SlideShare a Scribd company logo
1 of 22
Download to read offline
APPLICATIONS OF
THERMODYNAMICS
Gate, IES Notes
SouMyth
Contents
Vapour power cycles...........................................................................................................................................................................................2
Specific steam consumption ..................................................................................................................................................................2
Significance of SSC.....................................................................................................................................................................................2
Work Ratio....................................................................................................................................................................................................2
Back work Ratio .........................................................................................................................................................................................2
Carnot Vapour power cycles ......................................................................................................................................................................3
Drawbacks of Carnot vapour power cycles.....................................................................................................................................3
Rankine cycle ...............................................................................................................................................................................................3
Analysis of the Cycles................................................................................................................................................................................4
Methods of improving performance of simple rankine cycle .......................................................................................................5
Increasing Boiler pressure .....................................................................................................................................................................5
Super Heating..............................................................................................................................................................................................5
Reheating.......................................................................................................................................................................................................6
Regeneration................................................................................................................................................................................................6
Gas power cycles...................................................................................................................................................................................................8
Otto Cycle.......................................................................................................................................................................................................8
Advantages of I.C engines.......................................................................................................................................................................8
Engine nomenclature....................................................................................................................................................................................8
Air Standard Cycles..........................................................................................................................................................................................10
Otto Cycle.........................................................................................................................................................................................................10
Diesel cycle......................................................................................................................................................................................................11
Comparison of Otto and diesel cycles .............................................................................................................................................12
Dual cycle.........................................................................................................................................................................................................13
Engine Performance Parameters..........................................................................................................................................................13
Gas turbines.........................................................................................................................................................................................................15
Gas turbine cycles....................................................................................................................................................................................15
Analysis of a simple gas turbine cycle............................................................................................................................................16
Efficiency of simple gas turbine cycle.............................................................................................................................................17
Methods of improving the performance of gas turbine cycle...............................................................................................18
Vapour power cycles
Reasons for using water as working fluid
1. It’s cheap
2. It’s chemically stable
3. It’s not toxic
Selection of a power plant
Efforts to improve efficiency and thereby reducing the running cost or operating cost may be desirable, but this
would lead to increase initial cist and hence efforts must be taken to optimize total cost.
Specific steam consumption
It is steam consumed for producing unit output of power.
β†’ 𝑆𝑆𝐢 =
π‘šΜ‡ 𝑠
𝑃 𝑁𝑒𝑑
=
π‘šΜ‡ 𝑠
π‘šΜ‡ 𝑠 Γ— π‘Šπ‘π‘’π‘‘
=
1
π‘Šπ‘π‘’π‘‘
π‘˜π‘”
𝐾𝐽
β†’ 𝑆𝑆𝐢 =
3600
π‘Šπ‘π‘’π‘‘
π‘˜π‘”
πΎπ‘Š β„Žπ‘Ÿ
Significance of SSC
SSC indicates the size of plant, smaller the SSC larger is the net work and hence for developing given power, mass
flow rate of steam must be less.
Smaller the SSC, lesser I the size of plant and hence such plants are preferable.
Work Ratio
It is the ratio of net work to the positive work.
β†’ 𝛾 𝑀 =
π‘Šπ‘π‘’π‘‘
π‘Š+𝑣𝑒
β†’ 𝛾 𝑀 =
π‘Š+𝑣𝑒 βˆ’ π‘Šβˆ’π‘£π‘’
π‘Š+𝑣𝑒
= 1 βˆ’
π‘Šβˆ’π‘£π‘’
π‘Š+𝑣𝑒
β†’ 𝛾 𝑀 π‘™π‘–π‘žπ‘’π‘–π‘‘
= 1 βˆ’
π‘Šπ‘π‘’π‘šπ‘
π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’
β†’ 𝛾 𝑀 π‘”π‘Žπ‘ 
= 1 βˆ’
π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ
π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’
Work done by compressor is much higher than pump, so Work ratio for liquid power cycles is greater than gas
power cycles.
Power plants with high work ratios are preferable.
The work ratio is highest for rankine cycles among all other cycles, this is because of less work done by pump in
rankine cycle.
In case of gas turbine power plants, the work ratio is about 0.4 – 0.6 i.e., in gas turbine power plants compressors
consumes 40 – 60% of turbine work.
In Rankine cycle, work ratio is about 0.96 – 0.98, i.e., I rankine cycle, pump consumes 2-4 % of turbine work.
Back work Ratio
It’s the ratio of negative work to positive work.
β†’ 𝛾 𝑏𝑀 =
π‘Šβˆ’π‘£π‘’
π‘Š+𝑣𝑒
β†’ 𝛾 𝑀 = 1 βˆ’ 𝛾 𝑏𝑀
Carnot Vapour power cycles
Drawbacks of Carnot vapour power cycles
1. Saturated vapour which is entering turbine at 1 leaves ar 2, which is in wet region. The liquid which is
present at state 2 may damage turbine blades due to high velocity.
2. It is difficult to design a condenser that stops suddenly at point 3.
3. It’s difficult to design a compressor which handles both liquid and
vapour.
4. As Carnot vapour cycle uses compressor, the compressor work is large
and hence net work is less.
β†’ πœ‚ =
𝑄 𝑆 βˆ’ 𝑄 𝑅
𝑄𝑠
= 1 βˆ’
𝑄 𝑅
𝑄 𝑆
β†’ πœ‚ = 1 βˆ’
𝑇𝑙 βˆ™ 𝑑𝑆
π‘‡β„Ž βˆ™ 𝑑𝑆
β†’ πœ‚ = 1 βˆ’
𝑇𝑙
π‘‡β„Ž
Rankine cycle
β†’ πœ‚ =
π‘Šπ‘π‘’π‘‘
𝑄𝑠
=
π‘Šπ‘‡ βˆ’ π‘Šπ‘ƒ
𝑄𝑠
1 βˆ’ 2 ⟹ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π‘Žπ‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑒π‘₯π‘π‘Žπ‘›π‘ π‘–π‘œπ‘› (π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’)
2 βˆ’ 3 ⟹ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘–π‘œπ‘› (πΆπ‘œπ‘›π‘‘π‘’π‘›π‘ π‘œπ‘Ÿ)
3 βˆ’ 4 ⟹ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› (π‘ƒπ‘’π‘šπ‘)
4 βˆ’ 1 ⟹ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ β„Žπ‘’π‘Žπ‘‘ 𝑠𝑒𝑝𝑝𝑙𝑦 (π΅π‘œπ‘–π‘™π‘’π‘Ÿ)
Analysis of the Cycles
Assumptions
1. Each device is treated as steady flow device.
2. Kinetic and potential energy changes are neglected.
β†’ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = β„Ž1 βˆ’ β„Ž2
β†’ 𝑄 π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘’π‘‘ = β„Ž2 βˆ’ β„Ž3
β†’ π‘Šπ‘π‘’π‘šπ‘ = β„Ž4 βˆ’ β„Ž3
We know that open system work is -Vβˆ™ dP, this equation is applicable when the flow is steady, K.E and P.E
changes are neglected and when the process is reversible.
Steady flow equations can be applied to reversible and irreversible processes. If the pumping process is
reversible, then work obtained from Steady flow energy equation and work equal to -Vβˆ™dP can be equated.
β†’ π‘Šπ‘π‘’π‘šπ‘ = β„Ž3 βˆ’ β„Ž4 = βˆ’π‘‰ βˆ™ 𝑑𝑃
β†’ 𝑄𝑠𝑒𝑝𝑝𝑙𝑖𝑒𝑑 = β„Ž1 βˆ’ β„Ž4
β†’ πœ‚ =
π‘Šπ‘‡ βˆ’ π‘Šπ‘ƒ
𝑄𝑠
=
(β„Ž1 βˆ’ β„Ž2) βˆ’ (β„Ž4 βˆ’ β„Ž3)
β„Ž1 βˆ’ β„Ž4
Reason for higher efficiency of Carnot cycle compared to rankine cycle
1 βˆ’ 2 βˆ’ 3 βˆ’ 4 ⟹ π‘…π‘Žπ‘›π‘˜π‘–π‘›π‘’ 𝑐𝑦𝑐𝑙𝑒
1 βˆ’ 2 βˆ’ 3β€²
βˆ’ 4β€²
⟹ πΆπ‘Žπ‘Ÿπ‘›π‘œπ‘‘ 𝑐𝑦𝑐𝑙𝑒
β†’ πœ‚ π‘π‘Žπ‘Ÿπ‘›π‘œπ‘‘ = 1 βˆ’
π‘‡β„Ž
𝑇𝑙
β†’ πœ‚ = 𝑓(𝑇 π‘š)
β†’ 𝑄𝑠 = β„Ž1 βˆ’ β„Ž4 = 𝑇 π‘š βˆ™ 𝑑𝑆 ⟹ 𝑇 π‘š =
β„Ž1 βˆ’ β„Ž4
𝑑𝑆
β†’ πœ‚ = 1 βˆ’
𝑄 𝑅
𝑄𝑠
= 1 βˆ’
𝑇𝑙 βˆ™ 𝑑𝑆
𝑇 π‘š βˆ™ 𝑑𝑆
β†’ πœ‚ π‘Ÿπ‘Žπ‘›π‘˜π‘–π‘›π‘’ = 1 βˆ’
𝑇𝑙
𝑇 π‘š
In Carnot cycle, complete heat is added at single fixed temperature (Th), where as in rankine cycle, some heat is
added at a temperature lower than Th and remaining heat is added at Th. therefore mean temperature of heat
addition is less in rankine cycle, compared to Carnot cycle therefore the efficiency of rankine cycle is less than
Carnot cycle.
If the mean temperature of heat addition will be more, the efficiency will be more.
Parameter Carnot Rankine
Tm more less
Ξ· more less
WNet less more
SSC more less
Size of Plant large small
Ξ³w less more
Methods of improving performance of simple rankine cycle
Increasing Boiler pressure
Effects of increasing boiler pressure
1. Increase in turbine work
2. Increase in pump work
3. Increase in net work
4. Decrease in SSC
5. Decrease in heat rejection
6. Decrease in heat supply
7. Increase in mean temperature of heat addition
8. Increase in efficiency
9. Decrease in dryness fraction at the turbine exit.
Note-
Due to decrease in dryness fraction at the turbine exit, the boiler pressure is limited.
Super Heating
Effects of Superheating
1. Increase in Turbine work
2. No change in pump work
3. Increase in Net work
4. Decrease in SSC
5. Increase in mean temperature of heat addition
6. Increase in efficiency
7. Increase in heat supply
8. Increase in heat rejection
9. Increase in dryness fraction at turbine exit
Note
There is a limit to superheating because of metallurgical conditions i.e., steam turbine blades can resist up to
620⁰C.
Reheating
Effects of Reheating
1. Increase in dryness fraction
2. Increase in turbine work
3. Increase in net work
4. Decrease in SSC.
5. Efficiency may increase or decrease.
Reheating in steam turbine may increase or decrease he efficiency if steam is expanded deeply in first
turbine and then reheated, the mean temperature may decrease hence the efficiency decreases.
In most of the practically reheat cycles, the steam is expanded slightly in first turbine and then
reheated, this increases the mean temperature of heat addition and also the efficiency of the cycle.
πœ‚ =
(β„Ž1 βˆ’ β„Ž2) + (β„Ž3 βˆ’ β„Ž4) βˆ’ (β„Ž6 βˆ’ β„Ž5)
(β„Ž1 βˆ’ β„Ž6) + (β„Ž3 βˆ’ β„Ž2)
Regeneration
Effects of regeneration
1. Decrease in turbine work due to decrease in mass.
2. Reduction in condenser load
3. Reduction in heat supply
4. Increase in mean temperature of heat addition
5. Increase in efficiency
π‘Šπ‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ = (β„Ž1 βˆ’ β„Ž2) + (1 βˆ’ 𝑦) βˆ™ (β„Ž2 βˆ’ β„Ž3)
π‘Šπ‘π‘’π‘šπ‘ = (1 βˆ’ 𝑦) βˆ™ (β„Ž5 βˆ’ β„Ž4) + (β„Ž7 βˆ’ β„Ž6)
π‘Šπ‘π‘’π‘‘ = π‘Šπ‘‡ βˆ’ π‘Šπ‘
𝑄𝑠 = β„Ž1 βˆ’ β„Ž7
𝑄 𝑅 = (1 βˆ’ 𝑦) βˆ™ (β„Ž3 βˆ’ β„Ž4)
πœ‚ =
π‘Šπ‘π‘’π‘‘
𝑄 𝑆
𝑦 βˆ™ β„Ž2 + (1 βˆ’ 𝑦) βˆ™ β„Ž5 = β„Ž6
Ideal regenerative Rankine cycle leads to Carnot cycle.
Need of Condenser in steam power plants
If no condenser is used and if steam is allowed to expand to atmospheric pressure. The saturation temperature
at 1 bar is 100⁰C, therefore of no condenser is used, steam leaves the turbine at higher temperature and this
energy becomes useless.
By using condenser steam can be allowed to expand to lower temperature and thereby more turbine work can
be obtained, this results in higher efficiency. Therefore, condensers are used to increase turbine work and
efficiency.
Isentropic or adiabatic efficiency of turbine
It is ratio of actual work to isentropic work
β†’ π‘Šπ‘Žπ‘π‘‘π‘’π‘Žπ‘™ = β„Ž1 βˆ’ β„Ž2
β†’ π‘Šπ‘–π‘ π‘’π‘› = β„Ž1 βˆ’ β„Ž2𝑠
β†’ πœ‚ 𝑇 =
β„Ž1 βˆ’ β„Ž2
β„Ž1 βˆ’ β„Ž2𝑠
Isentropic efficiency of a pump or compressor
It is ratio of actual work to isentropic work
β†’ π‘Šπ‘Žπ‘π‘‘π‘’π‘Žπ‘™ = β„Ž2 βˆ’ β„Ž1
β†’ π‘Šπ‘–π‘ π‘’π‘› = β„Ž2𝑠 βˆ’ β„Ž1
β†’ πœ‚ 𝑇 =
β„Ž2𝑠 βˆ’ β„Ž1
β„Ž2 βˆ’ β„Ž1
Gas power cycles
Otto Cycle
Engine is a device which converts one form of energy into other useful form.
Based on combustion, engines are classified into
1. Internal combustion engines (I.C engines)
2. External combustion engines (E.C engines)
In I.C engines, burning or combustion occurs in cylinder and power is also developed in same cylinder.
In E.C engines, heat is transferred from products of combustion to working fluid.
Heat engine is a device which converts chemical energy of fuel into heat energy and subsequently this heat
energy is converted into mechanical power.
Advantages of I.C engines
1. Mechanical simplicity
2. Low initial cost due to absence of boiler, turbine, condenser etc...
3. High efficiency
4. High power to weight ratio
Engine nomenclature
Top dead centre
It’s the dead centre when the piston is farthest from crank shaft. In case of horizontal engines TDC is known as
Inner dead centre.
Bottom dead centre
It’s the dead centre when the piston is nearest to crank shaft. In case of horizontal engines, it is known as outer
dead centre.
Stroke or stroke length
Distance between TDC and BDC is known as stroke length.
Displacement volume or stroke volume or swept volume
It’s the volume swept by a piston
𝑉𝑠 =
πœ‹
4
𝐷2
𝐿 βˆ™ π‘˜
𝐷 β†’ πΌπ‘›π‘›π‘’π‘Ÿ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿ 𝐿 β†’ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’ π‘™π‘’π‘›π‘”π‘‘β„Ž π‘˜ β†’ π‘›π‘œ. π‘œπ‘“ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿπ‘ 
Clearance volume
It’s the volume of cylinder when piston is at top dead centre or Inner Dead centre.
Clearance volume is provided to accommodate valves and to prevent damage to valves.
Compression ratio (Ξ³)
It’s defined as ratio of volume before compression to volume after compression.
𝛾 =
π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘π‘’π‘“π‘œπ‘Ÿπ‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘›
π‘£π‘œπ‘™π‘’π‘šπ‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘›
𝛾 =
𝑉1
𝑉2
=
𝑉𝑐 + 𝑉𝑠
𝑉𝑠
= 1 +
𝑉𝑐
𝑉𝑠
𝛾 = 1 +
𝑉𝑐
𝑉𝑠
Mean Piston Speed
In one stroke the shaft completes half revolution (180⁰C). therefore, piston covers 2L in 1 revolution.
β†’ π‘€π‘’π‘Žπ‘› π‘π‘–π‘ π‘‘π‘œπ‘› 𝑠𝑝𝑒𝑒𝑑 =
2𝐿𝑁
60
Air Standard Cycles
Assumptions
1. Working fluid is air and it’s treated as Ideal gas
2. Specific heat cp, cv are assumed as constants.
3. Working fluids is of fixed mass (liquid system analysis)
4. Working fluid doesn’t undergo any chemical reaction that is of constant chemical composition
throughout cycle.
5. All processes are assumed to be reversible (internally reversible).
Generally, cp & cv of air are taken as 25⁰C⁰this analysis is known as cold air cycle analysis.
Otto Cycle
1 βˆ’ 2 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘›
2 βˆ’ 3 β†’ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘£π‘œπ‘™π‘’π‘šπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘œπ‘›
3 βˆ’ 4 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑒π‘₯π‘π‘Žπ‘›π‘ π‘–π‘œπ‘›
4 βˆ’ 1 β†’ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘£π‘œπ‘™π‘’π‘šπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘–π‘œπ‘›
β†’ 𝛾 =
𝑉1
𝑉2
β†’ πœ‚ = 1 βˆ’
𝑄 π‘Ÿ
𝑄𝑠
β†’ 𝑄23 = 𝑄𝑠 = π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇3 βˆ’ 𝑇2)
β†’ 𝑄41 = 𝑄 π‘Ÿ = π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1)
β†’ πœ‚ = 1 βˆ’
π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1)
π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇3 βˆ’ 𝑇2)
= 1 βˆ’
(𝑇4 βˆ’ 𝑇1)
(𝑇3 βˆ’ 𝑇2)
= 1 βˆ’
𝑇1 (
𝑇4
𝑇1
βˆ’ 1)
𝑇2 (
𝑇3
𝑇2
βˆ’ 1)
(
𝑇2
𝑇1
= π‘Ÿ π›Ύβˆ’1
=
𝑇3
𝑇4
⟹
𝑇4
𝑇1
=
𝑇3
𝑇2
)
πœ‚ = 1 βˆ’
𝑇1
𝑇2
= 1 βˆ’
1
π‘Ÿ π›Ύβˆ’1
Significance of compression ratio
Compression ratio is an indicator of efficiency of engine, greater the compression ratio greater is the efficiency.
This is because if compression ratio is high there will be more scope for expansion and net-work will be more.
Therefore, for a given heat supply if compression ratio is more, the efficiency will be more.
πœ‚ ∝ π‘Ÿ (π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œ)
Mean effective pressure
It’s hypothetical (imaginary) pressure which gives same net-work as that of actual cycle for swept volume (same
size of engine).
β†’ π‘Šπ‘π‘’π‘‘ = π‘ƒπ‘š βˆ™ 𝑉𝑠
β†’ 𝑃 𝑀 =
π‘Šπ‘π‘’π‘‘
𝑉𝑠
The mean effective pressure of Otto cycle can be expressed as
π‘ƒπ‘š =
πœ‚ π‘‘β„Ž Β· π›₯𝑃
(𝛾 βˆ’ 1) Β· (π‘Ÿ βˆ’ 1)
Significance of Pm
This term is used for comparing different engines of same size. That is engines with higher mean effective
pressure have more net-work and for a given heat input greater the mean effective pressure, greater is
efficiency.
Diesel cycle
1 βˆ’ 2 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘›
2 βˆ’ 3 β†’ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘œπ‘›
3 βˆ’ 4 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑒π‘₯π‘π‘Žπ‘›π‘–π‘ π‘œπ‘›
4 βˆ’ 1 β†’ πΆπ‘œπ‘ π‘›π‘‘π‘Žπ‘›π‘‘ π‘‰π‘œπ‘™π‘’π‘šπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘–π‘œπ‘›
β†’ πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› (π‘Ÿ) =
𝑉1
𝑉2
β†’ πΆπ‘’π‘‘π‘œπ‘“π‘“ π‘Ÿπ‘Žπ‘‘π‘–π‘œ (π‘Ÿπ‘) =
𝑉3
𝑉2
=
𝑇3
𝑇2
β†’ 𝐸π‘₯π‘π‘Žπ‘›π‘–π‘ π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œ (π‘Ÿπ‘’) =
𝑉4
𝑉3
=
𝑉1
𝑉3
β†’ π‘Ÿπ‘ βˆ™ π‘Ÿπ‘’ = π‘Ÿ
β†’ πœ‚ =
π‘Šπ‘›π‘’π‘‘
𝑄𝑠
=
𝑄 𝑁𝑒𝑑
𝑄𝑠
=
𝑄𝑠 βˆ’ 𝑄 π‘Ÿ
𝑄𝑠
= 1 βˆ’
𝑄 π‘Ÿ
𝑄𝑠
β†’ 𝑄23 = 𝑄𝑠 = π‘š βˆ™ 𝑐 𝑝 βˆ™ (𝑇3 βˆ’ 𝑇2)
β†’ 𝑄41 = 𝑄 π‘Ÿ = π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1)
β†’ πœ‚ = 1 βˆ’
π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1)
π‘š βˆ™ 𝑐 𝑝 βˆ™ (𝑇3 βˆ’ 𝑇2)
= 1 βˆ’
𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1)
𝑐 𝑝 βˆ™ (𝑇3 βˆ’ 𝑇2)
= 1 βˆ’
1
𝛾
βˆ™
𝑇1 (
𝑇4
𝑇1
βˆ’ 1)
𝑇2 (
𝑇3
𝑇2
βˆ’ 1)
(
𝑇2
𝑇1
= π‘Ÿ π›Ύβˆ’1
) (
𝑉3
𝑉2
=
𝑇3
𝑇2
= π‘Ÿπ‘) (
𝑇4
𝑇1
= π‘Ÿπ‘
𝛾
)
β†’ πœ‚ = 1 βˆ’
1
𝛾
βˆ™
1
π‘Ÿ π›Ύβˆ’1
βˆ™
π‘Ÿπ‘
𝛾
βˆ’ 1
π‘Ÿπ‘ βˆ’ 1
Efficiency of a diesel cycle depends on compression ratio and cut-off ratio.
Efficiency of a diesel cycle increases with increase in compression ratio.
Effect of cut-off ratio (rc) on efficiency of diesel cycle
With increase in cut off ratio, both heat supply and heat rejection increases, but the
increase in heat rejection is more, because heat rejection occurs at constant volume
and heat supply occurs ar constant pressure and the slope of constant volume is
greater than slope of constant pressure curve.
Comparison of Otto and diesel cycles
Case 1- Same compression ratio and heat supply
πœ‚ = 1 βˆ’
𝑄 𝑅
𝑄 𝑆
For the same compression ratio and heat supply, rejection is more in diesel
cycle and hence efficiency of Otto cycle is more than efficiency of diesel cycle.
π‘‚π‘‘π‘‘π‘œ β†’ 𝑄𝑠 = 𝑄 𝑉 = π‘‘π‘ˆ = π‘š Β· 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2)
𝐷𝑖𝑒𝑠𝑒𝑙 β†’ 𝑄𝑠 = 𝑄 𝑃 = 𝑑𝐻 = π‘š Β· 𝑐 𝑝 Β· (𝑇3
β€²
βˆ’ 𝑇2)
𝑄𝑠 𝑢𝒕𝒕𝒐 = 𝑄𝑠 π‘«π’Šπ’†π’”π’†π’ ⟹ π‘š Β· 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) = π‘š Β· 𝑐 𝑝 Β· (𝑇3
β€²
βˆ’ 𝑇2)
𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) = 𝑐 𝑝 Β· (𝑇3
β€²
βˆ’ 𝑇2) ⟹ 𝑇3 βˆ’ 𝑇2 = 𝑇3
β€²
βˆ’ 𝑇2
𝑻 πŸ‘ > 𝑻 πŸ‘
β€²
Case 2 – Same compression ratio and heat rejection
πœ‚ = 1 βˆ’
𝑄 𝑅
𝑄𝑠
For the same compression ratio and heat rejection, heat supply is more in
Otto cycle and hence its efficiency is more.
πœ‚ 𝑑𝑖𝑒𝑠𝑒𝑙 > πœ‚ π‘‚π‘‘π‘‘π‘œ
Case 3 – Same maximum temperature and heat rejection
For same maximum temperature and heat rejection, heat supplied is
more in diesel cycle and hence it’s more efficient. In this case compression
ratio of diesel cycle is more than compression ratio of Otto cycle.
πœ‚ 𝑑𝑖𝑒𝑠𝑒𝑙 > πœ‚ π‘‚π‘‘π‘‘π‘œ
1-2-3-4 β†’ Otto cycle
1-2-3’-4’ β†’ Diesel cycle
Dual cycle
In actual engines, heat is neither added at constant volume or at constant pressure. A dual cycle is developed and
it has features of both Otto and Diesel cycle.
𝛾 =
𝑉1
𝑉2
π‘Ÿπ‘ =
𝑉4
𝑉3
π‘Ÿπ‘’ =
𝑉5
𝑉4
πœ‚ = 1 βˆ’
𝑄 𝑅
𝑄𝑠
𝑄𝑠 = 𝑄𝑠1 + 𝑄𝑠2
𝑄𝑠1 = π‘š Β· 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) ; 𝑄𝑠2 = π‘š Β· 𝑐 𝑝 Β· (𝑇5 βˆ’ 𝑇1) ; 𝑄 𝑅 = π‘š Β· 𝑐 𝑣 Β· (𝑇5 βˆ’ 𝑇1)
As dual cycle has features of both Otto and diesel cycle, its efficiency lies between Otto and diesel cycle.
Engine Performance Parameters
Indicated power (IP)
The power developed inside the cylinder is known as indicated power.
In case of 2 stroke engine, 1 cycle is completed in 2 strokes of piston or 1 revolution of crank shaft. Similarly, in 4
stroke engine, 1 cycle is completed in 4 strokes or 2 revolutions of shaft. Theoretically power developed in 2
stroke engines is twice that of 4 stroke engines.
Indicated power of 2 stroke engine
π‘Šπ‘›π‘’π‘‘ = π‘ƒπ‘š Β· 𝑉𝑠 β§Έ 𝑐𝑦𝑐𝑙𝑒 π‘Šπ‘›π‘’π‘‘ = π‘ƒπ‘š Β· 𝑉𝑠 β§Έ π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›
π‘ƒπ‘œπ‘€π‘’π‘Ÿ =
𝑷 π’Žπ’†π’‚π’ Β· 𝑽 𝑺
π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›
Γ— 𝑡
π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘ 
𝑠𝑒𝑐
(Pm→indicated mean effective pressure)
πΌπ‘›π‘‘π‘–π‘π‘Žπ‘‘π‘’π‘‘ π‘π‘œπ‘€π‘’π‘Ÿ (𝑰. 𝑷) =
π‘ƒπ‘š Β· 𝑉𝑆 Β· 𝑁
60
=
π‘ƒπ‘š Β· (𝐴 Β· 𝐿) Β· 𝑁
60
If there are K cylinders, then indicated power is equal to ⟹
π‘ƒπ‘š Β· ( 𝐴 Β· 𝐿) Β· 𝑁 Β· 𝑲
60
In case of 4 – stroke engine ⟹ 𝐼. 𝑃 =
π‘ƒπ‘š Β· ( 𝐴 Β· 𝐿) Β· 𝑁 Β· 𝑲
60 Γ— 2
Brake power (B.P)
The power available at the output shaft is known as brake power.
π΅π‘Ÿπ‘Žπ‘˜π‘’ π‘ƒπ‘œπ‘€π‘’π‘Ÿ (𝑩. 𝑷) = 𝑇 Γ— πœ”
𝐡. 𝑃 = 𝑇 Γ—
2πœ‹π‘
60
β†’ applicable for 2 or 4 stroke and any number of cylinders
Frictional Power (F.P)
The difference between indicated power and brake power is called frictional power.
𝐹. 𝑃 = 𝐼. 𝑃 βˆ’ 𝐡. 𝑃
Mechanical efficiency
πœ‚ π‘šπ‘’π‘β„Ž =
𝐡. 𝑃
𝐼. 𝑃
Indicated thermal efficiency (Ξ·ith)
πœ‚π‘–π‘‘β„Ž =
𝐼. 𝑃
π‘šΜ‡ 𝑓 Γ— 𝐢. 𝑉
π‘šΜ‡ 𝑓 β†’ π‘šπ‘Žπ‘ π‘  π‘“π‘™π‘œπ‘€ π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ 𝑓𝑒𝑒𝑙 𝐢. π‘‰βˆ’. πΆπ‘Žπ‘™π‘œπ‘Ÿπ‘–π‘“π‘–π‘ π‘£π‘Žπ‘™π‘’π‘’
Brake thermal efficiency (Ξ·bth)
πœ‚ π‘π‘‘β„Ž =
𝐡. 𝑃
π‘šΜ‡ 𝑓 Γ— 𝐢. 𝑉
Indicated specific fuel consumption (isfc)
𝑖𝑠𝑓𝑐 =
π‘šΜ‡ 𝑓
𝐼. 𝑃
(
π‘˜π‘”
πΎπ‘Š Β· β„Žπ‘Ÿ
)
Brake specific fuel consumption (bsfc)
𝑏𝑠𝑓𝑐 =
π‘šΜ‡ 𝑓
𝐡. 𝑃
(
π‘˜π‘”
πΎπ‘Š Β· β„Žπ‘Ÿ
)
Volumetric efficiency (Ξ·vol)
It represents the breathing capacity of the cylinder, it’s the ratio of actual volume of fluid entering the cylinder
per cycle to the swept volume.
πœ‚ π‘£π‘œπ‘™ =
π΄π‘π‘‘π‘’π‘Žπ‘™ π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”
πœ‹
4
Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β· 𝐾
=
π‘šΜ‡ 𝑓 Β· 𝜐
πœ‹
4
Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β· 𝐾
β†’ 2 βˆ’ π‘ π‘‘π‘Ÿπ‘œπ‘˜π‘’
πœ‚ π‘£π‘œπ‘™ =
π΄π‘π‘‘π‘’π‘Žπ‘™ π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”
πœ‹
4
Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β·
𝐾
2
=
π‘šΜ‡ 𝑓 Β· 𝜐
πœ‹
4
Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β·
𝐾
2
β†’ 4 βˆ’ π‘ π‘‘π‘Ÿπ‘œπ‘˜π‘’
Gas turbines
Advantages of Gas turbines
1. Simple mechanism
2. Compact
3. Easy balancing
4. High speeds can be obtained
Disadvantages
1. As gas turbines are rotary devices, they are subjected to higher temperatures continuously, hence costly
material is required.
2. As compressor is used it consumes more work and hence the Net-work is less.
3. As speeds are high, reduction gear mechanisms must be used.
Gas turbine cycles
Gas turbine cycles work on Brayton or Joule cycle.
Open cycle gas turbine
Open cycle gas turbine is a mechanical device.
Gas turbines are used in power generation, jet propulsion and aircraft engines.
Closed cycle gas turbines
1-2 β†’ reversible adiabatic
Compression
2-3 β†’ constant pressure
heat addition
3-4 β†’ reversible adiabatic
expansion
1-2 β†’ reversible adiabatic Compression
2-3 β†’ constant pressure heat addition
3-4 β†’ reversible adiabatic expansion
4-1 β†’ constant pressure heat rejection
Advantages of closed cycle gas turbines over open cycle gas turbines
1. It is compact.
2. Any working fluid can be used in closed cycle gas turbines but in open gas turbines, air is required for
combustion.
3. As products of combustion do not enter turbine blades, any cheaper fuel can be used.
Generally, in closed cycle gas turbines, working fluid with higher Ξ³ (higher mono-atomic gases) can be used
leading to higher efficiency.
Disadvantages
1. Additional heat exchanger is required.
2. Coolant is required in closed cycle gas turbine, where as in open cycle gas turbine atmosphere acts as a
sink.
Analysis of a simple gas turbine cycle
Assumptions
1. Working fluid can be treated as ideal gas.
2. Compression and expansion are treated as steady flow device.
3. Each device is treated as steady flow device.
4. Kinetic and potential energy changes are neglected.
5. cp & cv doesn’t change with temperature.
6. Working fluid is same throughout the cycle.
1β€” 2 ⟢ Reversible Adiabatic
β„Ž1 +
𝐢1
2
2
+ 𝑔𝑧1 + π‘žβƒ₯ = β„Ž2 +
𝐢2
2
2
+ 𝑔𝑧2 + 𝑀
β„Ž1 = β„Ž2 + 𝑀 β†’ βˆ’π‘€ = β„Ž2 βˆ’ β„Ž1 β†’ π’˜ π’„π’π’Žπ’‘π’“π’†π’”π’”π’π’“ = 𝒉 𝟐 βˆ’ 𝒉 𝟏 = 𝒄 𝒑 Β· (𝑻 𝟐 βˆ’ 𝑻 𝟏)
2β€”3 ⟢ Constant pressure heat rejection
β„Ž2 +
𝐢2
2
2
+ 𝑔𝑧2 + π‘žβƒ₯ = β„Ž3 +
𝐢3
2
2
+ 𝑔𝑧3 + 𝑀
β„Ž2 + π‘žβƒ₯ = β„Ž3 β†’ π‘žβƒ₯ = β„Ž3 βˆ’ β„Ž2 β†’ 𝒒 π’”π’–π’‘π’‘π’π’š = 𝒉 πŸ‘ βˆ’ 𝒉 𝟐 = 𝒄 𝒑 Β· (𝑻 πŸ‘ βˆ’ 𝑻 𝟐)
3β€”4 ⟢ Reversible adiabatic expansion (turbine)
β„Ž3 +
𝐢3
2
2
+ 𝑔𝑧3 + π‘žβƒ₯ = β„Ž4 +
𝐢4
2
2
+ 𝑔𝑧4 + 𝑀
β„Ž3 = β„Ž4 + 𝑀 β†’ 𝑀 = β„Ž3 βˆ’ β„Ž4 β†’ π’˜ π’•π’–π’“π’ƒπ’Šπ’π’† = 𝒉 πŸ‘ βˆ’ 𝒉 πŸ’ = 𝒄 𝒑 Β· (𝑻 πŸ‘ βˆ’ 𝑻 πŸ’)
4β€”1 ⟢ Constant pressure heat rejection
β„Ž4 +
𝐢4
2
2
+ 𝑔𝑧4 + π‘žβƒ₯ = β„Ž1 +
𝐢1
2
2
+ 𝑔𝑧1 + 𝑀
β„Ž4 + π‘žβƒ₯ = β„Ž1 β†’ π‘žβƒ₯ = β„Ž1 βˆ’ β„Ž4 β†’ 𝒒 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅 = 𝒉 𝟏 βˆ’ 𝒉 πŸ’ = 𝒄 𝒑 Β· (𝑻 𝟏 βˆ’ 𝑻 πŸ’)
Efficiency of simple gas turbine cycle
πœ‚ =
π‘Šπ‘›π‘’π‘‘
𝑄𝑠
=
𝑄𝑠 βˆ’ 𝑄 𝑅
𝑄𝑠
= 1 βˆ’
𝑄 𝑅
𝑄𝑠
= 1 βˆ’
𝑐 𝑝 Β· (𝑇4 βˆ’ 𝑇1)
𝑐 𝑝 Β· (𝑇3 βˆ’ 𝑇2)
= 1 βˆ’
𝑇4 βˆ’ 𝑇1
𝑇3 βˆ’ 𝑇2
πœ‚ = 1 βˆ’
𝑇1 Β· (
𝑇4
𝑇1
βˆ’ 1)
𝑇2 Β· (
𝑇3
𝑇2
βˆ’ 1)
1 β†’ 2 (reversible Adiabatic) ⟹
𝑇2
𝑇1
= (
𝑃2
𝑃1
)
π›Ύβˆ’1
𝛾⁄
= π‘Ÿπ‘
π›Ύβˆ’1
𝛾⁄
3 β†’ 4 (reversible Adiabatic) ⟹
𝑇3
𝑇4
= (
𝑃3
𝑃4
)
π›Ύβˆ’1
𝛾⁄
= (
𝑃2
𝑃1
)
π›Ύβˆ’1
𝛾⁄
= π‘Ÿπ‘
π›Ύβˆ’1
𝛾⁄
(𝑃2 = 𝑃3, 𝑃4 = 𝑃1)
From above equations,
𝑇2
𝑇1
=
𝑇3
𝑇4
⟹
𝑻 πŸ’
𝑻 𝟏
=
𝑻 πŸ‘
𝑻 𝟐
πœ‚ = 1 βˆ’
𝑇1 Β· (
𝑇4
𝑇1
βˆ’ 1)
𝑇2 Β· (
𝑇3
𝑇2
βˆ’ 1)
⟹ 𝜼 = 𝟏 βˆ’
𝑻 𝟏
𝑻 𝟐
= 𝟏 βˆ’
𝟏
𝒓 𝒑
πœΈβˆ’πŸ
πœΈβ„
The efficiency of simple gas turbine cycle depends on pressure ratio. With
increase in pressure ratio, efficiency increases because greater the pressure ratio,
greater is the compression ratio and more is the scope for free expansion. Hence,
for a given input, efficiency increases with increase in pressure ratio.
With increase in pressure ratio, though the efficiency increases, at
higher pressure ratios net-work decreases and hence there is a need to
calculate a pressure ratio where the work output is maximum. At this
pressure ratio, net-work is minimum is known as Optimum pressure
ratio.
π‘Šπ‘›π‘’π‘‘ = π‘Šπ‘‘ βˆ’ π‘Šπ‘ = 𝑐 𝑝 Β· (𝑇3 βˆ’ 𝑇4) βˆ’ 𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇1) = 𝑐 𝑝(𝑇3 βˆ’ 𝑇4 βˆ’ 𝑇2 + 𝑇1)
𝑇2
𝑇1
=
𝑇3
𝑇4
⟹ 𝑻 πŸ’ =
𝑻 πŸ‘ Β· 𝑻 𝟏
𝑻 𝟐
π‘Šπ‘›π‘’π‘‘ = 𝑐 𝑝 Β· [𝑇3 βˆ’
𝑇3 Β· 𝑇1
𝑇2
βˆ’ 𝑇2 + 𝑇1]
πΉπ‘œπ‘Ÿ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘Šπ‘›π‘’π‘‘,
𝒅𝑾 𝒏𝒆𝒕
𝒅𝑻 𝟐
= 𝟎
π‘‘π‘Šπ‘›π‘’π‘‘
𝑑𝑇2
= 𝑐 𝑝 Β· [0 +
𝑇3 Β· 𝑇1
𝑇2
2 βˆ’ 1 + 0] = 0 ⟹ 𝑇2
2
= 𝑇3 Β· 𝑇1 ⟹ 𝑻 𝟐 = βˆšπ‘» πŸ‘ Β· 𝑻 𝟏
𝑇4 =
𝑇3 Β· 𝑇1
𝑇2
⟹ 𝑇4 =
𝑇3 Β· 𝑇1
βˆšπ‘‡3 Β· 𝑇1
⟹ 𝑻 πŸ’ = βˆšπ‘» πŸ‘ Β· 𝑻 𝟏
𝑻 πŸ’ = 𝑻 𝟐 = βˆšπ‘» πŸ‘ Β· 𝑻 𝟏
(rp)A < (rp)B < (rp)C
Ξ·A < Ξ·B < Ξ·C
π‘Ÿπ‘ =
𝑃2
𝑃1
= (
𝑇2
𝑇1
)
𝛾
π›Ύβˆ’1
⟹ 𝒓 𝒑, π‘œπ‘π‘‘π‘–π‘šπ‘’π‘š = (
𝑇2
𝑇1
)
𝛾
π›Ύβˆ’1
= (
βˆšπ‘‡3 Β· 𝑇1
𝑇1
)
𝛾
π›Ύβˆ’1
⟹ 𝒓 𝒑, π’π’‘π’•π’Šπ’Žπ’–π’Ž = (
𝑻 πŸ‘
𝑻 𝟏
)
𝜸
𝟐·(πœΈβˆ’πŸ)
β†’ π‘Šπ‘›π‘’π‘‘ = (𝑐 𝑝 Β· (𝑇3 βˆ’ 𝑇4)) βˆ’ (𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇1)) = 𝑐 𝑝(𝑇3 βˆ’ 𝑇4 βˆ’ 𝑇2 + 𝑇1) = 𝑐 𝑝(𝑇3 βˆ’ βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 βˆ’ βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 + 𝑇1)
𝑾 𝒏𝒆𝒕 = 𝒄 𝒑 Β· (βˆšπ‘» πŸ‘ βˆ’ βˆšπ‘» 𝟏)
𝟐
Maximum Pressure ratio (rp max)
For maximum pressure ratio, rp, max β†’ T2=T3
π‘Ÿπ‘ =
𝑃2
𝑃1
= (
𝑇2
𝑇1
)
𝛾
π›Ύβˆ’1
π‘Ÿπ‘, π’Žπ’‚π’™ = (
𝑻 𝟐
𝑇1
)
𝛾
π›Ύβˆ’1
= (
𝑻 πŸ‘
𝑇1
)
𝛾
π›Ύβˆ’1
= (
𝑇 π‘šπ‘Žπ‘₯
𝑇 π‘šπ‘–π‘›
)
𝛾
π›Ύβˆ’1
π‘Ÿπ‘, π‘œπ‘π‘‘π‘–π‘šπ‘’π‘š = (
𝑇3
𝑇1
)
𝛾
2Β·(π›Ύβˆ’1)
= (
𝑇 π‘šπ‘Žπ‘₯
𝑇 π‘šπ‘–π‘›
)
𝛾
2Β·(π›Ύβˆ’1)
𝒓 𝒑, π’π’‘π’•π’Šπ’Žπ’–π’Ž = (𝒓 𝒑, π’Žπ’‚π’™)
𝟏
𝟐
Methods of improving the performance of gas turbine cycle
Regeneration
πœ‚ =
π‘Šπ‘›π‘’π‘‘
𝑄𝑠
=
π‘Šπ‘‡ βˆ’ π‘ŠπΆ
𝑄𝑠
=
(β„Ž3 βˆ’ β„Ž4) βˆ’ (β„Ž2 βˆ’ β„Ž1)
β„Ž3 βˆ’ β„Ž π‘₯
Effects of Regenerator
1. No change in compressor work
2. No change in turbine work
3. No change in Net-work
4. Decrease in heat supply
5. Decrease in heat rejection
6. Increase in efficiency
Effectiveness of a Regenerator
∈ =
Actual gain in heat
Ideal gain in heat/Maximum heat transfer
=
π‘š π‘Ž Β· (β„Ž π‘₯ βˆ’ β„Ž2)
π‘š π‘Ž+𝑔 Β· (β„Ž4 βˆ’ β„Ž2)
=
π‘š π‘Ž Β· 𝑐 𝑝,π‘Žπ‘–π‘Ÿ Β· (𝑇π‘₯ βˆ’ 𝑇2)
(π‘š π‘Ž + π‘š 𝑔) Β· 𝑐 𝑝,π‘”π‘Žπ‘  Β· (𝑇4 βˆ’ 𝑇2)
Generally, mass of the fuel is very small in comparison to mass of air. Therefore, mf can be neglected w.r.t ma if cp
of air and cp, gas are almost same. Then,
π‘š 𝑓 β‰ͺ π‘š π‘Ž, 𝑐 𝑝, π‘Žπ‘–π‘Ÿ β‰ˆ 𝑐 𝑝, π‘”π‘Žπ‘  ⟹ ∈=
𝑻 𝒙 βˆ’ 𝑻 𝟐
𝑻 πŸ’ βˆ’ 𝑻 𝟐
= π‘»π’‰π’†π’“π’Žπ’‚π’ π‘Ήπ’‚π’•π’Šπ’
Note
1. Regenerator will be effective only when the temperature difference between turbine exit (T4) and
compressor exit (T2) is very large.
2. In case of maximum work output cycle as T2=T4, Regenerator can’t be used.
Reheating
π‘Šπ‘–π‘‘β„Žπ‘œπ‘’π‘‘ π‘Ÿπ‘’β„Žπ‘’π‘Žπ‘‘π‘–π‘›π‘” β†’ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = (β„Ž3 βˆ’ β„Ž π‘Ž) + (β„Ž π‘Ž βˆ’ β„Ž4β€²) = β„Ž3 βˆ’ β„Ž4β€²
π‘Šπ‘–π‘‘β„Ž π‘Ÿπ‘’β„Žπ‘’π‘Žπ‘‘π‘–π‘›π‘” β†’ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = (β„Ž3 βˆ’ β„Ž π‘Ž) + (β„Ž 𝑏 βˆ’ β„Ž4)
Effects of Reheating
1. No change in compressor work.
2. Increase in turbine work (on h-s diagram constant pressure line diverge).
3. Increase in Net work.
4. Temperature at the exit of turbine (T4) is greater than T4’ and hence with reheating, scope for
regenerator increases. Therefore, reheating cycles are generally combined with regeneration.
5. Increase in heat supply.
Note
With reheating both heat supplied and net-work increases. Therefore, efficiency depends in relative increase of
both values.
πœ‚ =
π‘Šπ‘‡ βˆ’ π‘Šπ‘
𝑄𝑠
=
(β„Ž3 βˆ’ β„Ž π‘Ž) + (β„Ž 𝑏 βˆ’ β„Ž4) βˆ’ (β„Ž2 βˆ’ β„Ž1)
(β„Ž3 βˆ’ β„Ž2) + (β„Ž3 βˆ’ β„Ž π‘Ž)
Reheating and intercooling are constant pressure processes.
Intercooling
Effects of Intercooling
1. Decrease in compressor work
2. No change in turbine work
3. Increase in net-work
4. Increase in heat supply
5. With intercooling, the temperature difference between turbine exit and compressor exit increases and hence
the scope for regeneration increases with intercooling. Therefore, intercooling cycles are generally
combined with regeneration.
Note
With intercooling both net-work and heat supply increases, therefore, (increase in) efficiency depends on
relative increase of both values.
πœ‚ =
π‘Šπ‘›π‘’π‘‘
𝑄𝑠
=
(β„Ž3 βˆ’ β„Ž4) βˆ’ (β„Ž π‘Ž βˆ’ β„Ž1) + (β„Ž2 βˆ’ β„Ž 𝑏)
β„Ž3 βˆ’ β„Ž2
Condition for minimum work input to the compressor with perfect intercooling (T1=Tb).
π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ = π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ 𝟏 + π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ 𝟐 = (β„Ž π‘Ž βˆ’ β„Ž1) + (β„Ž2 βˆ’ β„Ž 𝑏) = 𝑐 𝑝 Β· (π‘‡π‘Ž βˆ’ 𝑇1) + 𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇𝑏)
π‘Šπ‘ = 𝑐 𝑝 Β· 𝑇1 Β· [
π‘‡π‘Ž
𝑇1
βˆ’ 1] + 𝑐 𝑝 Β· 𝑻 𝒃 Β· [
𝑇2
𝑇𝑏
βˆ’ 1] = 𝑐 𝑝 Β· 𝑇1 Β· [
π‘‡π‘Ž
𝑇1
βˆ’ 1] + 𝑐 𝑝 Β· 𝑻 𝟏 Β· [
𝑇2
𝑇𝑏
βˆ’ 1] = 𝑐 𝑝 Β· 𝑇1 Β· [
π‘‡π‘Ž
𝑇1
βˆ’ 1 +
𝑇2
𝑇𝑏
βˆ’ 1]
π‘Šπ‘ = 𝑐 𝑝 Β· 𝑇1 Β· [(
𝑃𝑖
𝑃1
)
π›Ύβˆ’1
𝛾
+ (
𝑃2
𝑃𝑖
)
π›Ύβˆ’1
𝛾
βˆ’ 2] = 𝑐 𝑝 Β· 𝑇1 Β· [(
𝑃𝑖
𝑃1
)
π‘₯
+ (
𝑃2
𝑃𝑖
)
π‘₯
βˆ’ 2] (
𝛾 βˆ’ 1
𝛾
= π‘₯)
πΉπ‘œπ‘Ÿ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘€π‘œπ‘Ÿπ‘˜ 𝑖𝑛𝑝𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ,
π‘‘π‘Šπ‘–
𝑑𝑃𝑖
= 0
π‘‘π‘Šπ‘–
𝑑𝑃𝑖
= 𝑐 𝑝 Β· 𝑇1 Β· [(
1
𝑃1
π‘₯ Β· π‘₯ Β· 𝑃𝑖
π‘₯βˆ’1
) + (𝑃2
π‘₯
Β· (βˆ’π‘₯) Β· 𝑃𝑖
βˆ’π‘₯βˆ’1
) βˆ’ 0] = 0
β†’
π‘₯ Β· 𝑃𝑖
π‘₯βˆ’1
𝑃1
π‘₯ =
π‘₯ Β· 𝑃2
π‘₯
𝑃𝑖
π‘₯+1 ⟹ 𝑃𝑖
π‘₯βˆ’1+π‘₯+1
= 𝑃1
π‘₯
Β· 𝑃2
π‘₯
= 𝑃𝑖
2π‘₯
⟹ π‘·π’Š = βˆšπ‘· 𝟏 Β· 𝑷 𝟐
π‘Šπ‘1 = β„Ž π‘Ž βˆ’ β„Ž1 = 𝑐 𝑝 Β· (π‘‡π‘Ž βˆ’ 𝑇1) = 𝑐 𝑝 Β· 𝑇1 Β· (
π‘‡π‘Ž
𝑇1
βˆ’ 1) = 𝑐 𝑝 Β· 𝑇1 Β· [(
π‘·π’Š
𝑃1
)
π›Ύβˆ’1
𝛾
βˆ’ 1] ⟹ 𝑐 𝑝 Β· 𝑇1 Β· [(
𝑷 𝟐
𝑃1
)
π›Ύβˆ’1
πŸΒ·π›Ύ
βˆ’ 1]
π‘Šπ‘2 = β„Ž2 βˆ’ β„Ž 𝑏 = 𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇𝑏) = 𝑐 𝑝 Β· 𝑇𝑏 Β· (
𝑇2
𝑇𝑏
βˆ’ 1) = 𝑐 𝑝 Β· 𝑻 𝒃 Β· [(
𝑷 𝟐
𝑃𝑖
)
π›Ύβˆ’1
𝛾
βˆ’ 1] ⟹ 𝑐 𝑝 Β· 𝑻 𝟏 Β· [(
𝑷 𝟐
𝑃1
)
π›Ύβˆ’1
πŸΒ·π›Ύ
βˆ’ 1]
𝑾 π’„πŸ = 𝑾 π’„πŸ
For perfect intercooling and minimum work input each stage work input is same, therefore total compressor
work is equal to (No. of stages (N)) Γ— (Each stage compressor work (Wc)).
Brayton cycle with many stages of intercooling and many stages of reheating can be reduced to Ericsson cycle.
Many stages if intercooling and reheating can be reduced to isothermal process.

More Related Content

What's hot

Principle of mass flow meter
Principle of mass flow meterPrinciple of mass flow meter
Principle of mass flow meterPrem Baboo
Β 
Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics Mani Vannan M
Β 
Steam turbine
Steam turbineSteam turbine
Steam turbinenell0511
Β 
Pressure measuring devices presentation
Pressure measuring devices presentationPressure measuring devices presentation
Pressure measuring devices presentationUsman Shah
Β 
Thermodyamics: calculation of diesel cycle efficiency using EES software
Thermodyamics: calculation of diesel cycle efficiency using EES softwareThermodyamics: calculation of diesel cycle efficiency using EES software
Thermodyamics: calculation of diesel cycle efficiency using EES softwareKeerthana Jagirdar.
Β 
Pressure measurement
Pressure measurement Pressure measurement
Pressure measurement Uttam Trasadiya
Β 
Ppt of properties of steam
Ppt of properties of steamPpt of properties of steam
Ppt of properties of steamKaushal Mehta
Β 
thermodynamics notes for gate
thermodynamics notes for gatethermodynamics notes for gate
thermodynamics notes for gateSoumith V
Β 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notesSoumith V
Β 
Mach Number and Shock waves
Mach Number and Shock waves Mach Number and Shock waves
Mach Number and Shock waves Shashank Kapoor
Β 
Boiling and condensation
Boiling and condensationBoiling and condensation
Boiling and condensationVijay G
Β 
TEMPRATURE MEASUREMENT INSTRUMENTS
TEMPRATURE MEASUREMENT INSTRUMENTSTEMPRATURE MEASUREMENT INSTRUMENTS
TEMPRATURE MEASUREMENT INSTRUMENTSAnjani Kishor Rishabh
Β 
BOILER MOUNTINGS AND ACCESSORIES
BOILER MOUNTINGS AND ACCESSORIESBOILER MOUNTINGS AND ACCESSORIES
BOILER MOUNTINGS AND ACCESSORIESDhananJayPatel27
Β 
Ppt on heat engines
Ppt on heat enginesPpt on heat engines
Ppt on heat enginesJanhviThombre
Β 
Vapour power cycle a
Vapour power cycle aVapour power cycle a
Vapour power cycle anaphis ahamad
Β 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamicsJaimin Patel
Β 
Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5Manohar Tatwawadi
Β 

What's hot (20)

Principle of mass flow meter
Principle of mass flow meterPrinciple of mass flow meter
Principle of mass flow meter
Β 
Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics Engineering Thermodynamics-second law of thermodynamics
Engineering Thermodynamics-second law of thermodynamics
Β 
Brayton cycle
Brayton cycleBrayton cycle
Brayton cycle
Β 
Entropy
EntropyEntropy
Entropy
Β 
Steam turbine
Steam turbineSteam turbine
Steam turbine
Β 
Pressure measuring devices presentation
Pressure measuring devices presentationPressure measuring devices presentation
Pressure measuring devices presentation
Β 
Thermodyamics: calculation of diesel cycle efficiency using EES software
Thermodyamics: calculation of diesel cycle efficiency using EES softwareThermodyamics: calculation of diesel cycle efficiency using EES software
Thermodyamics: calculation of diesel cycle efficiency using EES software
Β 
Pressure measurement
Pressure measurement Pressure measurement
Pressure measurement
Β 
Ppt of properties of steam
Ppt of properties of steamPpt of properties of steam
Ppt of properties of steam
Β 
thermodynamics notes for gate
thermodynamics notes for gatethermodynamics notes for gate
thermodynamics notes for gate
Β 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notes
Β 
Mach Number and Shock waves
Mach Number and Shock waves Mach Number and Shock waves
Mach Number and Shock waves
Β 
Unit2
Unit2Unit2
Unit2
Β 
Boiling and condensation
Boiling and condensationBoiling and condensation
Boiling and condensation
Β 
TEMPRATURE MEASUREMENT INSTRUMENTS
TEMPRATURE MEASUREMENT INSTRUMENTSTEMPRATURE MEASUREMENT INSTRUMENTS
TEMPRATURE MEASUREMENT INSTRUMENTS
Β 
BOILER MOUNTINGS AND ACCESSORIES
BOILER MOUNTINGS AND ACCESSORIESBOILER MOUNTINGS AND ACCESSORIES
BOILER MOUNTINGS AND ACCESSORIES
Β 
Ppt on heat engines
Ppt on heat enginesPpt on heat engines
Ppt on heat engines
Β 
Vapour power cycle a
Vapour power cycle aVapour power cycle a
Vapour power cycle a
Β 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
Β 
Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5Power Plant Simulator Day 3 Part 5
Power Plant Simulator Day 3 Part 5
Β 

Similar to Applications of thermodynamics

APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesAPPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesTHANMAY JS
Β 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptxNelyJay
Β 
Lecture 5 Carnot enginepptx
Lecture 5 Carnot enginepptxLecture 5 Carnot enginepptx
Lecture 5 Carnot enginepptxHassan Yousaf
Β 
thermal project 1
thermal project 1thermal project 1
thermal project 1James Li
Β 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionHashim Hasnain Hadi
Β 
Thermodynamics of thermal power plants
Thermodynamics of thermal power plantsThermodynamics of thermal power plants
Thermodynamics of thermal power plantsSugam Parnami
Β 
Lecture 7.pptx
Lecture 7.pptxLecture 7.pptx
Lecture 7.pptxNelyJay
Β 
Micro turbine ppt
Micro turbine pptMicro turbine ppt
Micro turbine pptRajneesh Singh
Β 
Power plant engineering chapter 2
Power plant engineering chapter 2Power plant engineering chapter 2
Power plant engineering chapter 2swathi1995vangaram
Β 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plantsNishkam Dhiman
Β 
Turbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptTurbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptsbpatalescoe
Β 
UNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfUNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfManivannan727901
Β 
01 regenerative feed heating
01 regenerative feed heating01 regenerative feed heating
01 regenerative feed heatingAnil Palamwar
Β 
Energy Coservation In Gas turbine
Energy Coservation In Gas turbineEnergy Coservation In Gas turbine
Energy Coservation In Gas turbineparas garg
Β 

Similar to Applications of thermodynamics (20)

APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesAPPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
Β 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptx
Β 
Lecture 5 Carnot enginepptx
Lecture 5 Carnot enginepptxLecture 5 Carnot enginepptx
Lecture 5 Carnot enginepptx
Β 
Rnakine reheat regen
Rnakine reheat regenRnakine reheat regen
Rnakine reheat regen
Β 
project 2
project 2project 2
project 2
Β 
Power cycles 1
Power cycles 1Power cycles 1
Power cycles 1
Β 
thermal project 1
thermal project 1thermal project 1
thermal project 1
Β 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
Β 
Power Cycles
Power CyclesPower Cycles
Power Cycles
Β 
Thermodynamics of thermal power plants
Thermodynamics of thermal power plantsThermodynamics of thermal power plants
Thermodynamics of thermal power plants
Β 
Lecture 7.pptx
Lecture 7.pptxLecture 7.pptx
Lecture 7.pptx
Β 
Micro turbine ppt
Micro turbine pptMicro turbine ppt
Micro turbine ppt
Β 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
Β 
Power plant engineering chapter 2
Power plant engineering chapter 2Power plant engineering chapter 2
Power plant engineering chapter 2
Β 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
Β 
Turbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptTurbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.ppt
Β 
UNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfUNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdf
Β 
01 regenerative feed heating
01 regenerative feed heating01 regenerative feed heating
01 regenerative feed heating
Β 
Gas Turbine Powerplants
Gas Turbine Powerplants Gas Turbine Powerplants
Gas Turbine Powerplants
Β 
Energy Coservation In Gas turbine
Energy Coservation In Gas turbineEnergy Coservation In Gas turbine
Energy Coservation In Gas turbine
Β 

More from Soumith V

Theory of machines notes
Theory of machines notesTheory of machines notes
Theory of machines notesSoumith V
Β 
Research methodology
Research methodologyResearch methodology
Research methodologySoumith V
Β 
Stoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineStoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineSoumith V
Β 
Stoicism I
Stoicism   IStoicism   I
Stoicism ISoumith V
Β 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC enginesSoumith V
Β 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycleSoumith V
Β 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cyclesSoumith V
Β 
Guidelines for slide preparation
Guidelines for slide preparationGuidelines for slide preparation
Guidelines for slide preparationSoumith V
Β 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Soumith V
Β 
Power plant
Power plantPower plant
Power plantSoumith V
Β 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sourcesSoumith V
Β 
Radiation
RadiationRadiation
RadiationSoumith V
Β 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateSoumith V
Β 
Metrology
MetrologyMetrology
MetrologySoumith V
Β 
Industrial engineering notes for gate
Industrial engineering notes for gateIndustrial engineering notes for gate
Industrial engineering notes for gateSoumith V
Β 
kitting method
kitting methodkitting method
kitting methodSoumith V
Β 

More from Soumith V (16)

Theory of machines notes
Theory of machines notesTheory of machines notes
Theory of machines notes
Β 
Research methodology
Research methodologyResearch methodology
Research methodology
Β 
Stoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineStoicism and How to build Self Discipline
Stoicism and How to build Self Discipline
Β 
Stoicism I
Stoicism   IStoicism   I
Stoicism I
Β 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC engines
Β 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
Β 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
Β 
Guidelines for slide preparation
Guidelines for slide preparationGuidelines for slide preparation
Guidelines for slide preparation
Β 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe
Β 
Power plant
Power plantPower plant
Power plant
Β 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sources
Β 
Radiation
RadiationRadiation
Radiation
Β 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gate
Β 
Metrology
MetrologyMetrology
Metrology
Β 
Industrial engineering notes for gate
Industrial engineering notes for gateIndustrial engineering notes for gate
Industrial engineering notes for gate
Β 
kitting method
kitting methodkitting method
kitting method
Β 

Recently uploaded

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 

Applications of thermodynamics

  • 2. Contents Vapour power cycles...........................................................................................................................................................................................2 Specific steam consumption ..................................................................................................................................................................2 Significance of SSC.....................................................................................................................................................................................2 Work Ratio....................................................................................................................................................................................................2 Back work Ratio .........................................................................................................................................................................................2 Carnot Vapour power cycles ......................................................................................................................................................................3 Drawbacks of Carnot vapour power cycles.....................................................................................................................................3 Rankine cycle ...............................................................................................................................................................................................3 Analysis of the Cycles................................................................................................................................................................................4 Methods of improving performance of simple rankine cycle .......................................................................................................5 Increasing Boiler pressure .....................................................................................................................................................................5 Super Heating..............................................................................................................................................................................................5 Reheating.......................................................................................................................................................................................................6 Regeneration................................................................................................................................................................................................6 Gas power cycles...................................................................................................................................................................................................8 Otto Cycle.......................................................................................................................................................................................................8 Advantages of I.C engines.......................................................................................................................................................................8 Engine nomenclature....................................................................................................................................................................................8 Air Standard Cycles..........................................................................................................................................................................................10 Otto Cycle.........................................................................................................................................................................................................10 Diesel cycle......................................................................................................................................................................................................11 Comparison of Otto and diesel cycles .............................................................................................................................................12 Dual cycle.........................................................................................................................................................................................................13 Engine Performance Parameters..........................................................................................................................................................13 Gas turbines.........................................................................................................................................................................................................15 Gas turbine cycles....................................................................................................................................................................................15 Analysis of a simple gas turbine cycle............................................................................................................................................16 Efficiency of simple gas turbine cycle.............................................................................................................................................17 Methods of improving the performance of gas turbine cycle...............................................................................................18
  • 3. Vapour power cycles Reasons for using water as working fluid 1. It’s cheap 2. It’s chemically stable 3. It’s not toxic Selection of a power plant Efforts to improve efficiency and thereby reducing the running cost or operating cost may be desirable, but this would lead to increase initial cist and hence efforts must be taken to optimize total cost. Specific steam consumption It is steam consumed for producing unit output of power. β†’ 𝑆𝑆𝐢 = π‘šΜ‡ 𝑠 𝑃 𝑁𝑒𝑑 = π‘šΜ‡ 𝑠 π‘šΜ‡ 𝑠 Γ— π‘Šπ‘π‘’π‘‘ = 1 π‘Šπ‘π‘’π‘‘ π‘˜π‘” 𝐾𝐽 β†’ 𝑆𝑆𝐢 = 3600 π‘Šπ‘π‘’π‘‘ π‘˜π‘” πΎπ‘Š β„Žπ‘Ÿ Significance of SSC SSC indicates the size of plant, smaller the SSC larger is the net work and hence for developing given power, mass flow rate of steam must be less. Smaller the SSC, lesser I the size of plant and hence such plants are preferable. Work Ratio It is the ratio of net work to the positive work. β†’ 𝛾 𝑀 = π‘Šπ‘π‘’π‘‘ π‘Š+𝑣𝑒 β†’ 𝛾 𝑀 = π‘Š+𝑣𝑒 βˆ’ π‘Šβˆ’π‘£π‘’ π‘Š+𝑣𝑒 = 1 βˆ’ π‘Šβˆ’π‘£π‘’ π‘Š+𝑣𝑒 β†’ 𝛾 𝑀 π‘™π‘–π‘žπ‘’π‘–π‘‘ = 1 βˆ’ π‘Šπ‘π‘’π‘šπ‘ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ β†’ 𝛾 𝑀 π‘”π‘Žπ‘  = 1 βˆ’ π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ Work done by compressor is much higher than pump, so Work ratio for liquid power cycles is greater than gas power cycles. Power plants with high work ratios are preferable. The work ratio is highest for rankine cycles among all other cycles, this is because of less work done by pump in rankine cycle. In case of gas turbine power plants, the work ratio is about 0.4 – 0.6 i.e., in gas turbine power plants compressors consumes 40 – 60% of turbine work. In Rankine cycle, work ratio is about 0.96 – 0.98, i.e., I rankine cycle, pump consumes 2-4 % of turbine work. Back work Ratio It’s the ratio of negative work to positive work. β†’ 𝛾 𝑏𝑀 = π‘Šβˆ’π‘£π‘’ π‘Š+𝑣𝑒 β†’ 𝛾 𝑀 = 1 βˆ’ 𝛾 𝑏𝑀
  • 4. Carnot Vapour power cycles Drawbacks of Carnot vapour power cycles 1. Saturated vapour which is entering turbine at 1 leaves ar 2, which is in wet region. The liquid which is present at state 2 may damage turbine blades due to high velocity. 2. It is difficult to design a condenser that stops suddenly at point 3. 3. It’s difficult to design a compressor which handles both liquid and vapour. 4. As Carnot vapour cycle uses compressor, the compressor work is large and hence net work is less. β†’ πœ‚ = 𝑄 𝑆 βˆ’ 𝑄 𝑅 𝑄𝑠 = 1 βˆ’ 𝑄 𝑅 𝑄 𝑆 β†’ πœ‚ = 1 βˆ’ 𝑇𝑙 βˆ™ 𝑑𝑆 π‘‡β„Ž βˆ™ 𝑑𝑆 β†’ πœ‚ = 1 βˆ’ 𝑇𝑙 π‘‡β„Ž Rankine cycle β†’ πœ‚ = π‘Šπ‘π‘’π‘‘ 𝑄𝑠 = π‘Šπ‘‡ βˆ’ π‘Šπ‘ƒ 𝑄𝑠 1 βˆ’ 2 ⟹ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π‘Žπ‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑒π‘₯π‘π‘Žπ‘›π‘ π‘–π‘œπ‘› (π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’) 2 βˆ’ 3 ⟹ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘–π‘œπ‘› (πΆπ‘œπ‘›π‘‘π‘’π‘›π‘ π‘œπ‘Ÿ) 3 βˆ’ 4 ⟹ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› (π‘ƒπ‘’π‘šπ‘) 4 βˆ’ 1 ⟹ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ β„Žπ‘’π‘Žπ‘‘ 𝑠𝑒𝑝𝑝𝑙𝑦 (π΅π‘œπ‘–π‘™π‘’π‘Ÿ)
  • 5. Analysis of the Cycles Assumptions 1. Each device is treated as steady flow device. 2. Kinetic and potential energy changes are neglected. β†’ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = β„Ž1 βˆ’ β„Ž2 β†’ 𝑄 π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘’π‘‘ = β„Ž2 βˆ’ β„Ž3 β†’ π‘Šπ‘π‘’π‘šπ‘ = β„Ž4 βˆ’ β„Ž3 We know that open system work is -Vβˆ™ dP, this equation is applicable when the flow is steady, K.E and P.E changes are neglected and when the process is reversible. Steady flow equations can be applied to reversible and irreversible processes. If the pumping process is reversible, then work obtained from Steady flow energy equation and work equal to -Vβˆ™dP can be equated. β†’ π‘Šπ‘π‘’π‘šπ‘ = β„Ž3 βˆ’ β„Ž4 = βˆ’π‘‰ βˆ™ 𝑑𝑃 β†’ 𝑄𝑠𝑒𝑝𝑝𝑙𝑖𝑒𝑑 = β„Ž1 βˆ’ β„Ž4 β†’ πœ‚ = π‘Šπ‘‡ βˆ’ π‘Šπ‘ƒ 𝑄𝑠 = (β„Ž1 βˆ’ β„Ž2) βˆ’ (β„Ž4 βˆ’ β„Ž3) β„Ž1 βˆ’ β„Ž4 Reason for higher efficiency of Carnot cycle compared to rankine cycle 1 βˆ’ 2 βˆ’ 3 βˆ’ 4 ⟹ π‘…π‘Žπ‘›π‘˜π‘–π‘›π‘’ 𝑐𝑦𝑐𝑙𝑒 1 βˆ’ 2 βˆ’ 3β€² βˆ’ 4β€² ⟹ πΆπ‘Žπ‘Ÿπ‘›π‘œπ‘‘ 𝑐𝑦𝑐𝑙𝑒 β†’ πœ‚ π‘π‘Žπ‘Ÿπ‘›π‘œπ‘‘ = 1 βˆ’ π‘‡β„Ž 𝑇𝑙 β†’ πœ‚ = 𝑓(𝑇 π‘š) β†’ 𝑄𝑠 = β„Ž1 βˆ’ β„Ž4 = 𝑇 π‘š βˆ™ 𝑑𝑆 ⟹ 𝑇 π‘š = β„Ž1 βˆ’ β„Ž4 𝑑𝑆 β†’ πœ‚ = 1 βˆ’ 𝑄 𝑅 𝑄𝑠 = 1 βˆ’ 𝑇𝑙 βˆ™ 𝑑𝑆 𝑇 π‘š βˆ™ 𝑑𝑆 β†’ πœ‚ π‘Ÿπ‘Žπ‘›π‘˜π‘–π‘›π‘’ = 1 βˆ’ 𝑇𝑙 𝑇 π‘š In Carnot cycle, complete heat is added at single fixed temperature (Th), where as in rankine cycle, some heat is added at a temperature lower than Th and remaining heat is added at Th. therefore mean temperature of heat addition is less in rankine cycle, compared to Carnot cycle therefore the efficiency of rankine cycle is less than Carnot cycle. If the mean temperature of heat addition will be more, the efficiency will be more.
  • 6. Parameter Carnot Rankine Tm more less Ξ· more less WNet less more SSC more less Size of Plant large small Ξ³w less more Methods of improving performance of simple rankine cycle Increasing Boiler pressure Effects of increasing boiler pressure 1. Increase in turbine work 2. Increase in pump work 3. Increase in net work 4. Decrease in SSC 5. Decrease in heat rejection 6. Decrease in heat supply 7. Increase in mean temperature of heat addition 8. Increase in efficiency 9. Decrease in dryness fraction at the turbine exit. Note- Due to decrease in dryness fraction at the turbine exit, the boiler pressure is limited. Super Heating
  • 7. Effects of Superheating 1. Increase in Turbine work 2. No change in pump work 3. Increase in Net work 4. Decrease in SSC 5. Increase in mean temperature of heat addition 6. Increase in efficiency 7. Increase in heat supply 8. Increase in heat rejection 9. Increase in dryness fraction at turbine exit Note There is a limit to superheating because of metallurgical conditions i.e., steam turbine blades can resist up to 620⁰C. Reheating Effects of Reheating 1. Increase in dryness fraction 2. Increase in turbine work 3. Increase in net work 4. Decrease in SSC. 5. Efficiency may increase or decrease. Reheating in steam turbine may increase or decrease he efficiency if steam is expanded deeply in first turbine and then reheated, the mean temperature may decrease hence the efficiency decreases. In most of the practically reheat cycles, the steam is expanded slightly in first turbine and then reheated, this increases the mean temperature of heat addition and also the efficiency of the cycle. πœ‚ = (β„Ž1 βˆ’ β„Ž2) + (β„Ž3 βˆ’ β„Ž4) βˆ’ (β„Ž6 βˆ’ β„Ž5) (β„Ž1 βˆ’ β„Ž6) + (β„Ž3 βˆ’ β„Ž2) Regeneration
  • 8. Effects of regeneration 1. Decrease in turbine work due to decrease in mass. 2. Reduction in condenser load 3. Reduction in heat supply 4. Increase in mean temperature of heat addition 5. Increase in efficiency π‘Šπ‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ = (β„Ž1 βˆ’ β„Ž2) + (1 βˆ’ 𝑦) βˆ™ (β„Ž2 βˆ’ β„Ž3) π‘Šπ‘π‘’π‘šπ‘ = (1 βˆ’ 𝑦) βˆ™ (β„Ž5 βˆ’ β„Ž4) + (β„Ž7 βˆ’ β„Ž6) π‘Šπ‘π‘’π‘‘ = π‘Šπ‘‡ βˆ’ π‘Šπ‘ 𝑄𝑠 = β„Ž1 βˆ’ β„Ž7 𝑄 𝑅 = (1 βˆ’ 𝑦) βˆ™ (β„Ž3 βˆ’ β„Ž4) πœ‚ = π‘Šπ‘π‘’π‘‘ 𝑄 𝑆 𝑦 βˆ™ β„Ž2 + (1 βˆ’ 𝑦) βˆ™ β„Ž5 = β„Ž6 Ideal regenerative Rankine cycle leads to Carnot cycle. Need of Condenser in steam power plants If no condenser is used and if steam is allowed to expand to atmospheric pressure. The saturation temperature at 1 bar is 100⁰C, therefore of no condenser is used, steam leaves the turbine at higher temperature and this energy becomes useless. By using condenser steam can be allowed to expand to lower temperature and thereby more turbine work can be obtained, this results in higher efficiency. Therefore, condensers are used to increase turbine work and efficiency. Isentropic or adiabatic efficiency of turbine It is ratio of actual work to isentropic work β†’ π‘Šπ‘Žπ‘π‘‘π‘’π‘Žπ‘™ = β„Ž1 βˆ’ β„Ž2 β†’ π‘Šπ‘–π‘ π‘’π‘› = β„Ž1 βˆ’ β„Ž2𝑠 β†’ πœ‚ 𝑇 = β„Ž1 βˆ’ β„Ž2 β„Ž1 βˆ’ β„Ž2𝑠 Isentropic efficiency of a pump or compressor It is ratio of actual work to isentropic work β†’ π‘Šπ‘Žπ‘π‘‘π‘’π‘Žπ‘™ = β„Ž2 βˆ’ β„Ž1 β†’ π‘Šπ‘–π‘ π‘’π‘› = β„Ž2𝑠 βˆ’ β„Ž1 β†’ πœ‚ 𝑇 = β„Ž2𝑠 βˆ’ β„Ž1 β„Ž2 βˆ’ β„Ž1
  • 9. Gas power cycles Otto Cycle Engine is a device which converts one form of energy into other useful form. Based on combustion, engines are classified into 1. Internal combustion engines (I.C engines) 2. External combustion engines (E.C engines) In I.C engines, burning or combustion occurs in cylinder and power is also developed in same cylinder. In E.C engines, heat is transferred from products of combustion to working fluid. Heat engine is a device which converts chemical energy of fuel into heat energy and subsequently this heat energy is converted into mechanical power. Advantages of I.C engines 1. Mechanical simplicity 2. Low initial cost due to absence of boiler, turbine, condenser etc... 3. High efficiency 4. High power to weight ratio Engine nomenclature Top dead centre It’s the dead centre when the piston is farthest from crank shaft. In case of horizontal engines TDC is known as Inner dead centre. Bottom dead centre It’s the dead centre when the piston is nearest to crank shaft. In case of horizontal engines, it is known as outer dead centre. Stroke or stroke length Distance between TDC and BDC is known as stroke length. Displacement volume or stroke volume or swept volume It’s the volume swept by a piston 𝑉𝑠 = πœ‹ 4 𝐷2 𝐿 βˆ™ π‘˜ 𝐷 β†’ πΌπ‘›π‘›π‘’π‘Ÿ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿ 𝐿 β†’ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’ π‘™π‘’π‘›π‘”π‘‘β„Ž π‘˜ β†’ π‘›π‘œ. π‘œπ‘“ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿπ‘  Clearance volume It’s the volume of cylinder when piston is at top dead centre or Inner Dead centre. Clearance volume is provided to accommodate valves and to prevent damage to valves.
  • 10. Compression ratio (Ξ³) It’s defined as ratio of volume before compression to volume after compression. 𝛾 = π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘π‘’π‘“π‘œπ‘Ÿπ‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘£π‘œπ‘™π‘’π‘šπ‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› 𝛾 = 𝑉1 𝑉2 = 𝑉𝑐 + 𝑉𝑠 𝑉𝑠 = 1 + 𝑉𝑐 𝑉𝑠 𝛾 = 1 + 𝑉𝑐 𝑉𝑠 Mean Piston Speed In one stroke the shaft completes half revolution (180⁰C). therefore, piston covers 2L in 1 revolution. β†’ π‘€π‘’π‘Žπ‘› π‘π‘–π‘ π‘‘π‘œπ‘› 𝑠𝑝𝑒𝑒𝑑 = 2𝐿𝑁 60
  • 11. Air Standard Cycles Assumptions 1. Working fluid is air and it’s treated as Ideal gas 2. Specific heat cp, cv are assumed as constants. 3. Working fluids is of fixed mass (liquid system analysis) 4. Working fluid doesn’t undergo any chemical reaction that is of constant chemical composition throughout cycle. 5. All processes are assumed to be reversible (internally reversible). Generally, cp & cv of air are taken as 25⁰C⁰this analysis is known as cold air cycle analysis. Otto Cycle 1 βˆ’ 2 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› 2 βˆ’ 3 β†’ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘£π‘œπ‘™π‘’π‘šπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘œπ‘› 3 βˆ’ 4 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑒π‘₯π‘π‘Žπ‘›π‘ π‘–π‘œπ‘› 4 βˆ’ 1 β†’ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘£π‘œπ‘™π‘’π‘šπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘–π‘œπ‘› β†’ 𝛾 = 𝑉1 𝑉2 β†’ πœ‚ = 1 βˆ’ 𝑄 π‘Ÿ 𝑄𝑠 β†’ 𝑄23 = 𝑄𝑠 = π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇3 βˆ’ 𝑇2) β†’ 𝑄41 = 𝑄 π‘Ÿ = π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1) β†’ πœ‚ = 1 βˆ’ π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1) π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇3 βˆ’ 𝑇2) = 1 βˆ’ (𝑇4 βˆ’ 𝑇1) (𝑇3 βˆ’ 𝑇2) = 1 βˆ’ 𝑇1 ( 𝑇4 𝑇1 βˆ’ 1) 𝑇2 ( 𝑇3 𝑇2 βˆ’ 1) ( 𝑇2 𝑇1 = π‘Ÿ π›Ύβˆ’1 = 𝑇3 𝑇4 ⟹ 𝑇4 𝑇1 = 𝑇3 𝑇2 ) πœ‚ = 1 βˆ’ 𝑇1 𝑇2 = 1 βˆ’ 1 π‘Ÿ π›Ύβˆ’1 Significance of compression ratio Compression ratio is an indicator of efficiency of engine, greater the compression ratio greater is the efficiency. This is because if compression ratio is high there will be more scope for expansion and net-work will be more. Therefore, for a given heat supply if compression ratio is more, the efficiency will be more. πœ‚ ∝ π‘Ÿ (π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œ)
  • 12. Mean effective pressure It’s hypothetical (imaginary) pressure which gives same net-work as that of actual cycle for swept volume (same size of engine). β†’ π‘Šπ‘π‘’π‘‘ = π‘ƒπ‘š βˆ™ 𝑉𝑠 β†’ 𝑃 𝑀 = π‘Šπ‘π‘’π‘‘ 𝑉𝑠 The mean effective pressure of Otto cycle can be expressed as π‘ƒπ‘š = πœ‚ π‘‘β„Ž Β· π›₯𝑃 (𝛾 βˆ’ 1) Β· (π‘Ÿ βˆ’ 1) Significance of Pm This term is used for comparing different engines of same size. That is engines with higher mean effective pressure have more net-work and for a given heat input greater the mean effective pressure, greater is efficiency. Diesel cycle 1 βˆ’ 2 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› 2 βˆ’ 3 β†’ πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘œπ‘› 3 βˆ’ 4 β†’ π‘…π‘’π‘£π‘’π‘Ÿπ‘ π‘–π‘π‘™π‘’ π΄π‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑒π‘₯π‘π‘Žπ‘›π‘–π‘ π‘œπ‘› 4 βˆ’ 1 β†’ πΆπ‘œπ‘ π‘›π‘‘π‘Žπ‘›π‘‘ π‘‰π‘œπ‘™π‘’π‘šπ‘’ β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘’π‘—π‘’π‘π‘‘π‘–π‘œπ‘› β†’ πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› (π‘Ÿ) = 𝑉1 𝑉2 β†’ πΆπ‘’π‘‘π‘œπ‘“π‘“ π‘Ÿπ‘Žπ‘‘π‘–π‘œ (π‘Ÿπ‘) = 𝑉3 𝑉2 = 𝑇3 𝑇2 β†’ 𝐸π‘₯π‘π‘Žπ‘›π‘–π‘ π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘–π‘œ (π‘Ÿπ‘’) = 𝑉4 𝑉3 = 𝑉1 𝑉3 β†’ π‘Ÿπ‘ βˆ™ π‘Ÿπ‘’ = π‘Ÿ β†’ πœ‚ = π‘Šπ‘›π‘’π‘‘ 𝑄𝑠 = 𝑄 𝑁𝑒𝑑 𝑄𝑠 = 𝑄𝑠 βˆ’ 𝑄 π‘Ÿ 𝑄𝑠 = 1 βˆ’ 𝑄 π‘Ÿ 𝑄𝑠 β†’ 𝑄23 = 𝑄𝑠 = π‘š βˆ™ 𝑐 𝑝 βˆ™ (𝑇3 βˆ’ 𝑇2) β†’ 𝑄41 = 𝑄 π‘Ÿ = π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1)
  • 13. β†’ πœ‚ = 1 βˆ’ π‘š βˆ™ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1) π‘š βˆ™ 𝑐 𝑝 βˆ™ (𝑇3 βˆ’ 𝑇2) = 1 βˆ’ 𝑐 𝑣 βˆ™ (𝑇4 βˆ’ 𝑇1) 𝑐 𝑝 βˆ™ (𝑇3 βˆ’ 𝑇2) = 1 βˆ’ 1 𝛾 βˆ™ 𝑇1 ( 𝑇4 𝑇1 βˆ’ 1) 𝑇2 ( 𝑇3 𝑇2 βˆ’ 1) ( 𝑇2 𝑇1 = π‘Ÿ π›Ύβˆ’1 ) ( 𝑉3 𝑉2 = 𝑇3 𝑇2 = π‘Ÿπ‘) ( 𝑇4 𝑇1 = π‘Ÿπ‘ 𝛾 ) β†’ πœ‚ = 1 βˆ’ 1 𝛾 βˆ™ 1 π‘Ÿ π›Ύβˆ’1 βˆ™ π‘Ÿπ‘ 𝛾 βˆ’ 1 π‘Ÿπ‘ βˆ’ 1 Efficiency of a diesel cycle depends on compression ratio and cut-off ratio. Efficiency of a diesel cycle increases with increase in compression ratio. Effect of cut-off ratio (rc) on efficiency of diesel cycle With increase in cut off ratio, both heat supply and heat rejection increases, but the increase in heat rejection is more, because heat rejection occurs at constant volume and heat supply occurs ar constant pressure and the slope of constant volume is greater than slope of constant pressure curve. Comparison of Otto and diesel cycles Case 1- Same compression ratio and heat supply πœ‚ = 1 βˆ’ 𝑄 𝑅 𝑄 𝑆 For the same compression ratio and heat supply, rejection is more in diesel cycle and hence efficiency of Otto cycle is more than efficiency of diesel cycle. π‘‚π‘‘π‘‘π‘œ β†’ 𝑄𝑠 = 𝑄 𝑉 = π‘‘π‘ˆ = π‘š Β· 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) 𝐷𝑖𝑒𝑠𝑒𝑙 β†’ 𝑄𝑠 = 𝑄 𝑃 = 𝑑𝐻 = π‘š Β· 𝑐 𝑝 Β· (𝑇3 β€² βˆ’ 𝑇2) 𝑄𝑠 𝑢𝒕𝒕𝒐 = 𝑄𝑠 π‘«π’Šπ’†π’”π’†π’ ⟹ π‘š Β· 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) = π‘š Β· 𝑐 𝑝 Β· (𝑇3 β€² βˆ’ 𝑇2) 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) = 𝑐 𝑝 Β· (𝑇3 β€² βˆ’ 𝑇2) ⟹ 𝑇3 βˆ’ 𝑇2 = 𝑇3 β€² βˆ’ 𝑇2 𝑻 πŸ‘ > 𝑻 πŸ‘ β€² Case 2 – Same compression ratio and heat rejection πœ‚ = 1 βˆ’ 𝑄 𝑅 𝑄𝑠 For the same compression ratio and heat rejection, heat supply is more in Otto cycle and hence its efficiency is more. πœ‚ 𝑑𝑖𝑒𝑠𝑒𝑙 > πœ‚ π‘‚π‘‘π‘‘π‘œ Case 3 – Same maximum temperature and heat rejection For same maximum temperature and heat rejection, heat supplied is more in diesel cycle and hence it’s more efficient. In this case compression ratio of diesel cycle is more than compression ratio of Otto cycle. πœ‚ 𝑑𝑖𝑒𝑠𝑒𝑙 > πœ‚ π‘‚π‘‘π‘‘π‘œ 1-2-3-4 β†’ Otto cycle 1-2-3’-4’ β†’ Diesel cycle
  • 14. Dual cycle In actual engines, heat is neither added at constant volume or at constant pressure. A dual cycle is developed and it has features of both Otto and Diesel cycle. 𝛾 = 𝑉1 𝑉2 π‘Ÿπ‘ = 𝑉4 𝑉3 π‘Ÿπ‘’ = 𝑉5 𝑉4 πœ‚ = 1 βˆ’ 𝑄 𝑅 𝑄𝑠 𝑄𝑠 = 𝑄𝑠1 + 𝑄𝑠2 𝑄𝑠1 = π‘š Β· 𝑐 𝑣 Β· (𝑇3 βˆ’ 𝑇2) ; 𝑄𝑠2 = π‘š Β· 𝑐 𝑝 Β· (𝑇5 βˆ’ 𝑇1) ; 𝑄 𝑅 = π‘š Β· 𝑐 𝑣 Β· (𝑇5 βˆ’ 𝑇1) As dual cycle has features of both Otto and diesel cycle, its efficiency lies between Otto and diesel cycle. Engine Performance Parameters Indicated power (IP) The power developed inside the cylinder is known as indicated power. In case of 2 stroke engine, 1 cycle is completed in 2 strokes of piston or 1 revolution of crank shaft. Similarly, in 4 stroke engine, 1 cycle is completed in 4 strokes or 2 revolutions of shaft. Theoretically power developed in 2 stroke engines is twice that of 4 stroke engines. Indicated power of 2 stroke engine π‘Šπ‘›π‘’π‘‘ = π‘ƒπ‘š Β· 𝑉𝑠 β§Έ 𝑐𝑦𝑐𝑙𝑒 π‘Šπ‘›π‘’π‘‘ = π‘ƒπ‘š Β· 𝑉𝑠 β§Έ π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑷 π’Žπ’†π’‚π’ Β· 𝑽 𝑺 π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› Γ— 𝑡 π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑠𝑒𝑐 (Pmβ†’indicated mean effective pressure) πΌπ‘›π‘‘π‘–π‘π‘Žπ‘‘π‘’π‘‘ π‘π‘œπ‘€π‘’π‘Ÿ (𝑰. 𝑷) = π‘ƒπ‘š Β· 𝑉𝑆 Β· 𝑁 60 = π‘ƒπ‘š Β· (𝐴 Β· 𝐿) Β· 𝑁 60 If there are K cylinders, then indicated power is equal to ⟹ π‘ƒπ‘š Β· ( 𝐴 Β· 𝐿) Β· 𝑁 Β· 𝑲 60 In case of 4 – stroke engine ⟹ 𝐼. 𝑃 = π‘ƒπ‘š Β· ( 𝐴 Β· 𝐿) Β· 𝑁 Β· 𝑲 60 Γ— 2 Brake power (B.P) The power available at the output shaft is known as brake power. π΅π‘Ÿπ‘Žπ‘˜π‘’ π‘ƒπ‘œπ‘€π‘’π‘Ÿ (𝑩. 𝑷) = 𝑇 Γ— πœ” 𝐡. 𝑃 = 𝑇 Γ— 2πœ‹π‘ 60 β†’ applicable for 2 or 4 stroke and any number of cylinders Frictional Power (F.P) The difference between indicated power and brake power is called frictional power. 𝐹. 𝑃 = 𝐼. 𝑃 βˆ’ 𝐡. 𝑃
  • 15. Mechanical efficiency πœ‚ π‘šπ‘’π‘β„Ž = 𝐡. 𝑃 𝐼. 𝑃 Indicated thermal efficiency (Ξ·ith) πœ‚π‘–π‘‘β„Ž = 𝐼. 𝑃 π‘šΜ‡ 𝑓 Γ— 𝐢. 𝑉 π‘šΜ‡ 𝑓 β†’ π‘šπ‘Žπ‘ π‘  π‘“π‘™π‘œπ‘€ π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ 𝑓𝑒𝑒𝑙 𝐢. π‘‰βˆ’. πΆπ‘Žπ‘™π‘œπ‘Ÿπ‘–π‘“π‘–π‘ π‘£π‘Žπ‘™π‘’π‘’ Brake thermal efficiency (Ξ·bth) πœ‚ π‘π‘‘β„Ž = 𝐡. 𝑃 π‘šΜ‡ 𝑓 Γ— 𝐢. 𝑉 Indicated specific fuel consumption (isfc) 𝑖𝑠𝑓𝑐 = π‘šΜ‡ 𝑓 𝐼. 𝑃 ( π‘˜π‘” πΎπ‘Š Β· β„Žπ‘Ÿ ) Brake specific fuel consumption (bsfc) 𝑏𝑠𝑓𝑐 = π‘šΜ‡ 𝑓 𝐡. 𝑃 ( π‘˜π‘” πΎπ‘Š Β· β„Žπ‘Ÿ ) Volumetric efficiency (Ξ·vol) It represents the breathing capacity of the cylinder, it’s the ratio of actual volume of fluid entering the cylinder per cycle to the swept volume. πœ‚ π‘£π‘œπ‘™ = π΄π‘π‘‘π‘’π‘Žπ‘™ π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘” πœ‹ 4 Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β· 𝐾 = π‘šΜ‡ 𝑓 Β· 𝜐 πœ‹ 4 Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β· 𝐾 β†’ 2 βˆ’ π‘ π‘‘π‘Ÿπ‘œπ‘˜π‘’ πœ‚ π‘£π‘œπ‘™ = π΄π‘π‘‘π‘’π‘Žπ‘™ π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘” πœ‹ 4 Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β· 𝐾 2 = π‘šΜ‡ 𝑓 Β· 𝜐 πœ‹ 4 Β· 𝐷2 Β· 𝐿 Β· 𝑁 Β· 𝐾 2 β†’ 4 βˆ’ π‘ π‘‘π‘Ÿπ‘œπ‘˜π‘’
  • 16. Gas turbines Advantages of Gas turbines 1. Simple mechanism 2. Compact 3. Easy balancing 4. High speeds can be obtained Disadvantages 1. As gas turbines are rotary devices, they are subjected to higher temperatures continuously, hence costly material is required. 2. As compressor is used it consumes more work and hence the Net-work is less. 3. As speeds are high, reduction gear mechanisms must be used. Gas turbine cycles Gas turbine cycles work on Brayton or Joule cycle. Open cycle gas turbine Open cycle gas turbine is a mechanical device. Gas turbines are used in power generation, jet propulsion and aircraft engines. Closed cycle gas turbines 1-2 β†’ reversible adiabatic Compression 2-3 β†’ constant pressure heat addition 3-4 β†’ reversible adiabatic expansion 1-2 β†’ reversible adiabatic Compression 2-3 β†’ constant pressure heat addition 3-4 β†’ reversible adiabatic expansion 4-1 β†’ constant pressure heat rejection
  • 17. Advantages of closed cycle gas turbines over open cycle gas turbines 1. It is compact. 2. Any working fluid can be used in closed cycle gas turbines but in open gas turbines, air is required for combustion. 3. As products of combustion do not enter turbine blades, any cheaper fuel can be used. Generally, in closed cycle gas turbines, working fluid with higher Ξ³ (higher mono-atomic gases) can be used leading to higher efficiency. Disadvantages 1. Additional heat exchanger is required. 2. Coolant is required in closed cycle gas turbine, where as in open cycle gas turbine atmosphere acts as a sink. Analysis of a simple gas turbine cycle Assumptions 1. Working fluid can be treated as ideal gas. 2. Compression and expansion are treated as steady flow device. 3. Each device is treated as steady flow device. 4. Kinetic and potential energy changes are neglected. 5. cp & cv doesn’t change with temperature. 6. Working fluid is same throughout the cycle. 1β€” 2 ⟢ Reversible Adiabatic β„Ž1 + 𝐢1 2 2 + 𝑔𝑧1 + π‘žβƒ₯ = β„Ž2 + 𝐢2 2 2 + 𝑔𝑧2 + 𝑀 β„Ž1 = β„Ž2 + 𝑀 β†’ βˆ’π‘€ = β„Ž2 βˆ’ β„Ž1 β†’ π’˜ π’„π’π’Žπ’‘π’“π’†π’”π’”π’π’“ = 𝒉 𝟐 βˆ’ 𝒉 𝟏 = 𝒄 𝒑 Β· (𝑻 𝟐 βˆ’ 𝑻 𝟏) 2β€”3 ⟢ Constant pressure heat rejection β„Ž2 + 𝐢2 2 2 + 𝑔𝑧2 + π‘žβƒ₯ = β„Ž3 + 𝐢3 2 2 + 𝑔𝑧3 + 𝑀 β„Ž2 + π‘žβƒ₯ = β„Ž3 β†’ π‘žβƒ₯ = β„Ž3 βˆ’ β„Ž2 β†’ 𝒒 π’”π’–π’‘π’‘π’π’š = 𝒉 πŸ‘ βˆ’ 𝒉 𝟐 = 𝒄 𝒑 Β· (𝑻 πŸ‘ βˆ’ 𝑻 𝟐) 3β€”4 ⟢ Reversible adiabatic expansion (turbine) β„Ž3 + 𝐢3 2 2 + 𝑔𝑧3 + π‘žβƒ₯ = β„Ž4 + 𝐢4 2 2 + 𝑔𝑧4 + 𝑀 β„Ž3 = β„Ž4 + 𝑀 β†’ 𝑀 = β„Ž3 βˆ’ β„Ž4 β†’ π’˜ π’•π’–π’“π’ƒπ’Šπ’π’† = 𝒉 πŸ‘ βˆ’ 𝒉 πŸ’ = 𝒄 𝒑 Β· (𝑻 πŸ‘ βˆ’ 𝑻 πŸ’) 4β€”1 ⟢ Constant pressure heat rejection β„Ž4 + 𝐢4 2 2 + 𝑔𝑧4 + π‘žβƒ₯ = β„Ž1 + 𝐢1 2 2 + 𝑔𝑧1 + 𝑀 β„Ž4 + π‘žβƒ₯ = β„Ž1 β†’ π‘žβƒ₯ = β„Ž1 βˆ’ β„Ž4 β†’ 𝒒 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅 = 𝒉 𝟏 βˆ’ 𝒉 πŸ’ = 𝒄 𝒑 Β· (𝑻 𝟏 βˆ’ 𝑻 πŸ’)
  • 18. Efficiency of simple gas turbine cycle πœ‚ = π‘Šπ‘›π‘’π‘‘ 𝑄𝑠 = 𝑄𝑠 βˆ’ 𝑄 𝑅 𝑄𝑠 = 1 βˆ’ 𝑄 𝑅 𝑄𝑠 = 1 βˆ’ 𝑐 𝑝 Β· (𝑇4 βˆ’ 𝑇1) 𝑐 𝑝 Β· (𝑇3 βˆ’ 𝑇2) = 1 βˆ’ 𝑇4 βˆ’ 𝑇1 𝑇3 βˆ’ 𝑇2 πœ‚ = 1 βˆ’ 𝑇1 Β· ( 𝑇4 𝑇1 βˆ’ 1) 𝑇2 Β· ( 𝑇3 𝑇2 βˆ’ 1) 1 β†’ 2 (reversible Adiabatic) ⟹ 𝑇2 𝑇1 = ( 𝑃2 𝑃1 ) π›Ύβˆ’1 𝛾⁄ = π‘Ÿπ‘ π›Ύβˆ’1 𝛾⁄ 3 β†’ 4 (reversible Adiabatic) ⟹ 𝑇3 𝑇4 = ( 𝑃3 𝑃4 ) π›Ύβˆ’1 𝛾⁄ = ( 𝑃2 𝑃1 ) π›Ύβˆ’1 𝛾⁄ = π‘Ÿπ‘ π›Ύβˆ’1 𝛾⁄ (𝑃2 = 𝑃3, 𝑃4 = 𝑃1) From above equations, 𝑇2 𝑇1 = 𝑇3 𝑇4 ⟹ 𝑻 πŸ’ 𝑻 𝟏 = 𝑻 πŸ‘ 𝑻 𝟐 πœ‚ = 1 βˆ’ 𝑇1 Β· ( 𝑇4 𝑇1 βˆ’ 1) 𝑇2 Β· ( 𝑇3 𝑇2 βˆ’ 1) ⟹ 𝜼 = 𝟏 βˆ’ 𝑻 𝟏 𝑻 𝟐 = 𝟏 βˆ’ 𝟏 𝒓 𝒑 πœΈβˆ’πŸ πœΈβ„ The efficiency of simple gas turbine cycle depends on pressure ratio. With increase in pressure ratio, efficiency increases because greater the pressure ratio, greater is the compression ratio and more is the scope for free expansion. Hence, for a given input, efficiency increases with increase in pressure ratio. With increase in pressure ratio, though the efficiency increases, at higher pressure ratios net-work decreases and hence there is a need to calculate a pressure ratio where the work output is maximum. At this pressure ratio, net-work is minimum is known as Optimum pressure ratio. π‘Šπ‘›π‘’π‘‘ = π‘Šπ‘‘ βˆ’ π‘Šπ‘ = 𝑐 𝑝 Β· (𝑇3 βˆ’ 𝑇4) βˆ’ 𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇1) = 𝑐 𝑝(𝑇3 βˆ’ 𝑇4 βˆ’ 𝑇2 + 𝑇1) 𝑇2 𝑇1 = 𝑇3 𝑇4 ⟹ 𝑻 πŸ’ = 𝑻 πŸ‘ Β· 𝑻 𝟏 𝑻 𝟐 π‘Šπ‘›π‘’π‘‘ = 𝑐 𝑝 Β· [𝑇3 βˆ’ 𝑇3 Β· 𝑇1 𝑇2 βˆ’ 𝑇2 + 𝑇1] πΉπ‘œπ‘Ÿ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘Šπ‘›π‘’π‘‘, 𝒅𝑾 𝒏𝒆𝒕 𝒅𝑻 𝟐 = 𝟎 π‘‘π‘Šπ‘›π‘’π‘‘ 𝑑𝑇2 = 𝑐 𝑝 Β· [0 + 𝑇3 Β· 𝑇1 𝑇2 2 βˆ’ 1 + 0] = 0 ⟹ 𝑇2 2 = 𝑇3 Β· 𝑇1 ⟹ 𝑻 𝟐 = βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 𝑇4 = 𝑇3 Β· 𝑇1 𝑇2 ⟹ 𝑇4 = 𝑇3 Β· 𝑇1 βˆšπ‘‡3 Β· 𝑇1 ⟹ 𝑻 πŸ’ = βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 𝑻 πŸ’ = 𝑻 𝟐 = βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 (rp)A < (rp)B < (rp)C Ξ·A < Ξ·B < Ξ·C
  • 19. π‘Ÿπ‘ = 𝑃2 𝑃1 = ( 𝑇2 𝑇1 ) 𝛾 π›Ύβˆ’1 ⟹ 𝒓 𝒑, π‘œπ‘π‘‘π‘–π‘šπ‘’π‘š = ( 𝑇2 𝑇1 ) 𝛾 π›Ύβˆ’1 = ( βˆšπ‘‡3 Β· 𝑇1 𝑇1 ) 𝛾 π›Ύβˆ’1 ⟹ 𝒓 𝒑, π’π’‘π’•π’Šπ’Žπ’–π’Ž = ( 𝑻 πŸ‘ 𝑻 𝟏 ) 𝜸 𝟐·(πœΈβˆ’πŸ) β†’ π‘Šπ‘›π‘’π‘‘ = (𝑐 𝑝 Β· (𝑇3 βˆ’ 𝑇4)) βˆ’ (𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇1)) = 𝑐 𝑝(𝑇3 βˆ’ 𝑇4 βˆ’ 𝑇2 + 𝑇1) = 𝑐 𝑝(𝑇3 βˆ’ βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 βˆ’ βˆšπ‘» πŸ‘ Β· 𝑻 𝟏 + 𝑇1) 𝑾 𝒏𝒆𝒕 = 𝒄 𝒑 Β· (βˆšπ‘» πŸ‘ βˆ’ βˆšπ‘» 𝟏) 𝟐 Maximum Pressure ratio (rp max) For maximum pressure ratio, rp, max β†’ T2=T3 π‘Ÿπ‘ = 𝑃2 𝑃1 = ( 𝑇2 𝑇1 ) 𝛾 π›Ύβˆ’1 π‘Ÿπ‘, π’Žπ’‚π’™ = ( 𝑻 𝟐 𝑇1 ) 𝛾 π›Ύβˆ’1 = ( 𝑻 πŸ‘ 𝑇1 ) 𝛾 π›Ύβˆ’1 = ( 𝑇 π‘šπ‘Žπ‘₯ 𝑇 π‘šπ‘–π‘› ) 𝛾 π›Ύβˆ’1 π‘Ÿπ‘, π‘œπ‘π‘‘π‘–π‘šπ‘’π‘š = ( 𝑇3 𝑇1 ) 𝛾 2Β·(π›Ύβˆ’1) = ( 𝑇 π‘šπ‘Žπ‘₯ 𝑇 π‘šπ‘–π‘› ) 𝛾 2Β·(π›Ύβˆ’1) 𝒓 𝒑, π’π’‘π’•π’Šπ’Žπ’–π’Ž = (𝒓 𝒑, π’Žπ’‚π’™) 𝟏 𝟐 Methods of improving the performance of gas turbine cycle Regeneration πœ‚ = π‘Šπ‘›π‘’π‘‘ 𝑄𝑠 = π‘Šπ‘‡ βˆ’ π‘ŠπΆ 𝑄𝑠 = (β„Ž3 βˆ’ β„Ž4) βˆ’ (β„Ž2 βˆ’ β„Ž1) β„Ž3 βˆ’ β„Ž π‘₯
  • 20. Effects of Regenerator 1. No change in compressor work 2. No change in turbine work 3. No change in Net-work 4. Decrease in heat supply 5. Decrease in heat rejection 6. Increase in efficiency Effectiveness of a Regenerator ∈ = Actual gain in heat Ideal gain in heat/Maximum heat transfer = π‘š π‘Ž Β· (β„Ž π‘₯ βˆ’ β„Ž2) π‘š π‘Ž+𝑔 Β· (β„Ž4 βˆ’ β„Ž2) = π‘š π‘Ž Β· 𝑐 𝑝,π‘Žπ‘–π‘Ÿ Β· (𝑇π‘₯ βˆ’ 𝑇2) (π‘š π‘Ž + π‘š 𝑔) Β· 𝑐 𝑝,π‘”π‘Žπ‘  Β· (𝑇4 βˆ’ 𝑇2) Generally, mass of the fuel is very small in comparison to mass of air. Therefore, mf can be neglected w.r.t ma if cp of air and cp, gas are almost same. Then, π‘š 𝑓 β‰ͺ π‘š π‘Ž, 𝑐 𝑝, π‘Žπ‘–π‘Ÿ β‰ˆ 𝑐 𝑝, π‘”π‘Žπ‘  ⟹ ∈= 𝑻 𝒙 βˆ’ 𝑻 𝟐 𝑻 πŸ’ βˆ’ 𝑻 𝟐 = π‘»π’‰π’†π’“π’Žπ’‚π’ π‘Ήπ’‚π’•π’Šπ’ Note 1. Regenerator will be effective only when the temperature difference between turbine exit (T4) and compressor exit (T2) is very large. 2. In case of maximum work output cycle as T2=T4, Regenerator can’t be used. Reheating π‘Šπ‘–π‘‘β„Žπ‘œπ‘’π‘‘ π‘Ÿπ‘’β„Žπ‘’π‘Žπ‘‘π‘–π‘›π‘” β†’ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = (β„Ž3 βˆ’ β„Ž π‘Ž) + (β„Ž π‘Ž βˆ’ β„Ž4β€²) = β„Ž3 βˆ’ β„Ž4β€² π‘Šπ‘–π‘‘β„Ž π‘Ÿπ‘’β„Žπ‘’π‘Žπ‘‘π‘–π‘›π‘” β†’ π‘Šπ‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = (β„Ž3 βˆ’ β„Ž π‘Ž) + (β„Ž 𝑏 βˆ’ β„Ž4) Effects of Reheating 1. No change in compressor work. 2. Increase in turbine work (on h-s diagram constant pressure line diverge). 3. Increase in Net work. 4. Temperature at the exit of turbine (T4) is greater than T4’ and hence with reheating, scope for regenerator increases. Therefore, reheating cycles are generally combined with regeneration. 5. Increase in heat supply. Note With reheating both heat supplied and net-work increases. Therefore, efficiency depends in relative increase of both values. πœ‚ = π‘Šπ‘‡ βˆ’ π‘Šπ‘ 𝑄𝑠 = (β„Ž3 βˆ’ β„Ž π‘Ž) + (β„Ž 𝑏 βˆ’ β„Ž4) βˆ’ (β„Ž2 βˆ’ β„Ž1) (β„Ž3 βˆ’ β„Ž2) + (β„Ž3 βˆ’ β„Ž π‘Ž) Reheating and intercooling are constant pressure processes.
  • 21. Intercooling Effects of Intercooling 1. Decrease in compressor work 2. No change in turbine work 3. Increase in net-work 4. Increase in heat supply 5. With intercooling, the temperature difference between turbine exit and compressor exit increases and hence the scope for regeneration increases with intercooling. Therefore, intercooling cycles are generally combined with regeneration. Note With intercooling both net-work and heat supply increases, therefore, (increase in) efficiency depends on relative increase of both values. πœ‚ = π‘Šπ‘›π‘’π‘‘ 𝑄𝑠 = (β„Ž3 βˆ’ β„Ž4) βˆ’ (β„Ž π‘Ž βˆ’ β„Ž1) + (β„Ž2 βˆ’ β„Ž 𝑏) β„Ž3 βˆ’ β„Ž2 Condition for minimum work input to the compressor with perfect intercooling (T1=Tb). π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ = π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ 𝟏 + π‘Šπ‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ 𝟐 = (β„Ž π‘Ž βˆ’ β„Ž1) + (β„Ž2 βˆ’ β„Ž 𝑏) = 𝑐 𝑝 Β· (π‘‡π‘Ž βˆ’ 𝑇1) + 𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇𝑏) π‘Šπ‘ = 𝑐 𝑝 Β· 𝑇1 Β· [ π‘‡π‘Ž 𝑇1 βˆ’ 1] + 𝑐 𝑝 Β· 𝑻 𝒃 Β· [ 𝑇2 𝑇𝑏 βˆ’ 1] = 𝑐 𝑝 Β· 𝑇1 Β· [ π‘‡π‘Ž 𝑇1 βˆ’ 1] + 𝑐 𝑝 Β· 𝑻 𝟏 Β· [ 𝑇2 𝑇𝑏 βˆ’ 1] = 𝑐 𝑝 Β· 𝑇1 Β· [ π‘‡π‘Ž 𝑇1 βˆ’ 1 + 𝑇2 𝑇𝑏 βˆ’ 1] π‘Šπ‘ = 𝑐 𝑝 Β· 𝑇1 Β· [( 𝑃𝑖 𝑃1 ) π›Ύβˆ’1 𝛾 + ( 𝑃2 𝑃𝑖 ) π›Ύβˆ’1 𝛾 βˆ’ 2] = 𝑐 𝑝 Β· 𝑇1 Β· [( 𝑃𝑖 𝑃1 ) π‘₯ + ( 𝑃2 𝑃𝑖 ) π‘₯ βˆ’ 2] ( 𝛾 βˆ’ 1 𝛾 = π‘₯) πΉπ‘œπ‘Ÿ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘€π‘œπ‘Ÿπ‘˜ 𝑖𝑛𝑝𝑒𝑑 π‘œπ‘“ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘œπ‘Ÿ, π‘‘π‘Šπ‘– 𝑑𝑃𝑖 = 0 π‘‘π‘Šπ‘– 𝑑𝑃𝑖 = 𝑐 𝑝 Β· 𝑇1 Β· [( 1 𝑃1 π‘₯ Β· π‘₯ Β· 𝑃𝑖 π‘₯βˆ’1 ) + (𝑃2 π‘₯ Β· (βˆ’π‘₯) Β· 𝑃𝑖 βˆ’π‘₯βˆ’1 ) βˆ’ 0] = 0 β†’ π‘₯ Β· 𝑃𝑖 π‘₯βˆ’1 𝑃1 π‘₯ = π‘₯ Β· 𝑃2 π‘₯ 𝑃𝑖 π‘₯+1 ⟹ 𝑃𝑖 π‘₯βˆ’1+π‘₯+1 = 𝑃1 π‘₯ Β· 𝑃2 π‘₯ = 𝑃𝑖 2π‘₯ ⟹ π‘·π’Š = βˆšπ‘· 𝟏 Β· 𝑷 𝟐
  • 22. π‘Šπ‘1 = β„Ž π‘Ž βˆ’ β„Ž1 = 𝑐 𝑝 Β· (π‘‡π‘Ž βˆ’ 𝑇1) = 𝑐 𝑝 Β· 𝑇1 Β· ( π‘‡π‘Ž 𝑇1 βˆ’ 1) = 𝑐 𝑝 Β· 𝑇1 Β· [( π‘·π’Š 𝑃1 ) π›Ύβˆ’1 𝛾 βˆ’ 1] ⟹ 𝑐 𝑝 Β· 𝑇1 Β· [( 𝑷 𝟐 𝑃1 ) π›Ύβˆ’1 πŸΒ·π›Ύ βˆ’ 1] π‘Šπ‘2 = β„Ž2 βˆ’ β„Ž 𝑏 = 𝑐 𝑝 Β· (𝑇2 βˆ’ 𝑇𝑏) = 𝑐 𝑝 Β· 𝑇𝑏 Β· ( 𝑇2 𝑇𝑏 βˆ’ 1) = 𝑐 𝑝 Β· 𝑻 𝒃 Β· [( 𝑷 𝟐 𝑃𝑖 ) π›Ύβˆ’1 𝛾 βˆ’ 1] ⟹ 𝑐 𝑝 Β· 𝑻 𝟏 Β· [( 𝑷 𝟐 𝑃1 ) π›Ύβˆ’1 πŸΒ·π›Ύ βˆ’ 1] 𝑾 π’„πŸ = 𝑾 π’„πŸ For perfect intercooling and minimum work input each stage work input is same, therefore total compressor work is equal to (No. of stages (N)) Γ— (Each stage compressor work (Wc)). Brayton cycle with many stages of intercooling and many stages of reheating can be reduced to Ericsson cycle. Many stages if intercooling and reheating can be reduced to isothermal process.