This document discusses machine learning techniques for credit card fraud detection. It addresses challenges like concept drift, imbalanced data, and limited supervised data. The author proposes contributions in learning from imbalanced and evolving data streams, a prototype fraud detection system using all supervised information, and a software package/dataset. Methods discussed include resampling techniques, concept drift handling, and a "racing" algorithm to efficiently select the best strategy for unbalanced classification on a given dataset. Evaluation measures the ability to accurately rank transactions by fraud risk.