2
2
2
2
2
 






R
dA
y
x
y
y
x
x
1
16
16
2 2
2
2
2
2
2
 


R
dA
y
x 2
2
16
4
2




d
dr
r
r
 


 2
2
cos
4
0 2
16
1
8   



d
r
 







 2
2
cos
4
0
2
16
8
  



d
r
 






 2
2
0
cos
4
2
16
8   



d
 




 




 


 2
2
2
2
cos
4
16
0
16
8
  



d



 2
2
2
cos
1
4
4
8
  ,
1
sin
1
32 2
2




d


 since 1
cos
sin 2
2

 
     








 







d
d 2
0
0
2
sin
1
sin
1
32
   













2
0
0
2
cos
cos
32





  
2
32 
 
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 7
2
x
y 

2
1
R
Y
x
0
x
x
y 
 2
13. Let be the plane region between the graphs of and . Find the moments of about
the x and the y axes. Also find the centroid of .
Solution
is a vertically simple region between the graphs of and for .
dx
dy
y
dA
y
M
R
x
x
x
x   



 2
1
0
2
2
dx
y x
x
x
 










2
1
0
2 2
2
2
   
 dx
x
x
x
 


 2
1
0
2
2
2
2
2
1
 dx
x
x
 
 2
1
0
2
3
2
2
1 2
1
0
3
4
3
2
2
1










x
x




















8
1
3
1
16
1
2
1
2
1








3
1
4
1
16
1
192
1


dx
dy
x
dA
x
M
R
x
x
x
y   



 2
1
0
2
2
  dx
xy
x
x
x
 










2
1
0
2
2
   
 dx
x
x
x
x
 


 2
1
0
2
2
  dx
x
x
x
 


 2
1
0
2
3
3
  dx
x
x
 

 2
1
0
2
3
2
2
1
0
3
4
3
2 










x
x















8
1
3
1
16
1
2
1









3
1
4
1
8
1
96
1

dx
y
dx
dy
dA
A
x
x
x
R
x
x
x 
   














2
1
0
2
1
0
2
2
2
2
   
 dx
x
x
x
 


 2
1
0
2
2
  dx
x
x
 

 2
1
0
2
2
2
1
0
2
3
2
3
2 










x
x















4
1
2
1
8
1
3
2
24
1

Hence , ,
Therefore, the center of gravity of is at the point ( )
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 8
D
z
x
Y
1
2
2
2


 z
y
x
1
2
2

 y
x
1
14. Evaluate the iterated triple integral dx
dy
dz
xyz
y
x
   
1
0
1
0
2
2
2
Solution : dx
dy
z
xy
dx
dy
dz
xyz
y
x
y
x  
   










1
0
1
0
2
2
1
0
1
0
2
2
2
2
2
2
)
(
  dx
dy
y
x
xy
  




 


1
0
1
0
2
2
2
2
dx
dy
xy
y
x
xy
  










1
0
1
0
3
3
2
2
2 dx
xy
y
x
xy
 
















1
0
1
0
4
2
3
2
8
4
dx
x
x
x
 










1
0
3
8
4
dx
x
x
 









1
0
3
4
4
7
8
3

15. Evaluate the iterated triple integral dy
dz
dx
z
x
z
y z
   
2
0 0
3
0 2
2
Solution : dy
dz
z
x
dy
dz
dx
z
x
z y z
y z
 
   
















2
0 0
3
0
1
2
0 0
3
0 2
2
tan    
  dy
dz
y
 




2
0 0
1
1
0
tan
3
tan
dy
dz
y
 

2
0 0 3

dy
z
y
 








2
0
0
3

dy
y


2
0
3

3
2

16. Evaluate  
D
dV
x
y 2
1 where is the region shown in the following figure.
Solution
It is sometimes advantageous to interchange the roles of and .In this example, we interchange the role
of and . is a solid region between the graphs of √ and on , where is a
simple region between the graphs of √ and √ for .
Therefore,    



 





D
x
x z
x
dx
dz
dy
x
y
dV
x
y
1
1
1
1
1
1
2
2
2
2 2
2
1
1
45
28
 (check !)
17. Evaluate 
D
y
dV
e where is the solid region bounded by the planes
and .
Solution : is composed of two subregions and .
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 9
x
y 
1

Y
x
1
1
R 2
R
1

y
x
y 

z
x
Y
D
R
2
2
4 y
x
z 



x
R
2
4 x
y 

0 2
Y
is a solid region between the graphs of and on where is a plane region between the
graphs of and for , while is a solid region between the graphs of
and on , where is a plane region between the graphs of and for .
Thus,  
 

1 2
D D
y
y
D
y
dV
e
dV
e
dV
e dx
dy
dz
e
dx
dy
dz
e y
x
y
y
x
y
  
   

 
1
0
1
0
0
1
1
0
   
2
2 


 e
e 4
2 
 e
18. Find the volume of the solid region bounded above by the circular paraboloid and
below by the plane and on the sides by the parabolic sheet and .
Solution : is a solid region between the graphs of and on , where is a
vertically simple plane region between the graphs of and for .
Thus,
 
   




D
x
x
y
x
dx
dy
dz
dV
V
1
0
4
2
2
2
2
1    
 
  



1
0
2
2
2
2
4
x
x
dx
dy
y
x
 
 
  


1
0
2
2
2
2
4
x
x
dx
dy
y
x
105
71
 (check!)
19. Express the triple integral as an iterated integral in cylindrical coordinates and evaluate it: 
D
dV
xz ,
where D is the portion of the ball that is the first octant.
Solution
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 10
z
x
Y
D 
r
S
In polar coordinates, is the region between the polar graphs of and for . Thus, in
cylindrical coordinates, is the region between the graphs of and √ for in .
Therefore,  
   


D
r
d
dr
dz
r
z
r
dV
z
x 2
0
2
0
4
0
2
cos


  
  

 2
0
2
0
4
0
2
2
cos



r
d
dr
dz
z
r
  


d
dr
z
r
r2
4
0
2
2
0
2
0
2
2
cos

 
   


d
dr
r
r 4
2
2
0
2
0
4
cos
2
1

   15
32
 (check!)
20. Let D be the solid region in the first octant bounded by the sphere and the planes
√ and Evaluate 
D
dV
z .
Solution
We first determine the ranges of and .
Since D is a first octant region , . √
√
( ) (
√
)
( )
Hence , Now ,since we have
   

D
d
d
d
dV
z 









4
6
2
0
2
4
0
sin
cos 








d
d
d
  

4
6
2
0
4
0
2
5
cos
sin








d
d
  
















4
6
2
0
4
0
2
7
cos
sin
7
2







d
d
sin
cos
7
256 4
6
2
0
 

63
128
 (check!)
21. Find the volume of the solid region bounded above by the sphere and below by the
upper nape of the cone .
Solution : √
, ,
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 11
R
3
Y
x
 
z
y
x ,
,
z
x
Y
D
R
x

Volume 

D
dV
V Thus ,   

 





2
0
4
0
2
0
2
sin d
d
d
V




 
d
d
  














2
0
4
0
2
0
3
sin
3



 
d
d
 

2
0
4
0
sin
3
8




d
 









2
0
4
0
cos
3
8
 





2
0
3
2
2
4
d
  
3
2
2
8 

22. Find the center of gravity of the solid region bounded above by the sphere and below
by the plane, is equal to the distance form to the z-axis.
Solution
is the solid region, in spherical coordinates given by
√ √ .
Mass :  


D
dV
z
y
x
m ,
,
  

D
dV
y
x 2
2
 
  

 







2
0
2
0
3
0
2
sin
sin d
d
d
  

 





2
0
2
0
3
0
2
3
sin d
d
d  

 



2
0
2
0
2
sin
4
81
d
d   




 

 



2
0
2
0 2
2
cos
1
4
81
d
d
 
  

 



2
0
2
0
2
cos
1
8
81
d
d 




d
 















2
0
2
0
2
2
sin
8
81



d


2
0 2
8
81


2
2
8
81


 2
8
81


We evaluate the three moments:
 


D
xy dV
z
y
x
z
M ,
,
    
  

 









2
0
2
0
3
0
2
sin
sin
cos d
d
d
  

 






2
0
2
0
3
0
2
4
cos
sin d
d
d  

 



2
0
2
0
2
cos
sin
5
243
d 



d
 
















2
0
2
0
3
3
sin
5
243
Applied Mathematics II Math 1102 ASTU
Solved Problems On Multiple Integrals Page 12




2
0
5
81
d
5
162

 


D
xz dV
z
y
x
y
M ,
,
    
  

 










2
0
2
0
3
0
2
sin
sin
sin
sin d
d
d
 
  

 






2
0
2
0
3
0
3
4
sin
sin d
d
d  

 




2
0
2
0
3
sin
sin
5
243
d
d
 
  

 





2
0
2
0
2
sin
sin
cos
1
5
243
d
d 





d
 


















2
0
2
0
3
sin
3
cos
cos
5
243





2
0
sin
5
162
d  


2
0
cos
5
162

 0

 


D
yz dV
z
y
x
x
M ,
,
    
  

 











2
0
2
0
3
0
2
sin
sin
cos
sin d
d
d
  

 






2
0
2
0
3
0
3
4
cos
sin d
d
d = 0 (Check !)
Center of gravity ( ) ( ) ( )

Applied Maths II ASTU (1).pdf calculus 2

  • 1.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 1 y x R 2   x 5   0 , 2 1 2 1 2 1 y x x y     -1 4 R 1 2 x y 2 2      y x x y x y y x     2 Adama Science And Technology University ( ASTU ) School Of Applied Natural Science, Applied Mathematics Department. Applied Mathematics II (Math 1102) Solved Problems On Multiple Integrals. 1. Let be the region between the graphs of , the x-axis and the line . Show that is simple. Solution is a vertically simple region between the graphs of and for . i) is a horizontally simple region between the graphs of and for . ii) From i) and ii), we conclude that is simple. 2. Let be the plane region between the graphs of the equations and . Show that R is simple. Solution i) is a horizontally simple region between the graphs of and for . ii) is a vertically simple region between the graphs of √ and √ and between and √ . iii) From i) and ii), we conclude that is simple. 3. Evaluate each of the following iterated double integrals. a) dx dy xy x x    1 0 1 Solution                     1 0 1 0 2 2 2 1 0 1 1 2 2 1 dx x x x dx y x dx dy xy x x x x      1 0 1 2 2 dx x x          1 0 2 2 1 dx x x 1 0 4 3 2 3           x x 12 7 
  • 2.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 2 0 2 R x Y x y   2 2 R R 0 4 2  x 2 x y y x    Y x b) dy dx x    3 1 3 0 2 9 2 Solution dy x dy dx x                   3 1 1 3 1 3 0 2 3 0 3 tan 3 1 2 9 2 dy                        3 1 1 1 3 0 tan 3 3 tan 3 2      dy      3 1 1 1 0 tan 1 tan 3 2  dy    3 1 0 4 3 2  dy   3 1 6  3   4. Evaluate     R xy dA e x x 1 if the triangular region bounded by the lines , and . Solution is a vertically simple region between the graphs of and Thus,          R x xy xy dx dy e x x dA e x x 2 0 2 0 ) 1 ( 1             2 0 2 0 1 dx e x x xy           2 0 2 ) 1 ( 1 2 dx x e x x x          2 0 2 0 2 ) 1 ( 1 2 dx x dx e x x x 2 0 2 2 0 2 2 2 1 2                    x x e x x = 0 5.By reversing the order of integration, evaluate     4 0 2 3 cos y dy dx x . Solution:Note that it is impossible to evaluate the integral as it is. The plane region R is given as a horizontally simple region between the graphs of √ and for . As a vertically simple region, is a region between the graphs of and for . Thus ,          2 0 0 3 4 0 2 3 2 cos cos x y dx dy x dy dx x   dx y x x           2 0 0 3 2 ) ( cos     2 0 3 2 cos dx x x   2 0 3 3 sin x  3 8 sin 
  • 3.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 3 z x Y R 4 Y x R 2 4 x y    2 4 x y    6. Find the volume of the solid region bounded by the paraboloid and the plane z = 4. Solution The intersection of the paraboloid and the plane is the circle and this determines the region . and R is a vertically simple region between the graphs of √ and √ for . Volume   R dA y x f V ) , (          2 2 4 4 2 2 2 2 ) ( x x dx dy y x          2 2 4 4 2 2 2 2 ) ( x x dx dy y x dx y y x x x                        2 2 4 4 3 2 2 2 3          dx x x x x x x x x                                2 2 2 2 2 2 2 2 2 2 4 4 3 1 4 4 4 3 1 4     dx x x x x             2 2 2 2 2 2 4 4 3 1 4 2 dx x x                 2 2 2 2 4 3 2 3 4 2 Let (trigonometric substitution) Also and       d cos 2 cos 2 ) sin 4 ( 3 2 3 4 2 2 2 2                      d          2 2 2 2 2 cos sin 3 8 cos 3 4 8         d    2 2 2 2 2 cos sin 2 cos 3 32         d     2 2 2 2 2 ) cos ( ) cos 1 ( 2 cos 3 32        d    2 2 4 2 cos 2 cos 3 3 32 2 2 3 8 3 sin cos 8 3 sin cos 4 1 2 2 2 sin 2 3 3 32                                   8  7. Find the area of the plane region bounded by the graphs of and . Solution
  • 4.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 4 1 R 2 R y x 0 1 -1 x y 2   x y 2  2 3 x y   2 9 x y   3 -3 3 x Y y x 2 1 R is a vertically simple region between the graphs of and for . is also a vertically simple region between the graphs of and for 0 . is also a vertically simple region between the graphs of and for 0 . Area of is       2 1 1 1 1 R R R dA dA dA A            0 1 3 2 0 1 3 2 2 2 x x x x dx dy dx dy                         0 1 1 0 3 2 3 2 2 2 dx y dx y x x x x                   0 1 1 0 2 2 ) 2 ( 3 ) 2 ( 3 dx x x dx x x              0 1 1 0 2 2 ) 3 2 ( 3 2 dx x x dx x x 3 5 3 5   3 10  8.Change the integral dx dy y x x      3 3 9 0 2 2 2 1 to an iterated integral in polar coordinates and evaluate it Solution: is a vertically simple region between the graphs of and √ for √ In polar coordinates, is a region between the polar graphs of for Thus,   d dr r r dx dy y x x          0 3 0 3 3 9 0 2 2 1 1 2   d dr    0 3 0  3  9. Let be the region bounded by the circles and for Evaluate     R dA y x2 . Solution             d dr r r r dA y x R       2 0 2 1 2 2 sin cos       d dr r r r     2 0 2 1 2 2 sin cos
  • 5.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 5   r       2 1 r Y x R z x y R 1  2        d dr r r     2 0 2 1 2 2 3 sin cos                      2 0 2 1 3 4 2 3 ) (sin 4 ) (cos d r r              2 0 2 sin 3 7 cos 4 15 d                     2 0 sin 3 7 2 2 cos 1 4 15 d                 2 0 sin 3 7 2 cos 1 8 15 d      2 0 2 0 cos 3 7 2 2 sin 8 15           4 15  10. Find the volume of the solid region bounded by the paraboloid and the plane Solution :Note that we have solved this problem by using rectangular coordinates and we have seen how tedious the calculation is. is a region between the polar graphs of and for        R R dA y x dA y x f V 2 2 ) , (       2 0 2 0 2 d dr r r      2 0 2 0 3 d dr r   d r           2 0 2 0 4 4 1   d   2 0 4   2 0 4   8  11. Find the area of the shaded region shown below. Solution Area or is 8 1 3 0 ) ( 2 1 0             d dr r dA A R 12. Find the surface area of the portion of the sphere that lies inside the cylinder . Solution
  • 6.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 6 x x Y x R   0 , 2   0 , 4 The surface is the sum of the surface and which are of equal surface areas. is the graph of the function √ on where is the cylinder . In polar coordinates, R is a region between the polar graphs of and for ⁄ ⁄ . Thus, the surface area S of is given by             R dA y x fy y x fx S 1 , , 2 2 2 √ and √                           R dA y x y y x x S 1 16 16 2 2 2 2 2 2 2         R dA y x y y x x 1 16 16 2 2 2 2 2 2 2     R dA y x 2 2 16 4 2     d dr r r      2 2 cos 4 0 2 16 1 8       d r           2 2 cos 4 0 2 16 8       d r          2 2 0 cos 4 2 16 8       d                  2 2 2 2 cos 4 16 0 16 8       d     2 2 2 cos 1 4 4 8   , 1 sin 1 32 2 2     d    since 1 cos sin 2 2                           d d 2 0 0 2 sin 1 sin 1 32                  2 0 0 2 cos cos 32         2 32   
  • 7.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 7 2 x y   2 1 R Y x 0 x x y   2 13. Let be the plane region between the graphs of and . Find the moments of about the x and the y axes. Also find the centroid of . Solution is a vertically simple region between the graphs of and for . dx dy y dA y M R x x x x        2 1 0 2 2 dx y x x x             2 1 0 2 2 2 2      dx x x x      2 1 0 2 2 2 2 2 1  dx x x    2 1 0 2 3 2 2 1 2 1 0 3 4 3 2 2 1           x x                     8 1 3 1 16 1 2 1 2 1         3 1 4 1 16 1 192 1   dx dy x dA x M R x x x y        2 1 0 2 2   dx xy x x x             2 1 0 2 2      dx x x x x      2 1 0 2 2   dx x x x      2 1 0 2 3 3   dx x x     2 1 0 2 3 2 2 1 0 3 4 3 2            x x                8 1 3 1 16 1 2 1          3 1 4 1 8 1 96 1  dx y dx dy dA A x x x R x x x                    2 1 0 2 1 0 2 2 2 2      dx x x x      2 1 0 2 2   dx x x     2 1 0 2 2 2 1 0 2 3 2 3 2            x x                4 1 2 1 8 1 3 2 24 1  Hence , , Therefore, the center of gravity of is at the point ( )
  • 8.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 8 D z x Y 1 2 2 2    z y x 1 2 2   y x 1 14. Evaluate the iterated triple integral dx dy dz xyz y x     1 0 1 0 2 2 2 Solution : dx dy z xy dx dy dz xyz y x y x                 1 0 1 0 2 2 1 0 1 0 2 2 2 2 2 2 ) (   dx dy y x xy            1 0 1 0 2 2 2 2 dx dy xy y x xy              1 0 1 0 3 3 2 2 2 dx xy y x xy                   1 0 1 0 4 2 3 2 8 4 dx x x x             1 0 3 8 4 dx x x            1 0 3 4 4 7 8 3  15. Evaluate the iterated triple integral dy dz dx z x z y z     2 0 0 3 0 2 2 Solution : dy dz z x dy dz dx z x z y z y z                       2 0 0 3 0 1 2 0 0 3 0 2 2 tan       dy dz y       2 0 0 1 1 0 tan 3 tan dy dz y    2 0 0 3  dy z y           2 0 0 3  dy y   2 0 3  3 2  16. Evaluate   D dV x y 2 1 where is the region shown in the following figure. Solution It is sometimes advantageous to interchange the roles of and .In this example, we interchange the role of and . is a solid region between the graphs of √ and on , where is a simple region between the graphs of √ and √ for . Therefore,               D x x z x dx dz dy x y dV x y 1 1 1 1 1 1 2 2 2 2 2 2 1 1 45 28  (check !) 17. Evaluate  D y dV e where is the solid region bounded by the planes and . Solution : is composed of two subregions and .
  • 9.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 9 x y  1  Y x 1 1 R 2 R 1  y x y   z x Y D R 2 2 4 y x z     x R 2 4 x y   0 2 Y is a solid region between the graphs of and on where is a plane region between the graphs of and for , while is a solid region between the graphs of and on , where is a plane region between the graphs of and for . Thus,      1 2 D D y y D y dV e dV e dV e dx dy dz e dx dy dz e y x y y x y           1 0 1 0 0 1 1 0     2 2     e e 4 2   e 18. Find the volume of the solid region bounded above by the circular paraboloid and below by the plane and on the sides by the parabolic sheet and . Solution : is a solid region between the graphs of and on , where is a vertically simple plane region between the graphs of and for . Thus,           D x x y x dx dy dz dV V 1 0 4 2 2 2 2 1             1 0 2 2 2 2 4 x x dx dy y x          1 0 2 2 2 2 4 x x dx dy y x 105 71  (check!) 19. Express the triple integral as an iterated integral in cylindrical coordinates and evaluate it:  D dV xz , where D is the portion of the ball that is the first octant. Solution
  • 10.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 10 z x Y D  r S In polar coordinates, is the region between the polar graphs of and for . Thus, in cylindrical coordinates, is the region between the graphs of and √ for in . Therefore,         D r d dr dz r z r dV z x 2 0 2 0 4 0 2 cos           2 0 2 0 4 0 2 2 cos    r d dr dz z r      d dr z r r2 4 0 2 2 0 2 0 2 2 cos          d dr r r 4 2 2 0 2 0 4 cos 2 1     15 32  (check!) 20. Let D be the solid region in the first octant bounded by the sphere and the planes √ and Evaluate  D dV z . Solution We first determine the ranges of and . Since D is a first octant region , . √ √ ( ) ( √ ) ( ) Hence , Now ,since we have      D d d d dV z           4 6 2 0 2 4 0 sin cos          d d d     4 6 2 0 4 0 2 5 cos sin         d d                    4 6 2 0 4 0 2 7 cos sin 7 2        d d sin cos 7 256 4 6 2 0    63 128  (check!) 21. Find the volume of the solid region bounded above by the sphere and below by the upper nape of the cone . Solution : √ , ,
  • 11.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 11 R 3 Y x   z y x , , z x Y D R x  Volume   D dV V Thus ,            2 0 4 0 2 0 2 sin d d d V       d d                  2 0 4 0 2 0 3 sin 3      d d    2 0 4 0 sin 3 8     d            2 0 4 0 cos 3 8        2 0 3 2 2 4 d    3 2 2 8   22. Find the center of gravity of the solid region bounded above by the sphere and below by the plane, is equal to the distance form to the z-axis. Solution is the solid region, in spherical coordinates given by √ √ . Mass :     D dV z y x m , ,     D dV y x 2 2                2 0 2 0 3 0 2 sin sin d d d            2 0 2 0 3 0 2 3 sin d d d         2 0 2 0 2 sin 4 81 d d                2 0 2 0 2 2 cos 1 4 81 d d            2 0 2 0 2 cos 1 8 81 d d      d                  2 0 2 0 2 2 sin 8 81    d   2 0 2 8 81   2 2 8 81    2 8 81   We evaluate the three moments:     D xy dV z y x z M , ,                     2 0 2 0 3 0 2 sin sin cos d d d             2 0 2 0 3 0 2 4 cos sin d d d         2 0 2 0 2 cos sin 5 243 d     d                   2 0 2 0 3 3 sin 5 243
  • 12.
    Applied Mathematics IIMath 1102 ASTU Solved Problems On Multiple Integrals Page 12     2 0 5 81 d 5 162      D xz dV z y x y M , ,                      2 0 2 0 3 0 2 sin sin sin sin d d d               2 0 2 0 3 0 3 4 sin sin d d d          2 0 2 0 3 sin sin 5 243 d d              2 0 2 0 2 sin sin cos 1 5 243 d d       d                     2 0 2 0 3 sin 3 cos cos 5 243      2 0 sin 5 162 d     2 0 cos 5 162   0      D yz dV z y x x M , ,                       2 0 2 0 3 0 2 sin sin cos sin d d d             2 0 2 0 3 0 3 4 cos sin d d d = 0 (Check !) Center of gravity ( ) ( ) ( )