SlideShare a Scribd company logo
1 of 35
Application of Laplace
Transform to Electric Circuit
S.R. Balaji
Associate Professor & Head
PG Department of Physics
V.O.Chidambaram College (SF)
Tuticorin – 8
Email: prambala@gmail.com
Blog site: www.srbphysics.blogspot.com
2
Contents
 Introduction to Laplace Transform (L.T)
 Properties and Important Results of L.T
 Application – Simple Electric Circuit
 Problems – An RLC Circuit & RL Circuit
 Conversion of Simple Circuit to 2nd Order Ordinary diff. equation
 Calculation of Charge and Current in the Circuits Using Laplace
Transform Method.
 Results
Application of Laplace Transform to Electric Circuit
3
Introduction to Laplace Transform
 If the integral exists and is equal to F(s), then F(s) is
called the Laplace transform of F(t) and it is denoted by the symbol
L {F(t)}.
i.e.,
 Conditions for existence of Laplace Transform are:
1. the function f(t) should be an arbitrary piecewise continuous
function in every finite interval.
2. the function f(t) should be of exponential order.
Application of Laplace Transform to Electric Circuit
dt
)
t
(
f
e st



0
 
)
s
(
F
dt
)
t
(
f
e
)
t
(
f
L st

 


0
4
Properties of Laplace Transform
 Linearity property:
 Change of scale property:
 First shifting property:
 Second shifting property:
 Derivative of Laplace Transform:
 Integral of Laplace Transform:
Application of Laplace Transform to Electric Circuit
  )}
(
{
)}
(
{
)
(
)
( 2
2
1
1
2
2
1
1
t
f
L
a
t
f
L
a
t
f
a
t
f
a
L 









a
s
f
a
)}
at
(
f
{
L
1
   
a
s
f
)}
t
(
f
e
{
L
,
a
s
f
)}
t
(
f
e
{
L at
at



 
 ;
s
f
e
)}
t
(
G
{
L as









a
t
if
)
a
t
(
F
a
t
if
)
t
(
G
where
0
n
n
n
n
ds
)
s
(
f
d
)
(
)}
t
(
f
t
{
L 1











s
ds
)
s
(
f
t
)
t
(
f
L
5
Properties of Inverse Laplace Transform
 Linearity property:
 Change of scale property:
 First shifting property:
 Derivative of Laplace Transform:
 Convolution Theorem:
Application of Laplace Transform to Electric Circuit
  )}
(
{
)}
(
{
)
(
)
( 2
1
2
1
1
1
2
2
1
1
1
s
f
L
a
s
f
L
a
s
f
a
s
f
a
L 













a
t
f
a
as
f
L
1
)}
(
{
1
)}
(
{
)}
(
{ 1
1
s
f
L
e
a
s
f
L at 




)}
(
{
)
(
)}
(
'
{ 1
1
s
f
L
t
s
f
L 












0
1
2
0
2
1
2
1
1
)
(
)
(
)
(
)
(
)}
(
)
(
{ du
u
t
f
u
f
du
u
t
f
u
f
s
f
s
f
L
)}
(
{
)}
(
{ 1
1
s
f
L
e
a
s
f
L at 



6
Important Results of Laplace Transform
Application of Laplace Transform to Electric Circuit
F(t) L{F(t)}
eat
e-at
cosh at
sinh at
cos at
sin at
F(t) L{F(t)}
1
K
t
tn
t ½
t -½
a
s 
1
a
s
1

2
2
a
s
s

2
2
a
s
a

2
2
a
s
s

2
2
a
s
a

s
1
s
.
K
1
2
1
s
1

n
s
!
n
2
3
2 /
s

s

7
Application of Laplace Transform
 The Laplace transform can be used to solve differential equations
and is used extensively in electrical engineering.
 Two types of approaches are avail in literature, they are:
1. Derive the circuit (differential) equations in the time domain,
then transform these ODEs to the s-domain;
2. Transform the circuit to the s-domain, then derive the circuit
equations in the t-domain (using the concept of "impedance").
 Of it, we will use the first approach. i.e., we derive the system
equations(s) in the t-plane, then transform it to the s-plane.
Application of Laplace Transform to Electric Circuit
8
Problem for Study
1. A inductor L, a resistor R and a capacitor C are connected in
series with an emf E. At t = 0, the charge of the capacitor and
current in the circuit are zero. Find the current and charge at any
time t > 0.
Pictorial representation:
(OR)
Application of Laplace Transform to Electric Circuit
E E
9
Conversion of RLC Circuit to ODE Equation
Let Q and I be instantaneous charge and current respectively at
time t. We know that, using Krichoff’s Loop Law the equation for an
RLC circuit can be written as:
Dividing by L, we get,
which can also be written as,
[1]
Application of Laplace Transform to Electric Circuit
E
C
Q
R
dt
dQ
L
dt
Q
d
2
2



L
E
LC
Q
dt
dQ
L
R
dt
Q
d
2
2



L
E
Q
LC
'
Q
L
R
'
'
Q 


1
10
Solution:
Taking Laplace transform on both side of equ (1), we get,
and
the above equation can be written as,
Application of Laplace Transform to Electric Circuit
 





















L
E
L
Q
LC
1
L
'
Q
L
R
L
'
'
Q
L
    
0
x'
0
sx
x
s
dt
x
d
'
x' 2
2
2



  
0
x
sx
dt
dx
x' 


   
   
    
1
L
L
E
Q
L
LC
1
L
L
R





 0
Q
sQ
0
Q'
0
sQ
Q
s
L 2
             ]
2
[
1
L
L
E
Q
L
LC
1
L
R
sL
L
R
s 




 0
Q
Q
0
Q'
0
Q
Q
L
s2
11
Solution:
Substituting L{Q} = q, the above equation becomes,
Since Q(0) = 0, Q’(0) must also be 0, then we get,
We know that
[3]
Application of Laplace Transform to Electric Circuit
      
1
L
L
E
q
LC
1
L
R
sq
L
R
s 




 0
Q
0
Q'
0
Q
q
s2

1
L
L
E
q
LC
1
sq
L
R



q
s2

s
1
1
L 
Ls
E
q
LC
1
sq
L
R



q
s2
Ls
E
LC
1
s
L
R









2
s
q
12
Solution:
Then,
[4]
Using the method of partial fractions, the above equation becomes,
Then,
Application of Laplace Transform to Electric Circuit
 
)
LC
1
(
s
)
L
R
(
Ls
E


 2
s
q
 
)
LC
1
(
s
)
L
R
(
s
L
E


 2
s
q
   
]
5
[
)
LC
1
(
s
)
L
R
(
C
Bs
s
A
)
LC
1
(
s
)
L
R
(
s
L
E







 2
2
s
s
q
  )
s
(
)
C
Bs
(
)
LC
1
(
s
)
L
R
(
A 



 2
s
L
E
13
Solution:
[6]
Substituting s = 0, in equation (6), we get,
Equating the coefficient of s2 on equation (6), we get,
Application of Laplace Transform to Electric Circuit
 
)
LC
1
(
0
A 

 0
L
E
A
.
LC
1

L
E
EC
L
ELC
A 


LC
/
1
L
/
E
EC
A 
s
C
s
B
)
LC
1
(
A
s
A
)
L
R
(
A 2




 2
s
L
E

B
A
0 
  EC
A
B 



EC
B 

14
Solution:
Equating the coefficient of s on equation (6), we get,
Substituting the values A, B & C on equation (5), we get,
Application of Laplace Transform to Electric Circuit
C
L
AR
C
A
)
L
R
( 



0
L
R
)
EC
(
L
AR
C 



L
ECR
C 

 
 
)
LC
1
(
s
)
L
R
(
L
ECR
s
)
EC
(
s
EC






 2
s
q
15
Solution:
Application of Laplace Transform to Electric Circuit
 
 
)
LC
1
(
s
)
L
R
(
L
ECR
s
)
EC
(
s
EC
q






 2
s















LC
1
s
L
R
s
L
ECR
ECS
s
EC
2






























 2
2
2
L
2
R
L
2
R
LC
1
s
L
R
s
L
ECR
ECS
s
EC
16
Solution:
Application of Laplace Transform to Electric Circuit








































 2
2
2
L
2
R
LC
1
s
L
R
L
2
R
s
L
ECR
ECS
s
EC































2
2
2
L
4
R
LC
1
L
2
R
s
L
2
ECR
L
2
ECR
ECS
s
EC





































2
2
2
L
4
R
LC
1
L
2
R
s
L
2
ECR
L
2
R
s
EC
s
EC
17
Solution:
Taking Inverse Laplace Transform on both sides we get,
Application of Laplace Transform to Electric Circuit




















































2
2
2
2
2
2
L
4
R
LC
1
L
2
R
s
L
2
ECR
L
4
R
LC
1
L
2
R
s
L
2
R
s
EC
s
EC
]
7
[
L
4
R
LC
1
L
2
R
s
L
2
ECR
L
4
R
LC
1
L
2
R
s
L
2
R
s
EC
s
EC
}
Q
{
L
2
2
2
2
2
2



























































































 
2
2
2
2
2
2
1
L
4
R
LC
1
L
2
R
s
L
2
ECR
L
4
R
LC
1
L
2
R
s
L
2
R
s
EC
s
EC
L
)
t
(
Q
18
Solution:
Application of Laplace Transform to Electric Circuit





































































 


2
2
2
1
2
2
2
1
1
L
4
R
LC
1
L
2
R
s
L
2
ECR
L
L
4
R
LC
1
L
2
R
s
L
2
R
s
EC
L
s
EC
L









































































2
2
2
1
2
2
2
1
1
L
4
R
LC
1
L
2
R
s
1
L
L
2
ECR
L
4
R
LC
1
L
2
R
s
L
2
R
s
L
EC
s
1
L
EC
19
Solution:
We know that, and using the First Shifting Property of
Inverse Laplace Transform the above equation reduces to,
Application of Laplace Transform to Electric Circuit
   










































 



2
2
2
1
t
L
2
R
2
2
2
1
t
L
2
R
L
4
R
LC
1
s
1
L
e
L
2
ECR
L
4
R
LC
1
s
s
L
e
EC
EC
1
s
1
L 1























 2
2
2
2
2
L
4
R
LC
1
a
then
,
L
4
R
LC
1
a
If
 
 

















































2
2
2
2
2
1
2
2
t
L
2
R
2
2
t
L
2
R
L
4
R
LC
1
s
L
4
R
LC
1
L
L
4
R
LC
1
1
e
L
2
ECR
t
L
4
R
LC
1
cos
e
EC
EC
20
Solution:
Substituting
[8]
The above is the charge at the circuit at any time.
Application of Laplace Transform to Electric Circuit
 
 
t
L
4
R
LC
1
sin
e
L
4
R
LC
1
L
2
ECR
t
L
4
R
LC
1
cos
e
EC
EC
2
2
t
L
2
R
2
2
2
2
t
L
2
R


































 2
2
L
4
R
LC
1
   
t
sin
e
L
2
ECR
t
cos
e
EC
EC t
L
2
R
t
L
2
R





 

   
t
sin
e
L
2
ECR
t
cos
e
EC
EC
)
t
(
Q t
L
2
R
t
L
2
R






 

21
Solution:
To determine the Current in the Circuit:
Application of Laplace Transform to Electric Circuit
dt
dQ
I 
   











 

t
e
L
ECR
t
e
EC
EC
dt
d
dt
dQ t
L
R
t
L
R
sin
2
cos 2
2
 
 
  
 
 
 








































)
(
cos
2
sin
2
2
sin
cos
2
0
2
2
2
2
t
e
L
ECR
t
e
L
R
L
ECR
t
e
EC
t
e
L
R
EC
t
L
R
t
L
R
t
L
R
t
L
R
22
Solution:
Application of Laplace Transform to Electric Circuit
   
   
t
e
L
ECR
t
e
L
ECR
t
e
EC
t
e
L
ECR
t
L
R
t
L
R
t
L
R
t
L
R














cos
2
sin
4
sin
cos
2
2
2
2
2
2
2
   
t
e
L
ECR
t
e
EC t
L
R
t
L
R





 

sin
4
sin 2
2
2
2
 










 
2
2
2
4
sin
L
ECR
EC
t
e t
L
R
 
















 
2
2
2
4
sin
L
R
EC
t
e t
L
R
 

















 
2
2
2
2
4
sin
L
R
EC
t
e t
L
R
23
Solution:
The above is the current at the circuit at any time.
Application of Laplace Transform to Electric Circuit
 
















 
2
2
2
2
4
sin
L
R
EC
t
e t
L
R

















 2
2
2
2
2
4
1
,
4
1
L
R
LC
L
R
LC
 
















 
2
2
2
2
2
4
4
1
sin
L
R
L
R
LC
EC
t
e t
L
R
 








 
LC
EC
t
e t
L
R
sin
2
 
t
e
L
E
I t
L
R








 
sin
2
24
Result
If a inductor L, a resistor R and a capacitor C are connected in
series with an emf E. The charge and current in the circuit at any
time can be expressed as:
Application of Laplace Transform to Electric Circuit
   
t
e
L
ECR
t
e
EC
EC
t
Q t
L
R
t
L
R






 

sin
2
cos
)
( 2
2
 
t
e
L
E
I t
L
R








 
sin
2
25
Problem for Study
2. A inductor of 3 Henry is in series connected with a resistance of 30
Ohms and an e.m.f of 150 Volts. Assuming that the current the
current is zero at t = 0. Find the current at time t > 0.
Pictorial representation:
Application of Laplace Transform to Electric Circuit
Vin = 150V
R = 30Ω
L = 3 Henry
Vout
26
Conversion of RL Circuit to ODE Equation
It is an RL circuit. The differential equation of the given circuit
can be written as:
[1]
Substituting,
[3]
Sub. the values of L, R & E as 3, 30 & 150 respectively, we get,
[4]
Application of Laplace Transform to Electric Circuit
E
V
dt
dI
L
IR in 


dt
dQ
I 
E
dt
dQ
R
dt
Q
d
L 

2
2
150
30
3 2
2


dt
dQ
dt
Q
d
]
2
[
27
Solution:
The above equation can also be written as,
Taking Laplace Transform on both side, we get,
and
Application of Laplace Transform to Electric Circuit
150
'
30
'
'
3 
 Q
Q
   
150
'
30
'
'
3 L
Q
Q
L 

     
150
'
30
'
'
3 L
Q
L
Q
L 

    
1
150
'
30
'
'
3 L
Q
L
Q
L 

    







s
Q
L
Q
L
1
150
'
30
'
'
3
    
0
x'
0
sx
x
s
dt
x
d
'
x' 2
2
2



  
0
x
sx
dt
dx
x' 


28
Solution:
and
[5]
At time t = 0,
Application of Laplace Transform to Electric Circuit
    
0
Q'
0
sQ
Q
s
dt
Q
d
'
Q' 2
2
2



  
0
Q
sQ
dt
dQ
Q' 


   
   
 
s
150
0
Q
sQ
L
30
0
Q'
0
sQ
Q
s
L
3 2





         
s
150
0
Q
30
sQ
L
30
0
Q'
3
0
sQ
3
Q
s
L
3 2





         
s
0
Q
Q
L
s
0
Q'
0
sQ
Q
L
s
3 2 150
30
30
3
3 




then
,
0
be
also
must
(0)
Q'
therefore
0,
Q(0) 
   
s
150
Q
L
s
30
Q
L
s
3 2


29
Solution:
Substituting x = L{Q}, we get,
[6]
[7]
Application of Laplace Transform to Electric Circuit
s
x
s
x
s
3 2 150
30 

 
s
s
3s
x 2 150
30 

 
s
3s
s
x 2
30
150


    
10
3
150
30
150
}
{




s
s
s
s
3s
s
Q
L 2
   
10
50
10
3
150
2
2




s
s
s
s
30
Solution:
Taking Inverse Laplace Transform, we get,
[8]
Application of Laplace Transform to Electric Circuit
   














 

10
1
50
10
50
)
( 2
1
2
1
s
s
L
s
s
L
t
Q
 






 
10
1
.
1
50 1
s
s
s
L
 
 






 
t
s
s
L
0
1
10
1
50
 
 






 
t t
s
L
0 0
1
10
1
50
31
Solution:
[9]
Application of Laplace Transform to Electric Circuit
 
 






 
t t
s
L
0 0
1
10
1
50
 








t
t
t
e
0 0
10
10
50
 
 






 
t
t
e
0
10
1
10
1
50



t t
t
e
0 0
10
50
 










t t
e
e
0
0
10
10
10
50
 









t t
e
0
10
10
1
10
50
32
Solution:
[10]
The above eqn. represents the charge in the circuit at any time t.
Application of Laplace Transform to Electric Circuit
 




t
t
e
0
10
1
10
50
t
t
e
t
0
10
10
5 






















10
0
10
5
0
10
e
e
t
t










10
1
10
5
10t
e
t








 
)
1
(
10
1
5
)
( 10t
e
t
t
Q
33
Solution:
To determine the Current in the Circuit:
The above eqn. represents the current in the circuit at any time t.
Application of Laplace Transform to Electric Circuit
dt
dQ
I 
  













 
1
10
1
5 10t
e
t
dt
d
dt
dQ
 







 
1
10
1
.
5 10t
e
t
dt
d





















0
)
10
(
10
1
.
5
10
1
10
.
5
10
10 t
t
e
e
t
dt
d
 
t
e
t
I 10
1
.
5
)
( 


34
Result
If A inductor of 3 Henry is in series connected with a
resistance of 30 Ohms and an e.m.f of 150 Volts. Then the charge
and current in the circuit at any time can be expressed as:
Application of Laplace Transform to Electric Circuit








 
)
1
(
10
1
5
)
( 10t
e
t
t
Q
 
t
e
t
I 10
1
.
5
)
( 


35
Application of Laplace Transform to Electric Circuit

More Related Content

Similar to App. of LT in Elec. Circuit.pptx

Lecture 04 transformers
Lecture 04   transformersLecture 04   transformers
Lecture 04 transformers
Bibek Chouhan
 
modeling of three phase rectifier
modeling of three phase rectifiermodeling of three phase rectifier
modeling of three phase rectifier
usic123
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
sami717280
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 

Similar to App. of LT in Elec. Circuit.pptx (20)

Ijetr012011
Ijetr012011Ijetr012011
Ijetr012011
 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter ppt
 
BIDIRECTIONALCONVERTERREVIEW (1).pdf
BIDIRECTIONALCONVERTERREVIEW (1).pdfBIDIRECTIONALCONVERTERREVIEW (1).pdf
BIDIRECTIONALCONVERTERREVIEW (1).pdf
 
Variable Switching Frequency Based Resonant Converter
Variable Switching Frequency Based Resonant ConverterVariable Switching Frequency Based Resonant Converter
Variable Switching Frequency Based Resonant Converter
 
Lecture 04 transformers
Lecture 04   transformersLecture 04   transformers
Lecture 04 transformers
 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf
 
modeling of three phase rectifier
modeling of three phase rectifiermodeling of three phase rectifier
modeling of three phase rectifier
 
A New Active Snubber Circuit for PFC Converter
A New Active Snubber Circuit for PFC ConverterA New Active Snubber Circuit for PFC Converter
A New Active Snubber Circuit for PFC Converter
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
Asymmetrical Nine-level Inverter Topology with Reduce Power Semicondutor Devices
Asymmetrical Nine-level Inverter Topology with Reduce Power Semicondutor DevicesAsymmetrical Nine-level Inverter Topology with Reduce Power Semicondutor Devices
Asymmetrical Nine-level Inverter Topology with Reduce Power Semicondutor Devices
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
Phase-Shifted Full-Bridge Zero Voltage Switching DC-DC Converter Design with ...
Phase-Shifted Full-Bridge Zero Voltage Switching DC-DC Converter Design with ...Phase-Shifted Full-Bridge Zero Voltage Switching DC-DC Converter Design with ...
Phase-Shifted Full-Bridge Zero Voltage Switching DC-DC Converter Design with ...
 
Example of the Laplace Transform
Example of the Laplace TransformExample of the Laplace Transform
Example of the Laplace Transform
 
Modeling Of Transfer Function Characteristic of Rlc-Circuit
Modeling Of Transfer Function Characteristic of Rlc-Circuit Modeling Of Transfer Function Characteristic of Rlc-Circuit
Modeling Of Transfer Function Characteristic of Rlc-Circuit
 
E017122733
E017122733E017122733
E017122733
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
modeling of system electrical, Basic Elements Modeling-R,L,C Solved Examples ...
modeling of system electrical, Basic Elements Modeling-R,L,C Solved Examples ...modeling of system electrical, Basic Elements Modeling-R,L,C Solved Examples ...
modeling of system electrical, Basic Elements Modeling-R,L,C Solved Examples ...
 
Single Switched Non-isolated High Gain Converter
Single Switched Non-isolated High Gain ConverterSingle Switched Non-isolated High Gain Converter
Single Switched Non-isolated High Gain Converter
 
Soft-Switching Two-Switch Resonant AC-DC Converter
Soft-Switching Two-Switch Resonant AC-DC ConverterSoft-Switching Two-Switch Resonant AC-DC Converter
Soft-Switching Two-Switch Resonant AC-DC Converter
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 

Recently uploaded

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Recently uploaded (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

App. of LT in Elec. Circuit.pptx

  • 1. Application of Laplace Transform to Electric Circuit S.R. Balaji Associate Professor & Head PG Department of Physics V.O.Chidambaram College (SF) Tuticorin – 8 Email: prambala@gmail.com Blog site: www.srbphysics.blogspot.com
  • 2. 2 Contents  Introduction to Laplace Transform (L.T)  Properties and Important Results of L.T  Application – Simple Electric Circuit  Problems – An RLC Circuit & RL Circuit  Conversion of Simple Circuit to 2nd Order Ordinary diff. equation  Calculation of Charge and Current in the Circuits Using Laplace Transform Method.  Results Application of Laplace Transform to Electric Circuit
  • 3. 3 Introduction to Laplace Transform  If the integral exists and is equal to F(s), then F(s) is called the Laplace transform of F(t) and it is denoted by the symbol L {F(t)}. i.e.,  Conditions for existence of Laplace Transform are: 1. the function f(t) should be an arbitrary piecewise continuous function in every finite interval. 2. the function f(t) should be of exponential order. Application of Laplace Transform to Electric Circuit dt ) t ( f e st    0   ) s ( F dt ) t ( f e ) t ( f L st      0
  • 4. 4 Properties of Laplace Transform  Linearity property:  Change of scale property:  First shifting property:  Second shifting property:  Derivative of Laplace Transform:  Integral of Laplace Transform: Application of Laplace Transform to Electric Circuit   )} ( { )} ( { ) ( ) ( 2 2 1 1 2 2 1 1 t f L a t f L a t f a t f a L           a s f a )} at ( f { L 1     a s f )} t ( f e { L , a s f )} t ( f e { L at at       ; s f e )} t ( G { L as          a t if ) a t ( F a t if ) t ( G where 0 n n n n ds ) s ( f d ) ( )} t ( f t { L 1            s ds ) s ( f t ) t ( f L
  • 5. 5 Properties of Inverse Laplace Transform  Linearity property:  Change of scale property:  First shifting property:  Derivative of Laplace Transform:  Convolution Theorem: Application of Laplace Transform to Electric Circuit   )} ( { )} ( { ) ( ) ( 2 1 2 1 1 1 2 2 1 1 1 s f L a s f L a s f a s f a L               a t f a as f L 1 )} ( { 1 )} ( { )} ( { 1 1 s f L e a s f L at      )} ( { ) ( )} ( ' { 1 1 s f L t s f L              0 1 2 0 2 1 2 1 1 ) ( ) ( ) ( ) ( )} ( ) ( { du u t f u f du u t f u f s f s f L )} ( { )} ( { 1 1 s f L e a s f L at    
  • 6. 6 Important Results of Laplace Transform Application of Laplace Transform to Electric Circuit F(t) L{F(t)} eat e-at cosh at sinh at cos at sin at F(t) L{F(t)} 1 K t tn t ½ t -½ a s  1 a s 1  2 2 a s s  2 2 a s a  2 2 a s s  2 2 a s a  s 1 s . K 1 2 1 s 1  n s ! n 2 3 2 / s  s 
  • 7. 7 Application of Laplace Transform  The Laplace transform can be used to solve differential equations and is used extensively in electrical engineering.  Two types of approaches are avail in literature, they are: 1. Derive the circuit (differential) equations in the time domain, then transform these ODEs to the s-domain; 2. Transform the circuit to the s-domain, then derive the circuit equations in the t-domain (using the concept of "impedance").  Of it, we will use the first approach. i.e., we derive the system equations(s) in the t-plane, then transform it to the s-plane. Application of Laplace Transform to Electric Circuit
  • 8. 8 Problem for Study 1. A inductor L, a resistor R and a capacitor C are connected in series with an emf E. At t = 0, the charge of the capacitor and current in the circuit are zero. Find the current and charge at any time t > 0. Pictorial representation: (OR) Application of Laplace Transform to Electric Circuit E E
  • 9. 9 Conversion of RLC Circuit to ODE Equation Let Q and I be instantaneous charge and current respectively at time t. We know that, using Krichoff’s Loop Law the equation for an RLC circuit can be written as: Dividing by L, we get, which can also be written as, [1] Application of Laplace Transform to Electric Circuit E C Q R dt dQ L dt Q d 2 2    L E LC Q dt dQ L R dt Q d 2 2    L E Q LC ' Q L R ' ' Q    1
  • 10. 10 Solution: Taking Laplace transform on both side of equ (1), we get, and the above equation can be written as, Application of Laplace Transform to Electric Circuit                        L E L Q LC 1 L ' Q L R L ' ' Q L      0 x' 0 sx x s dt x d ' x' 2 2 2       0 x sx dt dx x'                 1 L L E Q L LC 1 L L R       0 Q sQ 0 Q' 0 sQ Q s L 2              ] 2 [ 1 L L E Q L LC 1 L R sL L R s       0 Q Q 0 Q' 0 Q Q L s2
  • 11. 11 Solution: Substituting L{Q} = q, the above equation becomes, Since Q(0) = 0, Q’(0) must also be 0, then we get, We know that [3] Application of Laplace Transform to Electric Circuit        1 L L E q LC 1 L R sq L R s       0 Q 0 Q' 0 Q q s2  1 L L E q LC 1 sq L R    q s2  s 1 1 L  Ls E q LC 1 sq L R    q s2 Ls E LC 1 s L R          2 s q
  • 12. 12 Solution: Then, [4] Using the method of partial fractions, the above equation becomes, Then, Application of Laplace Transform to Electric Circuit   ) LC 1 ( s ) L R ( Ls E    2 s q   ) LC 1 ( s ) L R ( s L E    2 s q     ] 5 [ ) LC 1 ( s ) L R ( C Bs s A ) LC 1 ( s ) L R ( s L E         2 2 s s q   ) s ( ) C Bs ( ) LC 1 ( s ) L R ( A      2 s L E
  • 13. 13 Solution: [6] Substituting s = 0, in equation (6), we get, Equating the coefficient of s2 on equation (6), we get, Application of Laplace Transform to Electric Circuit   ) LC 1 ( 0 A    0 L E A . LC 1  L E EC L ELC A    LC / 1 L / E EC A  s C s B ) LC 1 ( A s A ) L R ( A 2      2 s L E  B A 0    EC A B     EC B  
  • 14. 14 Solution: Equating the coefficient of s on equation (6), we get, Substituting the values A, B & C on equation (5), we get, Application of Laplace Transform to Electric Circuit C L AR C A ) L R (     0 L R ) EC ( L AR C     L ECR C       ) LC 1 ( s ) L R ( L ECR s ) EC ( s EC        2 s q
  • 15. 15 Solution: Application of Laplace Transform to Electric Circuit     ) LC 1 ( s ) L R ( L ECR s ) EC ( s EC q        2 s                LC 1 s L R s L ECR ECS s EC 2                                2 2 2 L 2 R L 2 R LC 1 s L R s L ECR ECS s EC
  • 16. 16 Solution: Application of Laplace Transform to Electric Circuit                                          2 2 2 L 2 R LC 1 s L R L 2 R s L ECR ECS s EC                                2 2 2 L 4 R LC 1 L 2 R s L 2 ECR L 2 ECR ECS s EC                                      2 2 2 L 4 R LC 1 L 2 R s L 2 ECR L 2 R s EC s EC
  • 17. 17 Solution: Taking Inverse Laplace Transform on both sides we get, Application of Laplace Transform to Electric Circuit                                                     2 2 2 2 2 2 L 4 R LC 1 L 2 R s L 2 ECR L 4 R LC 1 L 2 R s L 2 R s EC s EC ] 7 [ L 4 R LC 1 L 2 R s L 2 ECR L 4 R LC 1 L 2 R s L 2 R s EC s EC } Q { L 2 2 2 2 2 2                                                                                              2 2 2 2 2 2 1 L 4 R LC 1 L 2 R s L 2 ECR L 4 R LC 1 L 2 R s L 2 R s EC s EC L ) t ( Q
  • 18. 18 Solution: Application of Laplace Transform to Electric Circuit                                                                          2 2 2 1 2 2 2 1 1 L 4 R LC 1 L 2 R s L 2 ECR L L 4 R LC 1 L 2 R s L 2 R s EC L s EC L                                                                          2 2 2 1 2 2 2 1 1 L 4 R LC 1 L 2 R s 1 L L 2 ECR L 4 R LC 1 L 2 R s L 2 R s L EC s 1 L EC
  • 19. 19 Solution: We know that, and using the First Shifting Property of Inverse Laplace Transform the above equation reduces to, Application of Laplace Transform to Electric Circuit                                                    2 2 2 1 t L 2 R 2 2 2 1 t L 2 R L 4 R LC 1 s 1 L e L 2 ECR L 4 R LC 1 s s L e EC EC 1 s 1 L 1                         2 2 2 2 2 L 4 R LC 1 a then , L 4 R LC 1 a If                                                      2 2 2 2 2 1 2 2 t L 2 R 2 2 t L 2 R L 4 R LC 1 s L 4 R LC 1 L L 4 R LC 1 1 e L 2 ECR t L 4 R LC 1 cos e EC EC
  • 20. 20 Solution: Substituting [8] The above is the charge at the circuit at any time. Application of Laplace Transform to Electric Circuit     t L 4 R LC 1 sin e L 4 R LC 1 L 2 ECR t L 4 R LC 1 cos e EC EC 2 2 t L 2 R 2 2 2 2 t L 2 R                                    2 2 L 4 R LC 1     t sin e L 2 ECR t cos e EC EC t L 2 R t L 2 R             t sin e L 2 ECR t cos e EC EC ) t ( Q t L 2 R t L 2 R         
  • 21. 21 Solution: To determine the Current in the Circuit: Application of Laplace Transform to Electric Circuit dt dQ I                    t e L ECR t e EC EC dt d dt dQ t L R t L R sin 2 cos 2 2                                                      ) ( cos 2 sin 2 2 sin cos 2 0 2 2 2 2 t e L ECR t e L R L ECR t e EC t e L R EC t L R t L R t L R t L R
  • 22. 22 Solution: Application of Laplace Transform to Electric Circuit         t e L ECR t e L ECR t e EC t e L ECR t L R t L R t L R t L R               cos 2 sin 4 sin cos 2 2 2 2 2 2 2     t e L ECR t e EC t L R t L R         sin 4 sin 2 2 2 2               2 2 2 4 sin L ECR EC t e t L R                     2 2 2 4 sin L R EC t e t L R                      2 2 2 2 4 sin L R EC t e t L R
  • 23. 23 Solution: The above is the current at the circuit at any time. Application of Laplace Transform to Electric Circuit                     2 2 2 2 4 sin L R EC t e t L R                   2 2 2 2 2 4 1 , 4 1 L R LC L R LC                     2 2 2 2 2 4 4 1 sin L R L R LC EC t e t L R             LC EC t e t L R sin 2   t e L E I t L R           sin 2
  • 24. 24 Result If a inductor L, a resistor R and a capacitor C are connected in series with an emf E. The charge and current in the circuit at any time can be expressed as: Application of Laplace Transform to Electric Circuit     t e L ECR t e EC EC t Q t L R t L R          sin 2 cos ) ( 2 2   t e L E I t L R           sin 2
  • 25. 25 Problem for Study 2. A inductor of 3 Henry is in series connected with a resistance of 30 Ohms and an e.m.f of 150 Volts. Assuming that the current the current is zero at t = 0. Find the current at time t > 0. Pictorial representation: Application of Laplace Transform to Electric Circuit Vin = 150V R = 30Ω L = 3 Henry Vout
  • 26. 26 Conversion of RL Circuit to ODE Equation It is an RL circuit. The differential equation of the given circuit can be written as: [1] Substituting, [3] Sub. the values of L, R & E as 3, 30 & 150 respectively, we get, [4] Application of Laplace Transform to Electric Circuit E V dt dI L IR in    dt dQ I  E dt dQ R dt Q d L   2 2 150 30 3 2 2   dt dQ dt Q d ] 2 [
  • 27. 27 Solution: The above equation can also be written as, Taking Laplace Transform on both side, we get, and Application of Laplace Transform to Electric Circuit 150 ' 30 ' ' 3   Q Q     150 ' 30 ' ' 3 L Q Q L         150 ' 30 ' ' 3 L Q L Q L        1 150 ' 30 ' ' 3 L Q L Q L               s Q L Q L 1 150 ' 30 ' ' 3      0 x' 0 sx x s dt x d ' x' 2 2 2       0 x sx dt dx x'   
  • 28. 28 Solution: and [5] At time t = 0, Application of Laplace Transform to Electric Circuit      0 Q' 0 sQ Q s dt Q d ' Q' 2 2 2       0 Q sQ dt dQ Q'              s 150 0 Q sQ L 30 0 Q' 0 sQ Q s L 3 2                s 150 0 Q 30 sQ L 30 0 Q' 3 0 sQ 3 Q s L 3 2                s 0 Q Q L s 0 Q' 0 sQ Q L s 3 2 150 30 30 3 3      then , 0 be also must (0) Q' therefore 0, Q(0)      s 150 Q L s 30 Q L s 3 2  
  • 29. 29 Solution: Substituting x = L{Q}, we get, [6] [7] Application of Laplace Transform to Electric Circuit s x s x s 3 2 150 30     s s 3s x 2 150 30     s 3s s x 2 30 150        10 3 150 30 150 } {     s s s s 3s s Q L 2     10 50 10 3 150 2 2     s s s s
  • 30. 30 Solution: Taking Inverse Laplace Transform, we get, [8] Application of Laplace Transform to Electric Circuit                      10 1 50 10 50 ) ( 2 1 2 1 s s L s s L t Q           10 1 . 1 50 1 s s s L             t s s L 0 1 10 1 50             t t s L 0 0 1 10 1 50
  • 31. 31 Solution: [9] Application of Laplace Transform to Electric Circuit             t t s L 0 0 1 10 1 50           t t t e 0 0 10 10 50             t t e 0 10 1 10 1 50    t t t e 0 0 10 50             t t e e 0 0 10 10 10 50            t t e 0 10 10 1 10 50
  • 32. 32 Solution: [10] The above eqn. represents the charge in the circuit at any time t. Application of Laplace Transform to Electric Circuit       t t e 0 10 1 10 50 t t e t 0 10 10 5                        10 0 10 5 0 10 e e t t           10 1 10 5 10t e t           ) 1 ( 10 1 5 ) ( 10t e t t Q
  • 33. 33 Solution: To determine the Current in the Circuit: The above eqn. represents the current in the circuit at any time t. Application of Laplace Transform to Electric Circuit dt dQ I                    1 10 1 5 10t e t dt d dt dQ            1 10 1 . 5 10t e t dt d                      0 ) 10 ( 10 1 . 5 10 1 10 . 5 10 10 t t e e t dt d   t e t I 10 1 . 5 ) (   
  • 34. 34 Result If A inductor of 3 Henry is in series connected with a resistance of 30 Ohms and an e.m.f of 150 Volts. Then the charge and current in the circuit at any time can be expressed as: Application of Laplace Transform to Electric Circuit           ) 1 ( 10 1 5 ) ( 10t e t t Q   t e t I 10 1 . 5 ) (   
  • 35. 35 Application of Laplace Transform to Electric Circuit