UJI STATISTIK &UJI STATISTIK &
ANALISIS DATAANALISIS DATA
By : Anik Puji RahayuBy : Anik Puji Rahayu
STATISTIK
 STATISTIK
Prosedur/metode pengumpulan data,
pengolahan data, analisis data dan
penyajian data
 PENELITIAN
Cara ilmiah untuk mendapatkan data
dgn tujuan & kegunaan tertentu
Data dari penelitian harus :
 Akurat
data harus memenuhi kriteria :
1. Valid
2. Reliabel
3. Obyektif
Data Valid
 Ketepatan antara data yang
sesungguhnya terjadi pada obyek dgn
data yang dapat dikumpulkan oleh
peneliti
 Ketepatan/kecermatan pengukuran
 Contoh : mengukur lomba lari, valid
pakai stop watch bukan dgn jam
Reliabel
 Menunjukkan kekonsistenan
pengukuran
 Pengukuran beulang-ulang akan
mendapatkan hasil yang sama
 Hari ini mendapatkan warna hijau,
besok & lusa hrs tetap warna hijau
Obyektif
 Menunjukkan derajat persamaan
persepsi antar orang
 Contoh : jika satu orang menyatakan
suatu obyek berwarna putih, maka
orang lainpun menyatakan sama yaitu
obyek berwarna putih
Peran Statistik dlm penelitian
 Alat mengukur besar sampel yg akan
diteliti
 Alat menguji validitas & reliabilitas
instrumen
 Alat pengolahan data
 Alat analisis data
 Alat penyajian data
Kegunaan statistik dibidang
kesehatan :
 Mengukur status kesehatan masyarakat
 Membandingkan status kesehatan di
satu tempat dgn tempat lain, lampau
dan sekarang
 Evaluasi & monitoring program
 Estimasi kebutuhan pelayanan
 Perencanaan program kesehatan
 Riset & publikasi masalah kesehatan
DATA & VARIABEL
 Data adalah Kumpulan angka/huruf
hasil dari penelitian terhadap
karakteristik yang diteliti
 Variabel adalah karakteristik yg nilai
datanya bervariasi dari suatu
pengukuran ke pengukuran berikutnya
Menurut skala pengukurannya,
variabel dibagi 4 jenis :
 Nominal
 Ordinal
 Interval
 Ratio
NOMINAL
 Variabel yg hanya dpt membedakan
nilai datanya & tdk tahu nilai data yg
lebih tinggi atau rendah
 Nilai datanya sederajat
 Jenis kelamin, suku, agama dll
ORDINAL
 Variabel yg dpt membedakan nilai
datanya & sudah dpt diketahui
tingkatan lebih tinggi atau rendah, tapi
belum diketahui besar beda antar nilai
datanya
 Pendidikan, pangkat, stadium penyakit
INTERVAL
 Variabel yg dpt dibedakan, diketahui
tingkatannya & besar beda antar nilainya,
namun belum diketahui kelipatan suatu nilai
terhadap nilai yg lain & tdk mempunyai titik
nol mutlak
 Suhu : Benda A 40° & benda B 30 °
Benda A > B, beda panas 10 derajat, tdk bisa
benda A panasnya 2 kali B, jika suhu 0
derajat tdk berarti benda tsb tdk panas (tdk
punya nilai nol mutlak)
RATIO
 Bisa dibedakan : ada tingkatan, ada
besar beda, ada kelipatannya & ada
nilai nol mutlak
 BB, TB
 Berat A 30 kg, B 60 Kg : A < B, beda A
& B 30 kg, berat B 2x lipat A
Berat 0 kg, berarti tdk ada berat (tidak
ada bendanya) shg ada nilai nol mutlak
JENIS DATA
 Data Katagorik (Kualitatif)
Data hasil pengklasifikasian/penggolongan
suatu data, isinya berupa kata-kata
Contoh : sex, jenis pekerjaan, pendidikan
 Data Numerik (Kuantitatif)
Hasil dari perhitungan/pengukuran,
berbentuk angka-angka
Data Numerik terbagi dua :
 Data Diskrit
Variabel hasil dari penghitungan, misal :
jumlah anak, jumlah pasien dll
 Data kontinyu
Hasil dari pengukuran, misal : tekanan
darah, Hb dll
Variabel katagorik & Numerik
 Variabel katagorik : Pada umumya
berisi variabel berskala nominal &
ordinal
 Variabel numerik : berskala interval dan
ratio
TUJUAN ANALISIS DATA
 Memperoleh gambaran masing-masing
variabel
 Membandingkan & menguji teori atau konsep
dari data yg dikumpulkan
 Menemukan konsep baru dari data yg
dikumpulkan
 Mencari penjelasan apakah konsep baru yg
diuji berlaku umum atau hanya berlaku pada
kondisi tertentu
Seberapa jauh analisis suatu penelitian
akan dilakukan, tergantung dari :
 Jenis penelitian : kualitatif atau kuantitatif
 Jenis sampel : independen atau dependen
 Jenis data/variabel : katagorik (proporsi) dan
numerik (nilai rata-rata)
 Asumsi kenormalan
Data normal (uji statistik parametrik)
data tidak normal (uji statistik non perametrik)
Langkah-langkah analisis data
(pendekatan kuantitatif)
 Analisis deskriftif (Univariat)
 Analisis analitik (Bivariat)
 Analisis Multivariat
ANALISIS UNIVARIAT
 Untuk menjelaskan/mendeskripsikan
karakteristik masing2 variabel yg diteliti
 Data numerik : nilai mean, median,
standar deviasi, nilai minimal-maksimal
 Data katagorik : frekwensi, prosentase
ANALISIS BIVARIAT
 Setelah diketahui karakteristik masing2
variabel dpt diteruskan analisis lanjut
 Analisis hubungan antar dua variabel,
misal : hubungan antara berat badan
dengan tekanan darah
ANALISIS MULTIVARIAT
 Analisis yang menghubungkan antara
beberapa variabel independen dengan
satu variabel dependen
ANALISIS UNIVARIAT
 PERINGKASAN DATA UNTUK DATA JENIS
NUMERIK
1. Ukuran tengah : mean, median, modus
a. Mean : ukuran rata2, hasil dari
jlh semua nilai pengukuran dibagi
banyaknya pengukuran
X = Σ Xi / n
Contoh nilai mean :
 5 pasien, lama hari rawatnya :
1 hari, 3 hari, 4 hari, 2 hari, 90 hari
 Mean = (1+3+4+2+90)/5 = 20 hari
 Kekurangannya : Sangat ditentukan
oleh nilai ekstrim (tdk mewakili data yg
sesungguhnya)
2. Median
 Hanya mempertimbangkan urutan nilai dari
pengukuran
 Besar beda antar nilai diabaikan, shg tdk
dipengaruhi oleh nilai ekstrim
 Langkah penghitungan :
data diurutkan dari kecil ke besar
Hitung posisi median dgn rumus (n+1)/2
Hitung nilai mediannya
 6 mahasiswa : 20 th, 26 th, 30 th, 24 th, 40 th,
36 th. Berapa nilai mediannya ?
3. Mode/Modus
 Nilai pengamatan yg mempunyai
frekwensi/jlh terbanyak
 Data : 18 th, 22 th, 21 th, 20 th, 23 th,
20 th
 Mode-nya adalah 20 tahun
Bentuk distribusi data bdsk pada
nilai mean, median & modus
 Bila nilai mean, median & modus
sama/berhimpit : bentuk distribusi datanya
normal
 Bila nilai mean>median>modus : bentuk
distribusi datanya menceng/miring ke kanan
 Bila nilai mean < median <modus : Bentuk
distribusi datanya menceng/miring ke kiri
Ukuran Variasi
 Standard Deviasi
Data yg diukur melalui
penyimpangan/deviasi dari nilai-nilai
pengamatan thd nilai mean-nya
 Rata-rata hitung dari kuadrat deviasi thd
mean disebut : VARIAN, dg Rumus :
Varian : Σ (Xi – X) ²
n-1
Suatu ukuran variasi yg memp satuan yg
sama dgn satuan pengamatan yaitu :
standard deviasi
 Standard deviasi mrpk akar dari varian :
S atau Sd = √Σ (Xi – X) ²
n-1
 Semakin besar SD maka semakin
besar variasinya
Contoh :
ada 5 orang dengan BB 48,
52,56,62,67
berapa simpang bakunya !
no x Mean
deviasi
(xi-x)
1 48 9
2 52 5
3 56 1
4 62 5
5 67 10
Jumlah Σ 285 Σ 30
Varian
(xi-x)²
81
25
1
25
100
Σ 232
Mean X = Σ Xi / n
= 48+52+56+62+67/5
= 57
Mean deviasi = (X-X)
= 9+5+1+5+10/5 = 6 kg
Varian V(S ²) = Σ (Xi – X) ²
n-1
= 81+25+1+25+100
n-1
= 58
Standar deviasi = √ V(S ²) = √Σ (Xi – X) ²
n-1
= √58
= 7,6 kg
2. Peringkasan data katagorik
• Distribusi frekwensi : dengan ukuran
persentase atau proporsi
ANALISIS BIVARIAT
• Berbagai uji statistik yg digunakan untuk
analisis bivariat :
Variabel I Variabel II Jenis uji
statistik
Katagorik Katagorik -Kai kuadrat
-Fisher Exact
Katagorik Numerik -Uji T
-ANOVA
Numerik Numerik -Korelasi
-Regresi
UJI CHI-SQUARE ( X 2
)
DIGUNAKAN JIKA :
• UNTUK UJI PERBANDINGAN /
ASSOSIASI
• SKALA PENGUKURAN NOMINAL /
ORDINAL
UJI CHI-SQUARE ( X2
) UNTUK
TABEL 2 x 2
• DALAM HAL INI SUATU SAMPEL
DIAMBIL DARI POPULASI BIVARIAT
YANG TIDAK NORMAL YANG TERDIRI
DARI DUA VARIABEL DAN TIAP
VARIABEL DIBAGI MENJADI DUA
KATAGORI, JIKA DIBAWA KE DALAM
BENTUK TABEL DIPEROLEH TABEL
KONTIGENSI 2 x 2
Pertimbangan memakai chi
square
1. JIKA n > 40 GUNAKAN ( X2 ) DENGAN
KOREKSI KONTINYUITAS (YATES
CORRECTED )
2. JIKA n 20 – 40, JIKA SEMUA NILAI
EXPECTED ( E ) LIMA ATAU LEBIH
GUNAKAN ( X2 ) DENGAN KOREKSI
KONTINYUITAS, TETAPI JIKA TERDAPAT
NILAI E < 5 GUNAKAN UJI FISHER ( fisher
exact )
3. JIKA n < 20 , GUNAKAN UJI FISHER EXACT
UNTUK KASUS APAPUN.
RUMUS
( )
( )( )( )( )dbcadcba
n
bcadn
X
++++




−−
=
2
2 2
Keputusan hipotesis :
H0 ditolak jika X2
Hit > X2
tabel
Contoh
Apakah ada pengaruh pemberian
makanan tambahan dengan
status gizi balita di kecamatan
samarinda hilir tahun 2004. data
hasil penelitian diperoleh
seperti table di bawah ini
PMT STATUS GIZI Jumlah
BAIK BURUK
CUKUP 20 (a) 10 (b) 30
( a + b )
KURANG 25 (c) 40 (d) 65
( c + d )
TOTAL 45
( a + c )
50
( b + d )
95
(a + b + c + d)
FISHER EXACT
( a + b ) ! (c + d ) ! ( a + c ) ! ( b + d ) !
ρ =
n ! a! b! c! d!
kreteria keputusan
• Ho ditolak jika ρ < α
Petugas puskesmas melakukan
penelitian untuk mengetahui
hubungan status gizi dengan
kejadian kecacingan pada murid
SD 007 samarinda. Data
dikumpulkan dengan melakukan
wawancara pada murid kelas 5
dan 6. hasilnya sebagai berikut
STATUS
GIZI
KECACINGAN Jumlah
YA TIDAK
KURANG 6 5 11
CUKUP 4 7 11
TOTAL 10 12 22
UJI McNEMAR
Tujuan : untuk menguji perbedaan dari dua
sampel berhubungan
Syarat :
1. Variabel mempunyai skala nominal
2. Penelitiannya menggunakan desain Pre-
Post Treatment ( sebelum dan sesudah
perlakuan )
UJI McNEMAR
( a - d )2
X2
M =
( a + d )
criteria keputusan :
Ho ditolak jika X2
M > X2
T
CONTOH
suatu penelitian untuk mengetahui apakah ada pengaruh
penyuluhan terhadap pengetahuan KB akseptor
dengan α 0.025
penelitian dengan sample sebanyak 33 orang. sebelum
penyuluhan diperoleh data pengetahuan tentang KB,
pengetahuan kurang sebanyak 8 orang, pengetahuan
cukup sebanyak 25orang. Setelah penyuluhan diperoleh
data. Pengetahuan kurang sebanyak 13 orang dan
pengetahuan cukup 20 orang. Dari 8 pengetahuan yang
cukup setelah penyuluhan diperoleh 3 pengetahuan
kurang dan 5 pengetahuan cukup. Apakah penyuluhan
berpengaruh terhadap pengetahuan KB responde
Sebelum
penyuluhan
Sesudah penyuluhan
Kurang Cukup
Kurang 3 5
Cukup 10 15
( 3 - 15 ) 2
144
X2
M
= = = 8
( 3 + 15 ) 18
Tugas : apakah ada pengaruh penyuluhan
pra operatif terhadap kemampuan untuk
melakukan latihan napas dalam dan batuk
efektif pasca operatif. Data di bawah ini
Pra
operatif
Pasca operatif
Mampu Tidak
mampu
Mampu 7 4
Tidak
mampu
14 5
ODDS RATIO
• Tujuan :
Untuk mengetahui berapa besar risiko
variable bebas ( penyebab) dapat
menyebabkan kejadian pada variable
terikat ( akibat )
FAKTOR
RISIKO
KASUS KONTROL JUMLH
TERPAPAR a b a + b
TIDAK
TERPAPAR
c d c + d
JUMLAH a + c b + d a + b + c + d
OR =
bxc
axd
Keterangan :
a. = jumlah kasus yang terpapar
b = jumlah control yang terpapar
c = jumlah kasus yang tidak terpapar
d = jumlah control yang tidak terpapar
Interpretasi nilai :
< 1 = nilai protektif
> 1 = berisiko terhadap
kejadian
1 = tidak ada efek
BERAPA BESAR RISIKO PEROKOK TERKENA
KANKER PARU DATA DI BAWAH INI ?
FAKTOR
RISIKO
KANKER
PARU
TIDAK
KANKER
PARU
JUMLAH
PEROKOK 35 20 55
TIDAK
PEROKOK
15 40 55
JUMLAH 50 60 110
Kesimpulan :
PEROKOK MEMILIKI RISIKO TERKENA KANKER
PARU 4, 66 KALI DIBANDING ORANG YANG TIDAK
PEROKOK ( CASE CONTROL & CROSS SECTIONAL)
KOHORT (RR)=RELATIF RISK
bxc
axd
OR =
66,4
1520
4035
==
x
x
OR
UJI T TEST
STUDENT’S t TEST ( UJI t )
PERTAMA KALI DITEMUKAN OLEH
W.S. GOSSET PADA TAHUN 1908
DENGAN NAMA SAMARAN
STUDENT. PRINSIP PENGGUNAAN
UJI t TEST ADALAH UNTUK
MEMBUKTIKAN SIGNIFIKAN ATAU
TIDAKNYA DUA NILAI RATA-RATA.
SYARAT-SYARAT
PENGGUNAAN UJI T
 MEMPUNYAI SKALA
INTERVAL DAN RASIO
 SIMPANG BAKUNYA TIDAK
DIKETAHUI
 DATA DISTRIBUSINYA
NORMAL
UJI T INI DIBEDAKAN ATAS
DUA KELOMPOK
1. UJI T SATU SAMPEL
2. UJI T UNTUK SAMPEL YANG
BERHUBUNGAN ( SEBELUM
DAN SESUDAH t TEST ) ATAU DUA
SAMPEL YANG BERPASANGAN
(PAIRED t TEST )
UJI T SATU SAMPEL
TUJUAN UNTUK
MEMBANDINGKAN NILAI RATA-
RATA SAMPEL DENGAN NILAI
RATA-RATA POPULASI SEBAGAI
STANDAR
RUMUS
nS
X
tHitung
µ−
=
X ; nilai rata rata sample
: nilai rata rata populasi
S : simpang baku
n : besar sample
µ
Kriteria penerimaan hipotesa
 Ho gagal ditolak bila :
T hit. < T ( 1 - α ) ( n – 1 )
 Bila menggunakan program komputer
( p ) > α
Jika α = 0,05. Ho gagal ditolak jika
probabilitasnya ( p ) > 0,05
Contoh :
Masyarakat mengeluh bahwa kadar
nikotin rokok A diduga melebihi kadar
normal, untuk membuktikan ini diambil
sample 10 batang yang kadarnya 22, 21,
19, 19, 21, 22 ,22, 21, 22 dan 25. α
yang digunakan adalah 0,05.
apakah rokok a memang memiliki
kandungan nikotin lebih dari 20 mg
Nilai t Hit
20,2
59,0
3,1
10
88,1
203,21
==
−
=tHitung
t TABEL
t ( 1 - α ) ( n – 1 )
t ( 1- 0,05 ) ( 10 – 1 )
t ( 0.95 )( 9 ) akan dihasilkan 1, 83
cara membacanya lihat tabel uji t pada t
0,95 pada baris ke 9.
Kesimpulan
KARENA t Hit > t Tabel ( 2,20 > 1,83 )
maka :
KADAR NIKOTIN PADA ROKOK A
LEBIH DARI 20 mg
UJI t UNTUK SAMPEL YANGBERHUBUNGAN
( SEBELUM DAN SESUDAH t TEST ) ATAU
DUA SAMPEL YANG BERPASANGAN ( PAIRED
t TEST)
n
S
d
tHitung =
n
d
d
i∑=
( )
( )1
22
2
−
−
=
∑ ∑
nn
ddn
S
i
d = selisih nilai rata-rata
S = standart deviasi
contoh :
sebanyak 10 orang wanita peserta KB
dengan menggunakan depoprovera
sebagai kontrasepsinya. 6 bulan sebelum
memakai kontrasepsi diukur tekanan
sistolnya dan sesudah 6 bulan diukur
tekanan sistoliknya. Ingin diketahui
apakah ada perbedaan tekanan darah
sistolik sebelum dan sesudah ber KB.
Diketahui α 0,05

Analisa data &amp; uji statistik

  • 1.
    UJI STATISTIK &UJISTATISTIK & ANALISIS DATAANALISIS DATA By : Anik Puji RahayuBy : Anik Puji Rahayu
  • 2.
    STATISTIK  STATISTIK Prosedur/metode pengumpulandata, pengolahan data, analisis data dan penyajian data  PENELITIAN Cara ilmiah untuk mendapatkan data dgn tujuan & kegunaan tertentu
  • 3.
    Data dari penelitianharus :  Akurat data harus memenuhi kriteria : 1. Valid 2. Reliabel 3. Obyektif
  • 4.
    Data Valid  Ketepatanantara data yang sesungguhnya terjadi pada obyek dgn data yang dapat dikumpulkan oleh peneliti  Ketepatan/kecermatan pengukuran  Contoh : mengukur lomba lari, valid pakai stop watch bukan dgn jam
  • 5.
    Reliabel  Menunjukkan kekonsistenan pengukuran Pengukuran beulang-ulang akan mendapatkan hasil yang sama  Hari ini mendapatkan warna hijau, besok & lusa hrs tetap warna hijau
  • 6.
    Obyektif  Menunjukkan derajatpersamaan persepsi antar orang  Contoh : jika satu orang menyatakan suatu obyek berwarna putih, maka orang lainpun menyatakan sama yaitu obyek berwarna putih
  • 7.
    Peran Statistik dlmpenelitian  Alat mengukur besar sampel yg akan diteliti  Alat menguji validitas & reliabilitas instrumen  Alat pengolahan data  Alat analisis data  Alat penyajian data
  • 8.
    Kegunaan statistik dibidang kesehatan:  Mengukur status kesehatan masyarakat  Membandingkan status kesehatan di satu tempat dgn tempat lain, lampau dan sekarang  Evaluasi & monitoring program  Estimasi kebutuhan pelayanan  Perencanaan program kesehatan  Riset & publikasi masalah kesehatan
  • 9.
    DATA & VARIABEL Data adalah Kumpulan angka/huruf hasil dari penelitian terhadap karakteristik yang diteliti  Variabel adalah karakteristik yg nilai datanya bervariasi dari suatu pengukuran ke pengukuran berikutnya
  • 10.
    Menurut skala pengukurannya, variabeldibagi 4 jenis :  Nominal  Ordinal  Interval  Ratio
  • 11.
    NOMINAL  Variabel yghanya dpt membedakan nilai datanya & tdk tahu nilai data yg lebih tinggi atau rendah  Nilai datanya sederajat  Jenis kelamin, suku, agama dll
  • 12.
    ORDINAL  Variabel ygdpt membedakan nilai datanya & sudah dpt diketahui tingkatan lebih tinggi atau rendah, tapi belum diketahui besar beda antar nilai datanya  Pendidikan, pangkat, stadium penyakit
  • 13.
    INTERVAL  Variabel ygdpt dibedakan, diketahui tingkatannya & besar beda antar nilainya, namun belum diketahui kelipatan suatu nilai terhadap nilai yg lain & tdk mempunyai titik nol mutlak  Suhu : Benda A 40° & benda B 30 ° Benda A > B, beda panas 10 derajat, tdk bisa benda A panasnya 2 kali B, jika suhu 0 derajat tdk berarti benda tsb tdk panas (tdk punya nilai nol mutlak)
  • 14.
    RATIO  Bisa dibedakan: ada tingkatan, ada besar beda, ada kelipatannya & ada nilai nol mutlak  BB, TB  Berat A 30 kg, B 60 Kg : A < B, beda A & B 30 kg, berat B 2x lipat A Berat 0 kg, berarti tdk ada berat (tidak ada bendanya) shg ada nilai nol mutlak
  • 15.
    JENIS DATA  DataKatagorik (Kualitatif) Data hasil pengklasifikasian/penggolongan suatu data, isinya berupa kata-kata Contoh : sex, jenis pekerjaan, pendidikan  Data Numerik (Kuantitatif) Hasil dari perhitungan/pengukuran, berbentuk angka-angka
  • 16.
    Data Numerik terbagidua :  Data Diskrit Variabel hasil dari penghitungan, misal : jumlah anak, jumlah pasien dll  Data kontinyu Hasil dari pengukuran, misal : tekanan darah, Hb dll
  • 17.
    Variabel katagorik &Numerik  Variabel katagorik : Pada umumya berisi variabel berskala nominal & ordinal  Variabel numerik : berskala interval dan ratio
  • 18.
    TUJUAN ANALISIS DATA Memperoleh gambaran masing-masing variabel  Membandingkan & menguji teori atau konsep dari data yg dikumpulkan  Menemukan konsep baru dari data yg dikumpulkan  Mencari penjelasan apakah konsep baru yg diuji berlaku umum atau hanya berlaku pada kondisi tertentu
  • 19.
    Seberapa jauh analisissuatu penelitian akan dilakukan, tergantung dari :  Jenis penelitian : kualitatif atau kuantitatif  Jenis sampel : independen atau dependen  Jenis data/variabel : katagorik (proporsi) dan numerik (nilai rata-rata)  Asumsi kenormalan Data normal (uji statistik parametrik) data tidak normal (uji statistik non perametrik)
  • 20.
    Langkah-langkah analisis data (pendekatankuantitatif)  Analisis deskriftif (Univariat)  Analisis analitik (Bivariat)  Analisis Multivariat
  • 21.
    ANALISIS UNIVARIAT  Untukmenjelaskan/mendeskripsikan karakteristik masing2 variabel yg diteliti  Data numerik : nilai mean, median, standar deviasi, nilai minimal-maksimal  Data katagorik : frekwensi, prosentase
  • 22.
    ANALISIS BIVARIAT  Setelahdiketahui karakteristik masing2 variabel dpt diteruskan analisis lanjut  Analisis hubungan antar dua variabel, misal : hubungan antara berat badan dengan tekanan darah
  • 23.
    ANALISIS MULTIVARIAT  Analisisyang menghubungkan antara beberapa variabel independen dengan satu variabel dependen
  • 24.
    ANALISIS UNIVARIAT  PERINGKASANDATA UNTUK DATA JENIS NUMERIK 1. Ukuran tengah : mean, median, modus a. Mean : ukuran rata2, hasil dari jlh semua nilai pengukuran dibagi banyaknya pengukuran X = Σ Xi / n
  • 25.
    Contoh nilai mean:  5 pasien, lama hari rawatnya : 1 hari, 3 hari, 4 hari, 2 hari, 90 hari  Mean = (1+3+4+2+90)/5 = 20 hari  Kekurangannya : Sangat ditentukan oleh nilai ekstrim (tdk mewakili data yg sesungguhnya)
  • 26.
    2. Median  Hanyamempertimbangkan urutan nilai dari pengukuran  Besar beda antar nilai diabaikan, shg tdk dipengaruhi oleh nilai ekstrim  Langkah penghitungan : data diurutkan dari kecil ke besar Hitung posisi median dgn rumus (n+1)/2 Hitung nilai mediannya  6 mahasiswa : 20 th, 26 th, 30 th, 24 th, 40 th, 36 th. Berapa nilai mediannya ?
  • 27.
    3. Mode/Modus  Nilaipengamatan yg mempunyai frekwensi/jlh terbanyak  Data : 18 th, 22 th, 21 th, 20 th, 23 th, 20 th  Mode-nya adalah 20 tahun
  • 28.
    Bentuk distribusi databdsk pada nilai mean, median & modus  Bila nilai mean, median & modus sama/berhimpit : bentuk distribusi datanya normal  Bila nilai mean>median>modus : bentuk distribusi datanya menceng/miring ke kanan  Bila nilai mean < median <modus : Bentuk distribusi datanya menceng/miring ke kiri
  • 29.
    Ukuran Variasi  StandardDeviasi Data yg diukur melalui penyimpangan/deviasi dari nilai-nilai pengamatan thd nilai mean-nya  Rata-rata hitung dari kuadrat deviasi thd mean disebut : VARIAN, dg Rumus : Varian : Σ (Xi – X) ² n-1
  • 30.
    Suatu ukuran variasiyg memp satuan yg sama dgn satuan pengamatan yaitu : standard deviasi  Standard deviasi mrpk akar dari varian : S atau Sd = √Σ (Xi – X) ² n-1  Semakin besar SD maka semakin besar variasinya
  • 31.
    Contoh : ada 5orang dengan BB 48, 52,56,62,67 berapa simpang bakunya !
  • 32.
    no x Mean deviasi (xi-x) 148 9 2 52 5 3 56 1 4 62 5 5 67 10 Jumlah Σ 285 Σ 30 Varian (xi-x)² 81 25 1 25 100 Σ 232
  • 33.
    Mean X =Σ Xi / n = 48+52+56+62+67/5 = 57 Mean deviasi = (X-X) = 9+5+1+5+10/5 = 6 kg Varian V(S ²) = Σ (Xi – X) ² n-1 = 81+25+1+25+100 n-1 = 58 Standar deviasi = √ V(S ²) = √Σ (Xi – X) ² n-1 = √58 = 7,6 kg
  • 34.
    2. Peringkasan datakatagorik • Distribusi frekwensi : dengan ukuran persentase atau proporsi
  • 35.
    ANALISIS BIVARIAT • Berbagaiuji statistik yg digunakan untuk analisis bivariat : Variabel I Variabel II Jenis uji statistik Katagorik Katagorik -Kai kuadrat -Fisher Exact Katagorik Numerik -Uji T -ANOVA Numerik Numerik -Korelasi -Regresi
  • 36.
    UJI CHI-SQUARE (X 2 ) DIGUNAKAN JIKA : • UNTUK UJI PERBANDINGAN / ASSOSIASI • SKALA PENGUKURAN NOMINAL / ORDINAL
  • 37.
    UJI CHI-SQUARE (X2 ) UNTUK TABEL 2 x 2 • DALAM HAL INI SUATU SAMPEL DIAMBIL DARI POPULASI BIVARIAT YANG TIDAK NORMAL YANG TERDIRI DARI DUA VARIABEL DAN TIAP VARIABEL DIBAGI MENJADI DUA KATAGORI, JIKA DIBAWA KE DALAM BENTUK TABEL DIPEROLEH TABEL KONTIGENSI 2 x 2
  • 38.
    Pertimbangan memakai chi square 1.JIKA n > 40 GUNAKAN ( X2 ) DENGAN KOREKSI KONTINYUITAS (YATES CORRECTED ) 2. JIKA n 20 – 40, JIKA SEMUA NILAI EXPECTED ( E ) LIMA ATAU LEBIH GUNAKAN ( X2 ) DENGAN KOREKSI KONTINYUITAS, TETAPI JIKA TERDAPAT NILAI E < 5 GUNAKAN UJI FISHER ( fisher exact ) 3. JIKA n < 20 , GUNAKAN UJI FISHER EXACT UNTUK KASUS APAPUN.
  • 39.
    RUMUS ( ) ( )()( )( )dbcadcba n bcadn X ++++     −− = 2 2 2 Keputusan hipotesis : H0 ditolak jika X2 Hit > X2 tabel
  • 40.
    Contoh Apakah ada pengaruhpemberian makanan tambahan dengan status gizi balita di kecamatan samarinda hilir tahun 2004. data hasil penelitian diperoleh seperti table di bawah ini
  • 41.
    PMT STATUS GIZIJumlah BAIK BURUK CUKUP 20 (a) 10 (b) 30 ( a + b ) KURANG 25 (c) 40 (d) 65 ( c + d ) TOTAL 45 ( a + c ) 50 ( b + d ) 95 (a + b + c + d)
  • 42.
    FISHER EXACT ( a+ b ) ! (c + d ) ! ( a + c ) ! ( b + d ) ! ρ = n ! a! b! c! d! kreteria keputusan • Ho ditolak jika ρ < α
  • 43.
    Petugas puskesmas melakukan penelitianuntuk mengetahui hubungan status gizi dengan kejadian kecacingan pada murid SD 007 samarinda. Data dikumpulkan dengan melakukan wawancara pada murid kelas 5 dan 6. hasilnya sebagai berikut
  • 44.
    STATUS GIZI KECACINGAN Jumlah YA TIDAK KURANG6 5 11 CUKUP 4 7 11 TOTAL 10 12 22
  • 45.
    UJI McNEMAR Tujuan :untuk menguji perbedaan dari dua sampel berhubungan Syarat : 1. Variabel mempunyai skala nominal 2. Penelitiannya menggunakan desain Pre- Post Treatment ( sebelum dan sesudah perlakuan )
  • 46.
    UJI McNEMAR ( a- d )2 X2 M = ( a + d ) criteria keputusan : Ho ditolak jika X2 M > X2 T
  • 47.
    CONTOH suatu penelitian untukmengetahui apakah ada pengaruh penyuluhan terhadap pengetahuan KB akseptor dengan α 0.025 penelitian dengan sample sebanyak 33 orang. sebelum penyuluhan diperoleh data pengetahuan tentang KB, pengetahuan kurang sebanyak 8 orang, pengetahuan cukup sebanyak 25orang. Setelah penyuluhan diperoleh data. Pengetahuan kurang sebanyak 13 orang dan pengetahuan cukup 20 orang. Dari 8 pengetahuan yang cukup setelah penyuluhan diperoleh 3 pengetahuan kurang dan 5 pengetahuan cukup. Apakah penyuluhan berpengaruh terhadap pengetahuan KB responde
  • 48.
    Sebelum penyuluhan Sesudah penyuluhan Kurang Cukup Kurang3 5 Cukup 10 15 ( 3 - 15 ) 2 144 X2 M = = = 8 ( 3 + 15 ) 18
  • 49.
    Tugas : apakahada pengaruh penyuluhan pra operatif terhadap kemampuan untuk melakukan latihan napas dalam dan batuk efektif pasca operatif. Data di bawah ini Pra operatif Pasca operatif Mampu Tidak mampu Mampu 7 4 Tidak mampu 14 5
  • 50.
    ODDS RATIO • Tujuan: Untuk mengetahui berapa besar risiko variable bebas ( penyebab) dapat menyebabkan kejadian pada variable terikat ( akibat )
  • 51.
    FAKTOR RISIKO KASUS KONTROL JUMLH TERPAPARa b a + b TIDAK TERPAPAR c d c + d JUMLAH a + c b + d a + b + c + d OR = bxc axd Keterangan : a. = jumlah kasus yang terpapar b = jumlah control yang terpapar c = jumlah kasus yang tidak terpapar d = jumlah control yang tidak terpapar
  • 52.
    Interpretasi nilai : <1 = nilai protektif > 1 = berisiko terhadap kejadian 1 = tidak ada efek
  • 53.
    BERAPA BESAR RISIKOPEROKOK TERKENA KANKER PARU DATA DI BAWAH INI ? FAKTOR RISIKO KANKER PARU TIDAK KANKER PARU JUMLAH PEROKOK 35 20 55 TIDAK PEROKOK 15 40 55 JUMLAH 50 60 110
  • 54.
    Kesimpulan : PEROKOK MEMILIKIRISIKO TERKENA KANKER PARU 4, 66 KALI DIBANDING ORANG YANG TIDAK PEROKOK ( CASE CONTROL & CROSS SECTIONAL) KOHORT (RR)=RELATIF RISK bxc axd OR = 66,4 1520 4035 == x x OR
  • 55.
    UJI T TEST STUDENT’St TEST ( UJI t ) PERTAMA KALI DITEMUKAN OLEH W.S. GOSSET PADA TAHUN 1908 DENGAN NAMA SAMARAN STUDENT. PRINSIP PENGGUNAAN UJI t TEST ADALAH UNTUK MEMBUKTIKAN SIGNIFIKAN ATAU TIDAKNYA DUA NILAI RATA-RATA.
  • 56.
    SYARAT-SYARAT PENGGUNAAN UJI T MEMPUNYAI SKALA INTERVAL DAN RASIO  SIMPANG BAKUNYA TIDAK DIKETAHUI  DATA DISTRIBUSINYA NORMAL
  • 57.
    UJI T INIDIBEDAKAN ATAS DUA KELOMPOK 1. UJI T SATU SAMPEL 2. UJI T UNTUK SAMPEL YANG BERHUBUNGAN ( SEBELUM DAN SESUDAH t TEST ) ATAU DUA SAMPEL YANG BERPASANGAN (PAIRED t TEST )
  • 58.
    UJI T SATUSAMPEL TUJUAN UNTUK MEMBANDINGKAN NILAI RATA- RATA SAMPEL DENGAN NILAI RATA-RATA POPULASI SEBAGAI STANDAR
  • 59.
    RUMUS nS X tHitung µ− = X ; nilairata rata sample : nilai rata rata populasi S : simpang baku n : besar sample µ
  • 60.
    Kriteria penerimaan hipotesa Ho gagal ditolak bila : T hit. < T ( 1 - α ) ( n – 1 )  Bila menggunakan program komputer ( p ) > α Jika α = 0,05. Ho gagal ditolak jika probabilitasnya ( p ) > 0,05
  • 61.
    Contoh : Masyarakat mengeluhbahwa kadar nikotin rokok A diduga melebihi kadar normal, untuk membuktikan ini diambil sample 10 batang yang kadarnya 22, 21, 19, 19, 21, 22 ,22, 21, 22 dan 25. α yang digunakan adalah 0,05. apakah rokok a memang memiliki kandungan nikotin lebih dari 20 mg
  • 62.
  • 63.
    t TABEL t (1 - α ) ( n – 1 ) t ( 1- 0,05 ) ( 10 – 1 ) t ( 0.95 )( 9 ) akan dihasilkan 1, 83 cara membacanya lihat tabel uji t pada t 0,95 pada baris ke 9.
  • 64.
    Kesimpulan KARENA t Hit> t Tabel ( 2,20 > 1,83 ) maka : KADAR NIKOTIN PADA ROKOK A LEBIH DARI 20 mg
  • 65.
    UJI t UNTUKSAMPEL YANGBERHUBUNGAN ( SEBELUM DAN SESUDAH t TEST ) ATAU DUA SAMPEL YANG BERPASANGAN ( PAIRED t TEST) n S d tHitung = n d d i∑= ( ) ( )1 22 2 − − = ∑ ∑ nn ddn S i d = selisih nilai rata-rata S = standart deviasi
  • 66.
    contoh : sebanyak 10orang wanita peserta KB dengan menggunakan depoprovera sebagai kontrasepsinya. 6 bulan sebelum memakai kontrasepsi diukur tekanan sistolnya dan sesudah 6 bulan diukur tekanan sistoliknya. Ingin diketahui apakah ada perbedaan tekanan darah sistolik sebelum dan sesudah ber KB. Diketahui α 0,05