Applications of Rapid Single Quantum Flux electronics
K.Pomorski, P.Prokopow
University of Warsaw, Jagiellonian University, Riken
kdvpomorski@gmail.com
February 11, 2014
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 1 / 57
Overview
1 Motivation
2 General view of superconductivity
3 Josephson junctions
4 RSQF circuit elements
5 Perspectives
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 2 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 3 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 4 / 57
Status of semiconductor electronics development
For four decades semiconductor electronics has followed Moores law: with
each generation of integration the circuit features became smaller, more
complex and faster. This development is now reaching a wall so that
smaller is no longer any faster. The clock rate has saturated at about 35
GHz and the parallel processor approach will soon reach its limit. The
prime reason for the limitation the semiconductor electronics experiences is
not the switching speed of the individual transistor, but its power
dissipation and thus heat.
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 5 / 57
Motivation for Rapid Single Quantum Flux
Electronics(RSQF)
Digital superconductive electronics is a circuit- and device-technology that
is inherently faster at much less power dissipation than semiconductor
electronics. It makes use of superconductors and Josephson junctions as
circuit elements, which can provide extremely fast digital devices in a
frequency range dependent on the material of hundreds of GHz: for
example a flip-flop has been demonstrated that operated at 750 GHz.
This digital technique is scalable and follows similar design rules as
semiconductor devices. Its very low power dissipation of only 0.1 mikro W
per gate at 100 GHz opens the possibility of three dimensional
integration. Circuits like microprocessors and analogue-to-digital
converters for commercial and military applications have been
demonstrated. In contrast to semiconductor circuits, the operation of
superconducting circuits is based on naturally standardized digital pulses
the area of which is exactly the flux quantum φ0. The flux quantum is also
the natural quantization unit for digital-to-analogue converters.
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 6 / 57
Discovery of superconductivity
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 7 / 57
Superconductivity
Superconductivity is the transport of electric charge via the given material
without dissipation. It is characterized by the zero electric resistance,
expulsion of magnetic field from sample, macroscopic quantum effect
given by superconducting order parameter. The phenomena similar to
superconductivity is superfluidity, which is flow of liquid without any
viscosity.
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 8 / 57
Ginzburg-Landau equations
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 9 / 57
Abrikosov vortices
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 10 / 57
Abrikosov vortices and flux quantization
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 11 / 57
Tunneling Josephson junction
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 12 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 13 / 57
DC SQUID definition
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 14 / 57
Ramp edge JJ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 15 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 16 / 57
Stewart-McCumber parameter
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 17 / 57
Strong damping case
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 18 / 57
Various cases of Stewart-McCumber parameter
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 19 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 20 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 21 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 22 / 57
Flux flow vs voltage drop
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 23 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 24 / 57
Josephson transmission line
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 25 / 57
Josephson transmission line circuit
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 26 / 57
Essence of RSFQ
1. The first brick is responsible for the active transfer of SFQ pulses. It is
marked by a small inductance.
2. If we use a larger loop inductance between two junctions, the
circulating current is to small to flip the second junction and the
information is stored. This idea is used for building bistable cells.
3. Two read an arbitrary information in such a loop, we need a decision
element, namely the two junction comparator.
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 27 / 57
Data representation in RSFQ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 28 / 57
DC/SQF interface
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 29 / 57
Electrical parameters of DC/SQF interface
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 30 / 57
Scheme of physical structure DC/SQF interface
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 31 / 57
Top view of physical structure DC/SQF interface
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 32 / 57
Simulations of signals in DC/SQF interface
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 33 / 57
SFQ/DC interface
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 34 / 57
Splitter
The Splitter doubles the SFQ pulses. When there is an input SFQ pulse
the splitter produced two output pulses at two different output ports. The
splitter is a non-storing cell like the JTL. Therefore it is also possible to
create the cell without using an optimization tool.
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 35 / 57
DC/SFQ-JTL-SFQ/DC or delay ...
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 36 / 57
CNOT in RSFQ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 37 / 57
OR in RSFQ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 38 / 57
T Flip Flop in RSFQ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 39 / 57
Circuit model and physical structure of RSFQ JJ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 40 / 57
Crosssection of RSFQ element
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 41 / 57
Advantages of RSFQ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 42 / 57
Superconducting bolometer
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 43 / 57
Comparison between sc and semiconductor detectors
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 44 / 57
Superconducting processor
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 45 / 57
Fluxonics foundary
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 46 / 57
Fluxonics design
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 47 / 57
Flux qubit readout
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 48 / 57
Perspective of superconducting supercomputer
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 49 / 57
Perspectives of RSFQ
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 50 / 57
Maciej Zgirski work 1
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 51 / 57
Maciej Zgirski work 2
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 52 / 57
Maciej Zgirski work 3
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 53 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 54 / 57
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 55 / 57
References
K.K. Likharev and V.K. Semenov, IEEE Trans. Appl. Supercond. 1 (1991)
pavel.physics.sunysb.edu/RSFQ/Research/WhatIs/rsfqwte1.html
Rapid Single Flux Quantum Logic in High Temperature Superconductor
Technology, Ph.D. Thesis, University of Twente, Enschede, The Netherlands.
European roadmap on superconductive electronics-status and perspectives-Physica
C 2010
www.tu-ilmenau.de/en/department-of-advanced-
electromagnetics/research/superconductive-high-speed-electronics/rsfq-cell/
Possible existence of field induced Josephson junction, K.Pomorski, P.Prokopow
Mutual phase-locking in Josephson junction arrays, A.K. Jain, K.K. Likhareva, J.E.
Lukens, J.E. Sauvageau
Superconductor digital electronics,
rsfq1.physics.sunysb.edu/ likharev/personal/Hague.pdf
P. Bunyk, K. Likharev and D. Zinoview: ”RSFQ technology: physics and devices,”
in Int. Journal on High Speed Electronics and Systems, 2001
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 56 / 57
The End
K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 57 / 57

Applications of Rapid Single Quantum Flux electronics

  • 1.
    Applications of RapidSingle Quantum Flux electronics K.Pomorski, P.Prokopow University of Warsaw, Jagiellonian University, Riken kdvpomorski@gmail.com February 11, 2014 K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 1 / 57
  • 2.
    Overview 1 Motivation 2 Generalview of superconductivity 3 Josephson junctions 4 RSQF circuit elements 5 Perspectives K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 2 / 57
  • 3.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 3 / 57
  • 4.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 4 / 57
  • 5.
    Status of semiconductorelectronics development For four decades semiconductor electronics has followed Moores law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 35 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 5 / 57
  • 6.
    Motivation for RapidSingle Quantum Flux Electronics(RSQF) Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range dependent on the material of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 mikro W per gate at 100 GHz opens the possibility of three dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum φ0. The flux quantum is also the natural quantization unit for digital-to-analogue converters. K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 6 / 57
  • 7.
    Discovery of superconductivity K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 7 / 57
  • 8.
    Superconductivity Superconductivity is thetransport of electric charge via the given material without dissipation. It is characterized by the zero electric resistance, expulsion of magnetic field from sample, macroscopic quantum effect given by superconducting order parameter. The phenomena similar to superconductivity is superfluidity, which is flow of liquid without any viscosity. K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 8 / 57
  • 9.
    Ginzburg-Landau equations K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 9 / 57
  • 10.
    Abrikosov vortices K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 10 / 57
  • 11.
    Abrikosov vortices andflux quantization K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 11 / 57
  • 12.
    Tunneling Josephson junction K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 12 / 57
  • 13.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 13 / 57
  • 14.
    DC SQUID definition K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 14 / 57
  • 15.
    Ramp edge JJ K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 15 / 57
  • 16.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 16 / 57
  • 17.
    Stewart-McCumber parameter K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 17 / 57
  • 18.
    Strong damping case K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 18 / 57
  • 19.
    Various cases ofStewart-McCumber parameter K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 19 / 57
  • 20.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 20 / 57
  • 21.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 21 / 57
  • 22.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 22 / 57
  • 23.
    Flux flow vsvoltage drop K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 23 / 57
  • 24.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 24 / 57
  • 25.
    Josephson transmission line K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 25 / 57
  • 26.
    Josephson transmission linecircuit K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 26 / 57
  • 27.
    Essence of RSFQ 1.The first brick is responsible for the active transfer of SFQ pulses. It is marked by a small inductance. 2. If we use a larger loop inductance between two junctions, the circulating current is to small to flip the second junction and the information is stored. This idea is used for building bistable cells. 3. Two read an arbitrary information in such a loop, we need a decision element, namely the two junction comparator. K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 27 / 57
  • 28.
    Data representation inRSFQ K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 28 / 57
  • 29.
    DC/SQF interface K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 29 / 57
  • 30.
    Electrical parameters ofDC/SQF interface K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 30 / 57
  • 31.
    Scheme of physicalstructure DC/SQF interface K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 31 / 57
  • 32.
    Top view ofphysical structure DC/SQF interface K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 32 / 57
  • 33.
    Simulations of signalsin DC/SQF interface K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 33 / 57
  • 34.
    SFQ/DC interface K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 34 / 57
  • 35.
    Splitter The Splitter doublesthe SFQ pulses. When there is an input SFQ pulse the splitter produced two output pulses at two different output ports. The splitter is a non-storing cell like the JTL. Therefore it is also possible to create the cell without using an optimization tool. K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 35 / 57
  • 36.
    DC/SFQ-JTL-SFQ/DC or delay... K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 36 / 57
  • 37.
    CNOT in RSFQ K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 37 / 57
  • 38.
    OR in RSFQ K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 38 / 57
  • 39.
    T Flip Flopin RSFQ K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 39 / 57
  • 40.
    Circuit model andphysical structure of RSFQ JJ K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 40 / 57
  • 41.
    Crosssection of RSFQelement K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 41 / 57
  • 42.
    Advantages of RSFQ K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 42 / 57
  • 43.
    Superconducting bolometer K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 43 / 57
  • 44.
    Comparison between scand semiconductor detectors K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 44 / 57
  • 45.
    Superconducting processor K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 45 / 57
  • 46.
    Fluxonics foundary K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 46 / 57
  • 47.
    Fluxonics design K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 47 / 57
  • 48.
    Flux qubit readout K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 48 / 57
  • 49.
    Perspective of superconductingsupercomputer K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 49 / 57
  • 50.
    Perspectives of RSFQ K.Pomorski,P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 50 / 57
  • 51.
    Maciej Zgirski work1 K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 51 / 57
  • 52.
    Maciej Zgirski work2 K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 52 / 57
  • 53.
    Maciej Zgirski work3 K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 53 / 57
  • 54.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 54 / 57
  • 55.
    K.Pomorski, P.Prokopow (UW,UJ,RIKEN)RSQF electronics February 11, 2014 55 / 57
  • 56.
    References K.K. Likharev andV.K. Semenov, IEEE Trans. Appl. Supercond. 1 (1991) pavel.physics.sunysb.edu/RSFQ/Research/WhatIs/rsfqwte1.html Rapid Single Flux Quantum Logic in High Temperature Superconductor Technology, Ph.D. Thesis, University of Twente, Enschede, The Netherlands. European roadmap on superconductive electronics-status and perspectives-Physica C 2010 www.tu-ilmenau.de/en/department-of-advanced- electromagnetics/research/superconductive-high-speed-electronics/rsfq-cell/ Possible existence of field induced Josephson junction, K.Pomorski, P.Prokopow Mutual phase-locking in Josephson junction arrays, A.K. Jain, K.K. Likhareva, J.E. Lukens, J.E. Sauvageau Superconductor digital electronics, rsfq1.physics.sunysb.edu/ likharev/personal/Hague.pdf P. Bunyk, K. Likharev and D. Zinoview: ”RSFQ technology: physics and devices,” in Int. Journal on High Speed Electronics and Systems, 2001 K.Pomorski, P.Prokopow (UW,UJ,RIKEN) RSQF electronics February 11, 2014 56 / 57
  • 57.
    The End K.Pomorski, P.Prokopow(UW,UJ,RIKEN) RSQF electronics February 11, 2014 57 / 57