 Muhammad A M IslamSBE202 Electronic Devices and Circuits 19/21/2020
CMOS Digital Logic Circuits
Chapter 13
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 39/21/2020
INTRODUCTION
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 49/21/2020
Special Characteristics
• Fan-Out
• Power Dissipation
• Propagation Delay
• Noise Margin
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 59/21/2020
Fan-Out
Fan-Out: Min of the two
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 69/21/2020
IOH = 400µA
IIH = 50 µA
IOL = 16 mA
IIL = 1.6 mA
FanOutH = 8
FanOutL = 10
FanOut = 8
Fan-Out
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 79/21/2020
THE DIGITAL LOGIC INVERTERS
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 89/21/2020
Function of the Inverter
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 99/21/2020
The Voltage Transfer Characteristics (VTC)
AmplifierLogic
Inverter
Logic
Inverter
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 109/21/2020
VOL: Output
Low Level
VIL: Max Input
Low Level
VIH: Min Input
High Level
NMH: Noise Margin for High Input
H OH IHNM V V 
L OL ILNM V V 
NML: Noise Margin for Low Input
VOH: Output
High Level
𝑁𝑀 = 𝑀𝑖𝑛 𝑁𝑀𝐿, 𝑁𝑀 𝐻
The Voltage Transfer Characteristics (VTC)
TransitionRegion
Noise Margin
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 119/21/2020
Noise Margin
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 129/21/2020
2
DD
H L
V
NM NM 
The Ideal Voltage Transfer Characteristic
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 149/21/2020
Inverter Implementation
𝑉𝑂𝐿 =
𝑅 𝑜𝑛
𝑅 𝑜𝑛 + 𝑅
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 169/21/2020
Complementary
Switches
Pull-Up (PU) &
Pull-Down (PD)
Switches
𝑉𝑂𝐻 = 𝑉𝐷𝐷𝑉𝑂𝐿 = 0
Signal Swing = Max = 𝑉𝐷𝐷
Noise Margin = Max =
𝑉𝐷𝐷
2
Inverter Implementation
𝑣𝐼 Low𝑣𝐼 High
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 179/21/2020
Current Steering
Inverter Implementation
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 189/21/2020
Example 13.1
Derive expressions for VOH VOL VIL VIH, , and VM
𝑉𝑂𝐻 = 𝑉𝐷𝐷
𝑉𝐼𝐿 =?
𝐼 𝐷 =
1
2
𝑘 𝑛 𝑉𝐼 − 𝑉𝑡
2
𝑣 𝑂 = 𝑉𝐷𝐷 −
1
2
𝑘 𝑛 𝑣𝐼 − 𝑉𝑡
2
𝑅 𝐷
𝜕𝑣 𝑂
𝜕𝑣𝐼
= −1 𝑉𝑥 =
1
𝑘 𝑛 𝑅 𝐷
𝑉𝐼𝐿 = 𝑉𝑥 + 𝑉𝑡
𝑉𝑂𝐻2 = 𝑉𝐷𝐷 −
𝑉𝑥
2
−1 = −
𝑣𝐼 − 𝑉𝑡
𝑉𝑥
Assume λ = 0
𝑉𝑂𝐻2
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 199/21/2020
Example 13.1
𝑉 𝑀 =?
𝑣 𝑂 = 𝑣𝐼 = 𝑉 𝑀
𝑣 𝑂 = 𝑉𝐷𝐷 −
1
2
𝑣𝐼 − 𝑉𝑡
2
𝑉𝑥
𝑣 𝑂 = 𝑣𝐼 − 𝑉𝑡
𝑉 𝑀 = 𝑉𝑡 + 2 𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑥 + 𝑉𝑥
2
− 𝑉𝑥
𝑉𝑂𝐶 = 2𝑉𝐷𝐷 𝑉𝑥 + 𝑉𝑥
2
− 𝑉𝑥
𝑉𝑂𝐶 =?
𝑉𝐼𝐶 = 𝑉𝑡 + 2𝑉𝐷𝐷 𝑉𝑥 + 𝑉𝑥
2
− 𝑉𝑥
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 209/21/2020
Example 13.1
𝑉𝐼𝐻 =?
𝑉𝐼𝐻 − 𝑉𝑡 = 2𝑉𝑂𝐿2 − 𝑉𝑥
𝑉𝑂𝐿2 = 0.816 𝑉𝐷𝐷 𝑉𝑥
𝐼 𝐷 = 𝑘 𝑛 𝑉𝐼 − 𝑉𝑡 𝑣 𝑂 −
1
2
𝑣 𝑂
2
𝑣 𝑂 = 𝑉𝐷𝐷 −
1
𝑉𝑥
𝑉𝐼 − 𝑉𝑡 𝑣 𝑂 −
1
2
𝑣 𝑂
2
𝜕𝑣 𝑂
𝜕𝑣𝐼
= −1 = −
1
𝑉𝑥
− 𝑉𝐼𝐻 − 𝑉𝑡 +2𝑣 𝑂
𝑉𝐼𝐻 = 𝑉𝑡 + 1.63 𝑉𝐷𝐷 𝑉𝑥 − 𝑉𝑥
𝑉𝑂𝐿2
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 219/21/2020
Example 13.1
𝑉𝑂𝐿 =?
𝑉𝐼 = 𝑉𝐷𝐷
𝑉𝑂𝐿 = 𝑉𝐷𝐷 −
1
𝑉𝑥
𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑂𝐿 −
1
2
𝑉𝑂𝐿
2
𝑉𝑂𝐿 ≪ 𝑉𝐷𝐷 − 𝑉𝑡
𝑉𝑂𝐿 ≅ 𝑉𝐷𝐷 −
1
𝑉𝑥
𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑂𝐿
𝑉𝑂𝐿 =
𝑉𝐷𝐷
1 +
𝑉𝐷𝐷 − 𝑉𝑡
𝑉𝑥
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 229/21/2020
2
DDV
R
0Static (On) =
(Off) = 0;
Power Dissipation
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 249/21/2020
2
dyn DDP fCV
Power Dissipation
Dynamic Power Dissipation
0 𝑉𝑉𝐷𝐷 𝑄 = 𝐶𝑉𝐷𝐷
𝐸 = 𝑄𝑉
𝐸 = 𝑄𝑉𝐷𝐷
𝐸 = 𝐶𝑉𝐷𝐷
2
𝑉𝐷𝐷
𝑄
0𝑉
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 279/21/2020
𝑡 𝑃 =
1
2
𝑡 𝑃𝐿𝐻 + 𝑡 𝑃𝐻𝐿
𝑇 𝑚𝑖𝑛 = 𝑡 𝑃𝐿𝐻 + 𝑡 𝑃𝐻𝐿
= 2𝑡 𝑃
Propagation Delay
At 𝑓𝑚𝑎𝑥:
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 289/21/2020
𝑃𝐷𝑃 = 𝑃 𝐷 𝑡 𝑃
Power-Delay and Energy-Delay Products
𝑃𝐷𝑃 = 𝑓𝐶𝑉𝐷𝐷
2
𝑡 𝑃
At max switching frequency, 𝑓𝑚𝑎𝑥 =
1
2𝑡 𝑝
:
𝑃𝐷𝑃 =
1
2
𝐶𝑉𝐷𝐷
2
𝐸𝐷𝑃 =
1
2
𝐶𝑉𝐷𝐷
2
𝑡 𝑃
To optimize a given circuit:
To compare different technologies:
For a given circuit, ↓ 𝑉𝐷𝐷 ↑ 𝑡 𝑃
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 299/21/2020
Silicon Area
3 ways:
1. Device Size (L)
2. Circuits Design
3. Chip Layout
Simpler circuits has 2 effects:
1. ↓ Silicon Area.
2. ↓C → ↓ tp.
3. ↓ I → ↑ tp.
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 309/21/2020
Digital IC Technologies and Logic-Circuit Families
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 319/21/2020
Selection Considerations:
1. logic flexibility (Fan-In and Fan-Out)
2. Speed (𝑡 𝑃)
3. 𝑃𝑑𝑖𝑠𝑠
4. 𝑡 𝑃 × 𝑃𝑑𝑖𝑠𝑠
5. Silicon Area
6. Availability of complex functions,
7. NM.
8. Operating-temperature range
9. $
Digital IC Technologies and Logic-Circuit Families
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 329/21/2020
CMOS: Most Dominant
1. ↓↓ 𝑃𝑑𝑖𝑠𝑠
2. ↑ 𝑧𝑖𝑛
3. ↓ 𝐿
Digital IC Technologies and Logic-Circuit Families
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 339/21/2020
BJT:
1. TTL or T2L: Fading
2. ECL or CML: The fastest.
Digital IC Technologies and Logic-Circuit Families
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 349/21/2020
BiCMOS:
1. Combines the ↑ 𝑔 𝑚 of the BJT, and the many
advantages of CMOS
2. Implements both analog and digital circuits on the
same chip.
Digital IC Technologies and Logic-Circuit Families
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 359/21/2020
GaAs:
1. ↑ 𝜇 → ↑ speed .
Digital IC Technologies and Logic-Circuit Families
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 379/21/2020
ULSI, 100,000s of unconnected
gates. Connections are in factories.
Gate Arrays μPs
Standard ICs Semicustom Custom VLSI ICs
SSI MSI
For Simple Systems Only
Digital Systems
DSPs
>100,000 parts
FPGAs
User Programmable
Styles of Digital-System Design
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 389/21/2020
Design Abstraction and Computer Aids
Standard Cells: similar to subroutines
VHDL: VHSIC Hardware Description Language.
for Digital System Design.
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 399/21/2020
THE CMOS INVERTER
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 409/21/2020
IV
IV
IV
IV
OV
Load
The CMOS Inverter
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 419/21/2020
DD OV V
DD IV V Vt 
IV
IV
IV
IV
The CMOS Inverter
Load
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 429/21/2020
OV
IV
IV
IV
IV
DDV
The CMOS Inverter
Load
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 449/21/2020
Load
DDV
Iv
OV
tV tV
The CMOS Inverter
Load
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 469/21/2020
Active Pull Down
The CMOS Inverter
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 489/21/2020
Active Pull Up
The CMOS Inverter
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 509/21/2020
  21
2
D GS t DS DSI k V V V V
 
    
 
1
I DD DSn
n DD tn
V V r
k V V
    

Active Pull Down
Circuit Operation
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 519/21/2020
 
1
0I DSp
p DD tp
V r
k V V
    

Active Pull Up
Circuit Operation
  21
2
D GS t DS DSI k V V V V
 
    
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 529/21/2020
1. 𝑉𝑂 = 0 & 𝑉𝐷𝐷 𝑀𝑎𝑥 𝑆𝑤𝑖𝑛𝑔
2.0 Static 𝑃𝑑𝑖𝑠𝑠
3.↓ 𝑟 𝐷𝑆𝑝 & 𝑟 𝐷𝑆𝑛 ↓ 𝑉𝑂𝐿 & ↑ 𝑉𝑂𝐻
4.Active Pull up and Pull Down → ↑ Driving Capability
5. 𝑅𝑖𝑛 = ∞ ↑ 𝐹𝑎𝑛 𝑜𝑢𝑡
Circuit Operation
Ideal Characteristics:
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 539/21/2020
   21
2
DN n I tn O O O I tnI k v V v v for v v V
 
      
Qp
    
 
21
2
DP p DD I tp DD O DD O
O I tp
I k V v V V v V v
for v v V
 
       
 
   
21
2
DN n I tn O I tnI k v V for v v V   
   
21
2
DP p DD I tp O I tpI k V v V for v v V    
Voltage Transfer Characteristic
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 549/21/2020
p n
n p
W
W



Matching
Voltage Transfer Characteristic
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 559/21/2020
𝑉 𝑀
VOH
VOL
Voltage Transfer Characteristic
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 569/21/2020
   
2
21 1
2 2
I tn O O DD I tpv V v v V v V    
 
1
5 2
8
IH DD tV V V 
   O O
I tn O O DD I tp
I I
dv dv
v V v v V v V
dv dv
      
VIH: Qn Tri; Qp Sat
2
DD
OL IH
V
v V 
, , & 1,O
I IH O OL
I
dv
v V v V
dv
   
Dn DpI I
 
1
2
8
OL DD tV V V 
Voltage Transfer Characteristic
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 579/21/2020
𝑉 𝑀
 
1
5 2
8
IH DD tV V V 
From the Symmetry
IL DD IHV V V Q
 
1
3 2
8
IL DD tV V V  
 
1
7 2
8
OH DD tV V V  
OH DD OLV V V Q
Voltage Transfer Characteristic
VIH: Qn Tri; Qp Sat
 
1
2
8
DD DD tV V V  
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 589/21/2020
Noise Margin
H OH IHNM V V 
L IL OLNM V V 
 
1
2
4
H L DD tNM NM NM V V   
Voltage Transfer Characteristic
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 599/21/2020
Noise Margin
 
1
DD tp tn
M
r V V V
V
r
 


p
n
k
r
k

The Situation when QN & QP Are Not Matched
↓ 𝑟 ↓ 𝑆𝑖𝑙𝑖𝑐𝑜𝑛 𝐴𝑟𝑒𝑎 & 𝑠𝑚𝑎𝑙𝑙 ∆𝑉 𝑀
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 609/21/2020
DYNAMIC OPERATION OF THE CMOS
INVERTER
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 619/21/2020
Dynamic Operation of the CMOS Inverter
Determining the Propagation Delay
𝛼 𝑛 =
2
7
4
−
3𝑉𝑡𝑛
𝑉𝐷𝐷
+
𝑉𝑡𝑛
𝑉𝐷𝐷
2
𝑡 𝑃𝐷 =
1
2
𝑡 𝑃𝐻𝐿 + 𝑡 𝑃𝐿𝐻
𝑡 𝑃𝐻𝐿 =
𝛼 𝑛 𝐶
𝐾 𝑛 𝑉𝐷𝐷
𝑡 𝑃𝐿𝐻 =
𝛼 𝑝 𝐶
𝐾 𝑝 𝑉𝐷𝐷
𝛼 𝑝 =
2
7
4
−
3 𝑉𝑡𝑝
𝑉𝐷𝐷
+
𝑉𝑡𝑛
𝑉𝐷𝐷
2
1 2
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 629/21/2020
↓ tP:
1. ↓C ← ↓ ( L & W & Layout)
2. ↑ 𝑘 ← (↑ W , ↓ L & ↑ µ )
3. ↑VDD !! NO:
i. Determined by the process technology ↓ .
ii. ↑ 𝑃𝑑𝑖𝑠𝑠.
P
DD
C
t
kV

 n pk k k Matched Qs: n p   
Dynamic Operation of the CMOS Inverter
Determining the Propagation Delay
 Muhammad A M Islam 659/21/2020SBE202 Electronic Devices and Circuits
An Alternative Approach
Dynamic Operation of the CMOS Inverter
Determining the Propagation Delay
𝑉𝐷𝐷
2
= 𝑉𝐷𝐷 𝑒
−
𝑡 𝑃𝐻𝐿
𝑅 𝑁 𝐶
𝑡 𝑃𝐻𝐿 = 𝑅 𝑁 𝐶 𝑙𝑛2 𝑅 𝑁 =
12.5
𝑊
𝐿 𝑛
kΩ
 Muhammad A M Islam 669/21/2020SBE202 Electronic Devices and Circuits
An Alternative Approach
Dynamic Operation of the CMOS Inverter
Determining the Propagation Delay
𝑡 𝑃𝐿𝐻 = 𝑅 𝑃 𝐶 𝑙𝑛2 𝑅 𝑃 =
30
𝑊
𝐿 𝑝
kΩ
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 699/21/2020
DDV V 
Propagation Delay AC: Parallel
outC
1 1 2 3 4db db g g wC C C C C C    
2 DDV V 
1 2 1 2 3 42 2out gd gd db db g g wC C C C C C C C      
Q
C
V

Parallel
Repalce Cgd1 & Cgd2 with a Ce
bet’ D & Ground, that draws
the same Q.
 1 22 dd gd gd dd eQ V C C V C  
 1 22e gd gdC C C 
Dynamic Operation of the CMOS Inverter
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 709/21/2020
Inverter Sizing
Selecting appropriate
𝑊
𝐿
ratios
1. Min L.
2.
𝑊
𝐿 𝑛
=?
i. 1 1.5 for min silicon area.
ii. ↑
𝑊
𝐿 𝑛
↓ 𝑡 𝑃
3.
𝑊
𝐿 𝑝
=?
i.
𝑊
𝐿 𝑝
=
𝑘 𝑛
′
𝑘 𝑝
′
𝑊
𝐿
𝑛
𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔
𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡 𝑃𝐿𝐻 & 𝑁𝑀 & ↑ 𝐴𝑟𝑒𝑎 &𝐶 .
ii. Compromise: 2
𝑊
𝐿 𝑛
 Muhammad A M IslamSBE202 Electronic Devices and Circuits 719/21/2020
Power Dissipation
Static Power Dissipation = 0
Current Flow and Power Dissipation
2
dyn DDP fCVDynamic Power Dissipation
↑ #𝑇𝑟𝑠 ↑ 𝐶
↓ 𝑉𝐷𝐷 ↓ 𝑃𝑑𝑦𝑛
Switching Power Dissipation ≪ 𝑃𝑑𝑦𝑛
𝐼 𝑃𝑒𝑎𝑘 =
1
2
𝑘
𝑉𝐷𝐷
2
− 𝑉𝑡
2
For matched Qs
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 769/21/2020
CMOS LOGIC-GATE CIRCUITS
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 779/21/2020
O Iv v
Basic Structure
PMOS
Iv
NMOS
Iv
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 789/21/2020
PMOS
NMOS
 , ,y f A B C
Y in S.O.P. Form
Basic Structure
 , ,y f A B C , ,y g A B C
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 799/21/2020
Pull-down Networks
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 809/21/2020
Pull-down Networks
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 819/21/2020
Pull-down Networks
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 829/21/2020
Pull-Up Networks
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 839/21/2020
Pull-Up Networks
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 849/21/2020
Pull-Up Networks
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 859/21/2020
Alternative Circuit Symbols for MOSFETs
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 869/21/2020
Active Low
Alternative Circuit Symbols for MOSFETs
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 889/21/2020
Y A B 
Y A B A B   
Y A B 
The Two-Input CMOS NOR Gate
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 899/21/2020
Y A B A B   
Y A B 
Y A B 
The Two-Input CMOS NAND Gate
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 909/21/2020
 Y A B CD 
 Y A B CD 
  Y A B CD  
Y A B CD  
 Y A B C D   
A Complex Gate
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 919/21/2020
Duality
PUN ⟺ PDN
1. PMOS ↔ NMOS
2. Parallel ↔ Serial
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 929/21/2020
The Exclusive-OR Function
Y AB AB 
Y AB AB 
   Y A B A B  g
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 939/21/2020
Transistor Sizing
?
W
L

n & p: Conductance or Resistance?
Imin ≥ I basic_inverter
𝑛 ≡
𝑊
𝐿 𝑛
𝑝 ≡
𝑊
𝐿 𝑝
𝐼 𝐷 = 𝑘 𝑛
′
𝑊
𝐿
𝑉𝐼 − 𝑉𝑡 𝑣 𝑂 −
1
2
𝑣 𝑂
2 𝐼 𝐷 𝛼
𝑊
𝐿
Conductance
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 949/21/2020
CMOS Inverter Circuit Structure
 
1
DSN
n DD t
r
k V V


 
1
DSP
p DD t
r
k V V


 '
1
n DD t
n
W
k V V
L

   
 
DSP DSNr r
 '
1
n DD tk n V V


1
DSNr
n

1
DSPr
p

 Muhammad A M IslamMTI BIO 313 Electron ic Vision 959/21/2020
Transistor Sizing
Imin ≥ I basic_inverter
1
DSNr
n

1
DSPr
p

nY n pY p
𝑛 & 𝑝:
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 969/21/2020
Transistor Sizing
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 979/21/2020
Example 13.7
?
W
L

Basic inverter:
n = 1.5
p = 5
L=0.25 µm
𝑊𝑛 = 0.375 µm
𝑊𝑝 = 1.25 µm
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 989/21/2020
2-input Multiplexer CMOS Circuit
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 999/21/2020
2-input Multiplexer CMOS Circuit
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 1009/21/2020
2-input Multiplexer CMOS Circuit
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 1019/21/2020
Fan-In
# # Pinputs Transistors C t   
2 transistors per input
Practical limit:
Ex: NAND = 4 inputs
To ↑ # inputs  Multisage
Effects of Fan-In and Fan-Out on Propagation Delay
 Muhammad A M IslamMTI BIO 313 Electron ic Vision 1029/21/2020
Fan-Out
# Poutputs C t  
Effects of Fan-In and Fan-Out on Propagation Delay

A13 sedra ch 13 cmos digital logic circuits

  • 1.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 19/21/2020 CMOS Digital Logic Circuits Chapter 13
  • 2.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 39/21/2020 INTRODUCTION
  • 3.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 49/21/2020 Special Characteristics • Fan-Out • Power Dissipation • Propagation Delay • Noise Margin
  • 4.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 59/21/2020 Fan-Out Fan-Out: Min of the two
  • 5.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 69/21/2020 IOH = 400µA IIH = 50 µA IOL = 16 mA IIL = 1.6 mA FanOutH = 8 FanOutL = 10 FanOut = 8 Fan-Out
  • 6.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 79/21/2020 THE DIGITAL LOGIC INVERTERS
  • 7.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 89/21/2020 Function of the Inverter
  • 8.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 99/21/2020 The Voltage Transfer Characteristics (VTC) AmplifierLogic Inverter Logic Inverter
  • 9.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 109/21/2020 VOL: Output Low Level VIL: Max Input Low Level VIH: Min Input High Level NMH: Noise Margin for High Input H OH IHNM V V  L OL ILNM V V  NML: Noise Margin for Low Input VOH: Output High Level 𝑁𝑀 = 𝑀𝑖𝑛 𝑁𝑀𝐿, 𝑁𝑀 𝐻 The Voltage Transfer Characteristics (VTC) TransitionRegion Noise Margin
  • 10.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 119/21/2020 Noise Margin
  • 11.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 129/21/2020 2 DD H L V NM NM  The Ideal Voltage Transfer Characteristic
  • 12.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 149/21/2020 Inverter Implementation 𝑉𝑂𝐿 = 𝑅 𝑜𝑛 𝑅 𝑜𝑛 + 𝑅
  • 13.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 169/21/2020 Complementary Switches Pull-Up (PU) & Pull-Down (PD) Switches 𝑉𝑂𝐻 = 𝑉𝐷𝐷𝑉𝑂𝐿 = 0 Signal Swing = Max = 𝑉𝐷𝐷 Noise Margin = Max = 𝑉𝐷𝐷 2 Inverter Implementation 𝑣𝐼 Low𝑣𝐼 High
  • 14.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 179/21/2020 Current Steering Inverter Implementation
  • 15.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 189/21/2020 Example 13.1 Derive expressions for VOH VOL VIL VIH, , and VM 𝑉𝑂𝐻 = 𝑉𝐷𝐷 𝑉𝐼𝐿 =? 𝐼 𝐷 = 1 2 𝑘 𝑛 𝑉𝐼 − 𝑉𝑡 2 𝑣 𝑂 = 𝑉𝐷𝐷 − 1 2 𝑘 𝑛 𝑣𝐼 − 𝑉𝑡 2 𝑅 𝐷 𝜕𝑣 𝑂 𝜕𝑣𝐼 = −1 𝑉𝑥 = 1 𝑘 𝑛 𝑅 𝐷 𝑉𝐼𝐿 = 𝑉𝑥 + 𝑉𝑡 𝑉𝑂𝐻2 = 𝑉𝐷𝐷 − 𝑉𝑥 2 −1 = − 𝑣𝐼 − 𝑉𝑡 𝑉𝑥 Assume λ = 0 𝑉𝑂𝐻2
  • 16.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 199/21/2020 Example 13.1 𝑉 𝑀 =? 𝑣 𝑂 = 𝑣𝐼 = 𝑉 𝑀 𝑣 𝑂 = 𝑉𝐷𝐷 − 1 2 𝑣𝐼 − 𝑉𝑡 2 𝑉𝑥 𝑣 𝑂 = 𝑣𝐼 − 𝑉𝑡 𝑉 𝑀 = 𝑉𝑡 + 2 𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑥 + 𝑉𝑥 2 − 𝑉𝑥 𝑉𝑂𝐶 = 2𝑉𝐷𝐷 𝑉𝑥 + 𝑉𝑥 2 − 𝑉𝑥 𝑉𝑂𝐶 =? 𝑉𝐼𝐶 = 𝑉𝑡 + 2𝑉𝐷𝐷 𝑉𝑥 + 𝑉𝑥 2 − 𝑉𝑥
  • 17.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 209/21/2020 Example 13.1 𝑉𝐼𝐻 =? 𝑉𝐼𝐻 − 𝑉𝑡 = 2𝑉𝑂𝐿2 − 𝑉𝑥 𝑉𝑂𝐿2 = 0.816 𝑉𝐷𝐷 𝑉𝑥 𝐼 𝐷 = 𝑘 𝑛 𝑉𝐼 − 𝑉𝑡 𝑣 𝑂 − 1 2 𝑣 𝑂 2 𝑣 𝑂 = 𝑉𝐷𝐷 − 1 𝑉𝑥 𝑉𝐼 − 𝑉𝑡 𝑣 𝑂 − 1 2 𝑣 𝑂 2 𝜕𝑣 𝑂 𝜕𝑣𝐼 = −1 = − 1 𝑉𝑥 − 𝑉𝐼𝐻 − 𝑉𝑡 +2𝑣 𝑂 𝑉𝐼𝐻 = 𝑉𝑡 + 1.63 𝑉𝐷𝐷 𝑉𝑥 − 𝑉𝑥 𝑉𝑂𝐿2
  • 18.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 219/21/2020 Example 13.1 𝑉𝑂𝐿 =? 𝑉𝐼 = 𝑉𝐷𝐷 𝑉𝑂𝐿 = 𝑉𝐷𝐷 − 1 𝑉𝑥 𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑂𝐿 − 1 2 𝑉𝑂𝐿 2 𝑉𝑂𝐿 ≪ 𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑂𝐿 ≅ 𝑉𝐷𝐷 − 1 𝑉𝑥 𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑂𝐿 𝑉𝑂𝐿 = 𝑉𝐷𝐷 1 + 𝑉𝐷𝐷 − 𝑉𝑡 𝑉𝑥
  • 19.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 229/21/2020 2 DDV R 0Static (On) = (Off) = 0; Power Dissipation
  • 20.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 249/21/2020 2 dyn DDP fCV Power Dissipation Dynamic Power Dissipation 0 𝑉𝑉𝐷𝐷 𝑄 = 𝐶𝑉𝐷𝐷 𝐸 = 𝑄𝑉 𝐸 = 𝑄𝑉𝐷𝐷 𝐸 = 𝐶𝑉𝐷𝐷 2 𝑉𝐷𝐷 𝑄 0𝑉
  • 21.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 279/21/2020 𝑡 𝑃 = 1 2 𝑡 𝑃𝐿𝐻 + 𝑡 𝑃𝐻𝐿 𝑇 𝑚𝑖𝑛 = 𝑡 𝑃𝐿𝐻 + 𝑡 𝑃𝐻𝐿 = 2𝑡 𝑃 Propagation Delay At 𝑓𝑚𝑎𝑥:
  • 22.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 289/21/2020 𝑃𝐷𝑃 = 𝑃 𝐷 𝑡 𝑃 Power-Delay and Energy-Delay Products 𝑃𝐷𝑃 = 𝑓𝐶𝑉𝐷𝐷 2 𝑡 𝑃 At max switching frequency, 𝑓𝑚𝑎𝑥 = 1 2𝑡 𝑝 : 𝑃𝐷𝑃 = 1 2 𝐶𝑉𝐷𝐷 2 𝐸𝐷𝑃 = 1 2 𝐶𝑉𝐷𝐷 2 𝑡 𝑃 To optimize a given circuit: To compare different technologies: For a given circuit, ↓ 𝑉𝐷𝐷 ↑ 𝑡 𝑃
  • 23.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 299/21/2020 Silicon Area 3 ways: 1. Device Size (L) 2. Circuits Design 3. Chip Layout Simpler circuits has 2 effects: 1. ↓ Silicon Area. 2. ↓C → ↓ tp. 3. ↓ I → ↑ tp.
  • 24.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 309/21/2020 Digital IC Technologies and Logic-Circuit Families
  • 25.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 319/21/2020 Selection Considerations: 1. logic flexibility (Fan-In and Fan-Out) 2. Speed (𝑡 𝑃) 3. 𝑃𝑑𝑖𝑠𝑠 4. 𝑡 𝑃 × 𝑃𝑑𝑖𝑠𝑠 5. Silicon Area 6. Availability of complex functions, 7. NM. 8. Operating-temperature range 9. $ Digital IC Technologies and Logic-Circuit Families
  • 26.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 329/21/2020 CMOS: Most Dominant 1. ↓↓ 𝑃𝑑𝑖𝑠𝑠 2. ↑ 𝑧𝑖𝑛 3. ↓ 𝐿 Digital IC Technologies and Logic-Circuit Families
  • 27.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 339/21/2020 BJT: 1. TTL or T2L: Fading 2. ECL or CML: The fastest. Digital IC Technologies and Logic-Circuit Families
  • 28.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 349/21/2020 BiCMOS: 1. Combines the ↑ 𝑔 𝑚 of the BJT, and the many advantages of CMOS 2. Implements both analog and digital circuits on the same chip. Digital IC Technologies and Logic-Circuit Families
  • 29.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 359/21/2020 GaAs: 1. ↑ 𝜇 → ↑ speed . Digital IC Technologies and Logic-Circuit Families
  • 30.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 379/21/2020 ULSI, 100,000s of unconnected gates. Connections are in factories. Gate Arrays μPs Standard ICs Semicustom Custom VLSI ICs SSI MSI For Simple Systems Only Digital Systems DSPs >100,000 parts FPGAs User Programmable Styles of Digital-System Design
  • 31.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 389/21/2020 Design Abstraction and Computer Aids Standard Cells: similar to subroutines VHDL: VHSIC Hardware Description Language. for Digital System Design.
  • 32.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 399/21/2020 THE CMOS INVERTER
  • 33.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 409/21/2020 IV IV IV IV OV Load The CMOS Inverter
  • 34.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 419/21/2020 DD OV V DD IV V Vt  IV IV IV IV The CMOS Inverter Load
  • 35.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 429/21/2020 OV IV IV IV IV DDV The CMOS Inverter Load
  • 36.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 449/21/2020 Load DDV Iv OV tV tV The CMOS Inverter Load
  • 37.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 469/21/2020 Active Pull Down The CMOS Inverter
  • 38.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 489/21/2020 Active Pull Up The CMOS Inverter
  • 39.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 509/21/2020   21 2 D GS t DS DSI k V V V V          1 I DD DSn n DD tn V V r k V V       Active Pull Down Circuit Operation
  • 40.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 519/21/2020   1 0I DSp p DD tp V r k V V       Active Pull Up Circuit Operation   21 2 D GS t DS DSI k V V V V       
  • 41.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 529/21/2020 1. 𝑉𝑂 = 0 & 𝑉𝐷𝐷 𝑀𝑎𝑥 𝑆𝑤𝑖𝑛𝑔 2.0 Static 𝑃𝑑𝑖𝑠𝑠 3.↓ 𝑟 𝐷𝑆𝑝 & 𝑟 𝐷𝑆𝑛 ↓ 𝑉𝑂𝐿 & ↑ 𝑉𝑂𝐻 4.Active Pull up and Pull Down → ↑ Driving Capability 5. 𝑅𝑖𝑛 = ∞ ↑ 𝐹𝑎𝑛 𝑜𝑢𝑡 Circuit Operation Ideal Characteristics:
  • 42.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 539/21/2020    21 2 DN n I tn O O O I tnI k v V v v for v v V          Qp        21 2 DP p DD I tp DD O DD O O I tp I k V v V V v V v for v v V                 21 2 DN n I tn O I tnI k v V for v v V        21 2 DP p DD I tp O I tpI k V v V for v v V     Voltage Transfer Characteristic
  • 43.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 549/21/2020 p n n p W W    Matching Voltage Transfer Characteristic
  • 44.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 559/21/2020 𝑉 𝑀 VOH VOL Voltage Transfer Characteristic
  • 45.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 569/21/2020     2 21 1 2 2 I tn O O DD I tpv V v v V v V       1 5 2 8 IH DD tV V V     O O I tn O O DD I tp I I dv dv v V v v V v V dv dv        VIH: Qn Tri; Qp Sat 2 DD OL IH V v V  , , & 1,O I IH O OL I dv v V v V dv     Dn DpI I   1 2 8 OL DD tV V V  Voltage Transfer Characteristic
  • 46.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 579/21/2020 𝑉 𝑀   1 5 2 8 IH DD tV V V  From the Symmetry IL DD IHV V V Q   1 3 2 8 IL DD tV V V     1 7 2 8 OH DD tV V V   OH DD OLV V V Q Voltage Transfer Characteristic VIH: Qn Tri; Qp Sat   1 2 8 DD DD tV V V  
  • 47.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 589/21/2020 Noise Margin H OH IHNM V V  L IL OLNM V V    1 2 4 H L DD tNM NM NM V V    Voltage Transfer Characteristic
  • 48.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 599/21/2020 Noise Margin   1 DD tp tn M r V V V V r     p n k r k  The Situation when QN & QP Are Not Matched ↓ 𝑟 ↓ 𝑆𝑖𝑙𝑖𝑐𝑜𝑛 𝐴𝑟𝑒𝑎 & 𝑠𝑚𝑎𝑙𝑙 ∆𝑉 𝑀
  • 49.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 609/21/2020 DYNAMIC OPERATION OF THE CMOS INVERTER
  • 50.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 619/21/2020 Dynamic Operation of the CMOS Inverter Determining the Propagation Delay 𝛼 𝑛 = 2 7 4 − 3𝑉𝑡𝑛 𝑉𝐷𝐷 + 𝑉𝑡𝑛 𝑉𝐷𝐷 2 𝑡 𝑃𝐷 = 1 2 𝑡 𝑃𝐻𝐿 + 𝑡 𝑃𝐿𝐻 𝑡 𝑃𝐻𝐿 = 𝛼 𝑛 𝐶 𝐾 𝑛 𝑉𝐷𝐷 𝑡 𝑃𝐿𝐻 = 𝛼 𝑝 𝐶 𝐾 𝑝 𝑉𝐷𝐷 𝛼 𝑝 = 2 7 4 − 3 𝑉𝑡𝑝 𝑉𝐷𝐷 + 𝑉𝑡𝑛 𝑉𝐷𝐷 2 1 2
  • 51.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 629/21/2020 ↓ tP: 1. ↓C ← ↓ ( L & W & Layout) 2. ↑ 𝑘 ← (↑ W , ↓ L & ↑ µ ) 3. ↑VDD !! NO: i. Determined by the process technology ↓ . ii. ↑ 𝑃𝑑𝑖𝑠𝑠. P DD C t kV   n pk k k Matched Qs: n p    Dynamic Operation of the CMOS Inverter Determining the Propagation Delay
  • 52.
     Muhammad AM Islam 659/21/2020SBE202 Electronic Devices and Circuits An Alternative Approach Dynamic Operation of the CMOS Inverter Determining the Propagation Delay 𝑉𝐷𝐷 2 = 𝑉𝐷𝐷 𝑒 − 𝑡 𝑃𝐻𝐿 𝑅 𝑁 𝐶 𝑡 𝑃𝐻𝐿 = 𝑅 𝑁 𝐶 𝑙𝑛2 𝑅 𝑁 = 12.5 𝑊 𝐿 𝑛 kΩ
  • 53.
     Muhammad AM Islam 669/21/2020SBE202 Electronic Devices and Circuits An Alternative Approach Dynamic Operation of the CMOS Inverter Determining the Propagation Delay 𝑡 𝑃𝐿𝐻 = 𝑅 𝑃 𝐶 𝑙𝑛2 𝑅 𝑃 = 30 𝑊 𝐿 𝑝 kΩ
  • 54.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 699/21/2020 DDV V  Propagation Delay AC: Parallel outC 1 1 2 3 4db db g g wC C C C C C     2 DDV V  1 2 1 2 3 42 2out gd gd db db g g wC C C C C C C C       Q C V  Parallel Repalce Cgd1 & Cgd2 with a Ce bet’ D & Ground, that draws the same Q.  1 22 dd gd gd dd eQ V C C V C    1 22e gd gdC C C  Dynamic Operation of the CMOS Inverter
  • 55.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 709/21/2020 Inverter Sizing Selecting appropriate 𝑊 𝐿 ratios 1. Min L. 2. 𝑊 𝐿 𝑛 =? i. 1 1.5 for min silicon area. ii. ↑ 𝑊 𝐿 𝑛 ↓ 𝑡 𝑃 3. 𝑊 𝐿 𝑝 =? i. 𝑊 𝐿 𝑝 = 𝑘 𝑛 ′ 𝑘 𝑝 ′ 𝑊 𝐿 𝑛 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡 𝑃𝐿𝐻 & 𝑁𝑀 & ↑ 𝐴𝑟𝑒𝑎 &𝐶 . ii. Compromise: 2 𝑊 𝐿 𝑛
  • 56.
     Muhammad AM IslamSBE202 Electronic Devices and Circuits 719/21/2020 Power Dissipation Static Power Dissipation = 0 Current Flow and Power Dissipation 2 dyn DDP fCVDynamic Power Dissipation ↑ #𝑇𝑟𝑠 ↑ 𝐶 ↓ 𝑉𝐷𝐷 ↓ 𝑃𝑑𝑦𝑛 Switching Power Dissipation ≪ 𝑃𝑑𝑦𝑛 𝐼 𝑃𝑒𝑎𝑘 = 1 2 𝑘 𝑉𝐷𝐷 2 − 𝑉𝑡 2 For matched Qs
  • 57.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 769/21/2020 CMOS LOGIC-GATE CIRCUITS
  • 58.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 779/21/2020 O Iv v Basic Structure PMOS Iv NMOS Iv
  • 59.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 789/21/2020 PMOS NMOS  , ,y f A B C Y in S.O.P. Form Basic Structure  , ,y f A B C , ,y g A B C
  • 60.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 799/21/2020 Pull-down Networks
  • 61.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 809/21/2020 Pull-down Networks
  • 62.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 819/21/2020 Pull-down Networks
  • 63.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 829/21/2020 Pull-Up Networks
  • 64.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 839/21/2020 Pull-Up Networks
  • 65.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 849/21/2020 Pull-Up Networks
  • 66.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 859/21/2020 Alternative Circuit Symbols for MOSFETs
  • 67.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 869/21/2020 Active Low Alternative Circuit Symbols for MOSFETs
  • 68.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 889/21/2020 Y A B  Y A B A B    Y A B  The Two-Input CMOS NOR Gate
  • 69.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 899/21/2020 Y A B A B    Y A B  Y A B  The Two-Input CMOS NAND Gate
  • 70.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 909/21/2020  Y A B CD   Y A B CD    Y A B CD   Y A B CD    Y A B C D    A Complex Gate
  • 71.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 919/21/2020 Duality PUN ⟺ PDN 1. PMOS ↔ NMOS 2. Parallel ↔ Serial
  • 72.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 929/21/2020 The Exclusive-OR Function Y AB AB  Y AB AB     Y A B A B  g
  • 73.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 939/21/2020 Transistor Sizing ? W L  n & p: Conductance or Resistance? Imin ≥ I basic_inverter 𝑛 ≡ 𝑊 𝐿 𝑛 𝑝 ≡ 𝑊 𝐿 𝑝 𝐼 𝐷 = 𝑘 𝑛 ′ 𝑊 𝐿 𝑉𝐼 − 𝑉𝑡 𝑣 𝑂 − 1 2 𝑣 𝑂 2 𝐼 𝐷 𝛼 𝑊 𝐿 Conductance
  • 74.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 949/21/2020 CMOS Inverter Circuit Structure   1 DSN n DD t r k V V     1 DSP p DD t r k V V    ' 1 n DD t n W k V V L        DSP DSNr r  ' 1 n DD tk n V V   1 DSNr n  1 DSPr p 
  • 75.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 959/21/2020 Transistor Sizing Imin ≥ I basic_inverter 1 DSNr n  1 DSPr p  nY n pY p 𝑛 & 𝑝:
  • 76.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 969/21/2020 Transistor Sizing
  • 77.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 979/21/2020 Example 13.7 ? W L  Basic inverter: n = 1.5 p = 5 L=0.25 µm 𝑊𝑛 = 0.375 µm 𝑊𝑝 = 1.25 µm
  • 78.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 989/21/2020 2-input Multiplexer CMOS Circuit
  • 79.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 999/21/2020 2-input Multiplexer CMOS Circuit
  • 80.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 1009/21/2020 2-input Multiplexer CMOS Circuit
  • 81.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 1019/21/2020 Fan-In # # Pinputs Transistors C t    2 transistors per input Practical limit: Ex: NAND = 4 inputs To ↑ # inputs  Multisage Effects of Fan-In and Fan-Out on Propagation Delay
  • 82.
     Muhammad AM IslamMTI BIO 313 Electron ic Vision 1029/21/2020 Fan-Out # Poutputs C t   Effects of Fan-In and Fan-Out on Propagation Delay