SlideShare a Scribd company logo
Recent Advances in
      Microcolumn LC and
Capillary Electrochromatography

       James N. Alexander, IV
       Liquid Separations Group
       Rohm and Haas Company
           Spring House, PA

                  CFDV
             October 14, 1998
Presentation Topics
     Micro LC
u
      Driving Forces
    u
    u Instrument Considerations
    u High Resolution Separations

     CEC
u
      Gradient Instrumentation
    u
    u Comparison of Nano LC and CEC

    Conclusions
u
What is Microcolumn LC?
Column i.d.   Flow Rate   Classification
 (µm)         (µL/min)
4600          1000        Analytical
2100          208         Narrowbore
1000          47          Microbore
500           12          Microbore
320           5           Microcolumn
250           3           Microcolumn
50            0.12        Nanocolumn/
                          Packed Capillary
Driving Forces
Higher efficiency / resolving power
Flexibility
LC-MS
Novel detection schemes
Increased mass sensitivity
Temperature control
Reduced solvent consumption
Two-dimensional chromatography
Challenges
  Hardware
u
u Detectors
u Automation
u Column availability
u Long analysis times
u Dead volume free
 connections
u Detection of micro leaks
Flexibility
 Lengths up to a 1 meter, 25 - 250 µm i.d.
 Any packing material can be used (0.1 g / micro-
column)
 Microcolumns can be prepared for 1/16 the cost
of an analytical column (about $25)
 Observe packing process
 Use for scouting purposes
Microcolumn Preparation
                                        Dense bed (‘slam pack’)
                        Slurry Method   Loose bed (‘gradual pack’)
1) Prepare fused silica capillary
2) Slurry stationary phase (1-10%)
3) Sonicate / shake slurry (1-2 hrs)
4) Transfer to slurry reservoir           Speaker/
5) Connect fused silica capillary         Ultrasonic bath
6) Pack (2,000-10,000 psi, 2-24 hr)
7) Bleed pressure
8) Secure outlet frit

             Solvent     Pump

                                             Fused silica capillary
                       Reservoir

                       Stir plate
Microcolumn Assembly
                                      Glass Wool Frit
                                                          Window
   Column Packing




                            Teflon Sleeve
250 µm i.d. x 365 µm o.d.                         50 µm i.d. x 365 µm o.d.
Fused silica capillary                            Fused silica capillary
Split and Moving Injections
                                  Mobile Phase In
     Sample In                                             Splitter Vent


                                                                   Fused Silica
                                                                   Column
  Waste



                                                    Splitter Tee

               Injector, internal loop


                                          Moving Injection
Split Injection
                                          M. C. Harvey and S. D. Sterns
T. Tsuda and G. Nakagawa
                                          Anal. Chem., 1984, 56, 837.
J. Chromatogr., 1988, 199, 249.
Pre-Injection Split
                                  Mobile Phase In
        Splitter Vent


                                  Splitter Tee
 Sample In




                                       Fused Silica
Waste
                                       Column




        Injector, internal loop
Split Ratios
(B i.d.)2
(A i.d.)2


   Column   Injection   Flow       Split
     i.d.   Volume      Rate       Ratio
    (µm)    (µL)        (µL/min)
     4600   50          1000       333 : 1
     2100   10           200        67 : 1
     1000   2.4           47        16 : 1
     500    0.59          12         4:1
     320    0.24           5         2:1
     250    0.15           3
     50     0.01           0.1
Detection Schemes for Microcolumn LC

                         Home Made
Commercially Available
                         Condensation Nucleation
UV/Vis
                         Electrospray Ionization
Electrochemical
                         Gas Phase Detection
Fluorescence
                         Refractive Index
Mass Spectrometry
                         Conductivity
                         Evaporative Light Scattering
                         Radioactivity Monitor
On-Column Detection Cells for
              Microcolumn LC
F. J. Yang,
J. Chromatogr.,
1982, 236, 265.
                                             J.P. Chervet, et al.,
                                             LC.GC Int.,
     Polyimide Coating
                                             1989, 2, 40.
      Column Packing




                                                     Mono-                   Photo-
                                                     chrometer               multiplier
                                      Light Source




               Mono-       Photomultiplier
               chrometer
                                                                 ‘Z-Shaped’ cell
Light Source
Micro-LC Systems
                                                                 Microflow
                                              HPLC Pump
                                                                 processor
      Autosampler
                                  Detector



      Injector


                                             Autosampler/
                                             Injector

                                               Microcolumn


                    Column Oven
Micro-pump

                                                            Detector

                 System A                               System B
Retention Time Reproducibility
Alltech Adsorbosphere HS C18 5µm
250 µm x 100 cm, 2.9 µL/min, 254 nm, 30°C
100 nL injection, split 1:10 prior to injector
Analyte = Toluene
                                    Isocratic              Gradient
                                                           ACN/H2O
                                 ACN/H2O
                                  (58:42)             (30:70 - 90:10) 90 min.
            Injection         Retention Time (min.)     Retention Time(min.)

            1                        63.72                    77.64
            2                        63.80                    77.65
            3                        63.83                    77.61
            4                        63.75                    77.57
            5                        63.73                    77.63
            6                        63.84                    77.66
            7                        63.81
            8                        63.74
            9                        63.74
            10                       63.69
                        Average      63.76                    77.63
                        std. dev.     0.051                    0.033
                        % RSD         0.08%                    0.04%
Higher Efficiency / Resolution

      N = L / h dp                     N1/2     (α−1) k2
                                Rs =
                                                 α    k2+1
                                        4
  N = theoretical plates
                                Rs = resolution
  L = column length
                                α = selectivity factor
  h = reduced height            k2 = capacity factor
  equivalent to a theoretical
  plate
                                       μηL
  dp = mean particle diameter    P=
                                       ko dp2
                                 P = pressure drop
                                 μ = linear velocity
                                 η = mobile phase viscosity
                                 ko= constant
Octylphenol Ethoxylate
            Reversed-Phase
             (OCH2CH2)x OH
    C8H17
                                     4.6 mm x 25 cm, PLRP-S
                                     1 mL/min



R
                                      250 µm x 31 cm, PLRP-S
e
s                                     3 µL/min
p
o
n
s                                     250 µm x 100 cm, PLRP-S
e                                     3 µL/min




                    Time (minutes)
Linear Alkylbenzene Sulfonate
                Ion-Pair
                                 CH3(CH2)xCH(CH2)yCH3




      250 µm x 31 cm, PLRP-S
          um                                   -
                                         SO3
      3 µL/min
        uL/min
R
e
s
p
o
      250 µm x 100 cm, PLRP-S
          um
n
      3 µL/min
        uL/min
s
e




                Time (minutes)
Sample A
                  Reversed-Phase
    Alltech Adsorbosphere HS C18 5 µm
    210 nm, 30ºC, 20 µL injection
    ACN/H2O (gradient)

R   4.6 mm x 25 cm, 1 mL/min
e
s
p
o
n
    210 nm, 30ºC, 100 nL injection
s
    ACN/H2O (gradient)
e
    250 µm x 100 cm, 2.9 µL/min




                            Time (minutes)
Sample A
    Characterization                1
                          11            2
     Sample A                  33
                      3
                          22
                  3


R
e
s      Isomer 1
p
o
n
s
       Isomer 2
e




       Isomer 3


          Time (minutes)
Water Soluble Polymer
        Aqueous GPC
                             Macrosphere GPC 60
                             4.6 cm x 25 cm
                             0.1 mL/min


R
e
s
p
o
                              250 µm x 73 cm
n
                              0.3 µL/min
s
e




            Time (minutes)
ELSD - Operation
                                   LC Effluent

Nebulization Gas               Nebulizer
(Nitrogen)



                              Drift Tube
                              (ambient - 140°C)



   Laser Diode
   (670 nm, 7
   mW)                      Silicon Photo
                            Diode
                    Waste
Micro - ELSD                          Fused silica (effluent )
Control A Capillary
        of                            capillary
Tip Position



                                      Bellows


   Nebulization                      Effluent capillary secured
   gas                               to base of bellows




                  Extended           Withdrawn
                             Flush
Micro - ELSD
Control of Nebulization Height
                            3
                        1       5




                                    Insert
    Nebulization tube               tube              3
                                                  1       5




                                                              Micro-nebulizer
   Effluent capillary
                                                              assembly
 25 cm from light
 source

                                     Drift tube
            Aerosol
                                                               6 cm from light
                                                               source
  Light
  source
                                    Photodiode
Complex Sample A
                              Micro-ELS Detection
    Alltech Adsorbosphere HS C18 5
                                                          UV @ 210 nm
    µm
    250 µm x 100 cm, 2.9 µL/min
    ACN/H2O (gradient), 30ºC
R
    100 nL injection (0.8 µg)
e
s
p
o    170        180     190      200        210     220       230       240   250


n
s                                                  Micro-ELSD @ 60ºC
e
           = Peaks not detected at 210 nm




    170        180      190     200         210    220        230       240   250

                                       Time (minutes)
200 mw Poly(Ethylene Glycol)
    Micro-ELS Detection at Various Drift Tube Temperatures
                                                6
                                                         7
                                       5 EO
        70ºC                                                      8
                                                                          9
R   0          10     20    30         40           50           60               70    80
e                                           5       6
                                                             7
s
p       50ºC                                                          8
o                          4 EO
                                                                              9
n
s   0          10    20     30         40           50           60               70   80

e                                       5           6
                           4                                 7
        30ºC
                                                                      8
                    3 EO
                                                                              9
    0          10    20     30         40           50           60               70   80

                                  Time (minutes)
What is CEC?
Liquid Chromatography       Capillary Electrophoresis

                                  high efficiency
    high separation
                              (electroosmotic flow)
       capacity
   (packed column)




      Capillary Electrochromatography
              packed capillary column
                 electrically driven
Advantages of CEC Over
        Pressure Driven Systems
                                                    +
                                              +-   -
                                                   -- +
                                              +-
                                                   +
                                     -- --
    Flat flow profile
u                                    ++++
                                                          -
                                 +
                                     ++++
                                     ----
        increase in efficiency
    u
                                             EOF

    No pressure drop
u
        smaller particles (<3 µm) can be used
    u
        long columns (>50 cm) can be used
    u
Challenges in CEC
    Column life time
u
    Frits
u
        retain packing
    u
        minimize bubble formation
    u

    Bubble formation
u
        degas, pressure, temperature
    u

    Isocratic separations
u
    Analytes
u
        neutrals
    u
Research Objectives
u Build   a system that:
  u allows for nano LC or CEC use under
    isocratic and gradient conditions
  u does not require separate columns for
    nano LC or CEC
  u make it simple and reproducible



u Investigate   technique and compare to
  nano LC
Nano Column Assembly
                         Polyimide             Window
Column Packing           Coating




               Sintered Frits


                 Common dimensions
     75 µm I.d. x 350 µm o.d. x 39 cm (25 cm eff.)
Schematic of Gradient Elution
                Nano LC / CEC 11
                                                                                       12



                                                                A
                                                       6        B
     9
                                                  5
                     -                                                                      13
                                                                            10
                         2                                  8



                             3                          7                                        14


            1                       4

1. Power supply              5. Nanocolumn             9. Ground cable      13. Dynamic mixer
2. Platinum electrode        6. Switching valve       10. Injection valve   14. Micro LC pumps
3. Outlet reservoir vial     7. Stand                 11. Plexiglas compartment
4. UV Detector               8. Split device          12. Autosampler
Close-up of Split Device and Injector
                             No Restrictor          Restrictor
                                 CEC              Nano LC or PEC



                                    6




          1
                                              3
                                2
1. Nanocolumn
2. Knurled nut and ferrule
                                                              4    5
3. Split device                  5. Rotor
4. Injection valve               6. Outlet port
Relationship Between Applied Voltage
         and Linear Velocity

                             1.2


                              1
    Linear Velocity (mm/s)




                             0.8


                             0.6


                             0.4


                             0.2

                                   5   10        15         20   25
                                            Voltage (-kV)
Isocratic Separations at Different
Applied Voltages                                                4
                                                      3
                            N = 19,713
                                             2
                                                                    5
                                                                                6
       -7.5 kV
                                   1


   0                              10                           20

                                        N = 27,573
       -15 kV
                                                                    1. Uracil
                                                                    2. Phenol
                                                                    3. Benzaldehyde
        0                         10                           20
                                                                    4. N,N-diethyl-m-toluamide
                           N = 18,541                               5. Toluene
       -25 kV                                                       6. Ethylbenzene




    0       2    4   6     8       10   12       14       16
                     Time (min)
Isocratic Separation of Test Mixture
             by Nano LC and CEC
                                                                 1. Uracil
                                          3    4
         16400
                     Nano LC                                     2. Phenol
         16200
                     118 nL/min
                                                                 3. Benzaldehyde
                                                   5
         16000       v = 1.2 mm/sec 2
                                                                 4. N,N-diethyl-m-toluamide
                                                            6
         15800
                              1
uV                                                               5. Toluene
         15600
                                                                 6. Ethylbenzene
         15400
         15200

                 0      2          4       6   8       10       12
                                  Time (min)
         20000
                     CEC
                     -17.5 kV
                     v = 1.1 mm/sec
         18000
uV


         16000

                 0      2          4       6   8       10       12
                                  Time (min)
Comparison of Efficiencies Between
           Nano LC and CEC
                            Nano LCa       CECa                    CECb

                            Efficiency   Efficiency              Efficiency
           Analyte          (N /meter)   (N /meter)   Increase   (N /meter)
Uracil                        57900       95048        64%        167870
Phenol                        69072       92936        35%        174700
Benzaldehyde                  76288       106724       40%        146183
N,N-diethyl-m-toluamide       58316       108232       86%        199420
Toluene                       78284       123492       58%        127937
Ethylbenzene                  78468       126568       61%        135750

Average of all analytes       69721       108833       57%        158643
Reduced plate height (h )      4.9          3.1                     2.2

    Nanocolumn A, 75 µm i.d. x 39 cm (25 cm eff. length), C18, 3 µm
a

    Nanocolumn B, 75 µm i.d. x 39 cm (30 cm eff. length), C18, 3 µm
b
Comparison of Retention Times Using
         Isocratic Elution
                                Nano LC                 CEC

                           Retention           Retention
                             Time                Time
        Analyte             (min.)     RSD      (min.)        RSD
 Uracil                      3.6       0.13%      4.0      0.61%
 Phenol                      4.9       0.11%      5.1      0.54%
 Benzaldehyde                6.0       0.19%      6.1      0.47%
 N,N-diethyl-m-toluamide     8.0       0.15%      8.0      0.56%
 Toluene                     8.6       0.13%      8.5      0.64%
 Ethylbenzene                10.3      0.17%     10.0      0.42%
Comparison of Peak Areas Using
              Isocratic Elution
                                      Nano LC                CEC

                            Peak Areaa             Peak Areaa
          Analyte                           RSD                    RSD
Uracil                         0.24         2.2%      0.23         4.9%
Phenol                         0.48         2.5%      0.52         2.8%
Benzaldehyde
N,N-diethyl-m-toluamide        1.32         1.4%      1.60         2.1%
Toluene                        0.84         1.2%      0.77         3.3%
Ethylbenzene                   0.74         1.3%      0.74         4.6%

a
    Normalized on peak area for benzaldehyde
Profiles of Linear Gradients
                                         100%




                                         %B




  20 µL/min                              10%

  30 µL/min

  35 µL/min
  40 µL/min
  50 µL/min
              0   20          40    60
                       Time (min)
Pump Noise - Linear Gradients


     15800




uV                                  20 µL/min
     15600                          30 µL/min
                                    35 µL/min
                                    40 µL/min

                                    50 µL/min
             50       60       70
                  Time (min)
Gradient Separation of Test Mixture
by Nano LC and CEC       4
                                                               1. Uracil
      16000
                                                               2. Phenol
                  Nano LC
                                          3
                                  2                            3. Benzaldehyde
                  118 nL/min
                                                  5
                                                      6
                        1                                      4. N,N-diethyl-m-toluamide
      15000
uV                                                             5. Toluene
                                                               6. Ethylbenzene



              0                    10                 20
                                                  4
                                 Time (min)
                  CEC
                  -17.5 kV
                                              3
                             1

                                                           6
                                      2
                                                      5
      18000
uV




              0                    10                 20
                                 Time (min)
Gradient Separations of Test Mixture
                 CEC                   Nano LC




10 min
gradient



    0          10            20   0       10            20
           Time (min)                 Time (min)

40 min
gradient




    0      10           20        0   10           20
           Time (min)                 Time (min)
Comparison of Retention Times Using
         Gradient Elution
                              Retention        Retention
            Analyte          Time (min.) %RSD Time (min.)      %RSD
  Uracil                         4.2      0.36%       5.7       0.66%
  Phenol                         8.4      0.42%       12.4      0.61%
  Benzaldehyde                  11.6      0.40%       16.5      0.28%
  N,N-diethyl-m-toluamide       16.8      0.25%       21.6      0.07%
  Toluene                       18.6      0.19%       22.7      0.06%
  Ethylbenzene                  20.8      0.16%       24.6      0.08%

     Nanocolumn C, 75 µm i.d. x 37 cm (23 cm eff. length), C18, 3 µm
 a

     Nanocolumn B, 75 µm i.d. x 39 cm (30 cm eff. length), C18, 3 µm
 b
Comparison of Peak Areas Using
          Gradient Elution
                                 Nano LCa                 CECb

                                    c                     c
        Analyte           Peak Area     %RSD    Peak Area     %RSD
Uracil                       0.22        4.0%      0.40          8.2%
Phenol                       0.59        6.3%      0.50          2.7%
Benzaldehyde
N,N-diethyl-m-toluamide      1.24        2.9%      1.18          2.0%
Toluene                      0.87        2.1%      0.48          1.9%
Ethylbenzene                 0.74        1.3%      0.38          6.1%

a
  Nanocolumn C, 75 µm i.d. x 37 cm (23 cm eff. length), C18, 3 µm
b
  Nanocolumn B, 75 µm i.d. x 39 cm (30 cm eff. length), C18, 3 µm
c
 normalized on benzaldehyde
Comparison of Nano LC and CEC
                               Na no LC            CEC

                                 RSD               RSD
Retention Time, isocratic    0.11 - 0.19%      0.42 - 0.61%
Peak Areaa, isocratic         1.2 - 2.5%        2.1 - 4.9%

Retention Time, gradient     0.16 - 0.42%      0.06 - 0.66%
Peak Areaa, gradient          1.3 - 6.3%        1.9 - 8.2%

                             N/m e te r (h )   N/m e te r (h )
Efficiency, col 1            69,721 (4.8)      108,833 (3.1)     increase of 57%
Efficiency, col 2                              158,643 (2.1)

    Normalized on peak area for benzaldehyde
a
Conclusions
       scale separations are useful when high
uMicro
 separation efficiency is required
uAutomated separation systems can be
 assembled from modular components for
 isocratic and gradient elution
uHigher efficiencies are obtained with CEC
 versus nano LC using the same column
uRetention time and peak area repeatability's are
 acceptable for quantitative analysis using nano
 LC or CEC
External
        Acknowledgments
Prof. Jim Jorgenson    Univ. of North Carolina
Prof. Sandy Dasgupta   Texas Tech Univ.
Prof. Karin Markides   Uppsala Univ.
Prof. Vicki McGuffin   Michigan State Univ.

Dr. Doug Gjerde        Sarasep, Inc.
Dr. John Stillian      Dionex, Corp.
Dr. Frank Yang         Micro-Tech Scientific, Inc.

More Related Content

What's hot

Protogen 18420 Material Sheet
Protogen 18420 Material SheetProtogen 18420 Material Sheet
Protogen 18420 Material Sheetpservando
 
45 lanza ph_d_new magnetron configurations
45 lanza ph_d_new magnetron configurations45 lanza ph_d_new magnetron configurations
45 lanza ph_d_new magnetron configurations
ISTITUTO NAZIONALE FISICA NUCLEARE & University of Padua
 
Mutooroo Magnetite Project Update October 2012
Mutooroo Magnetite Project Update October 2012Mutooroo Magnetite Project Update October 2012
Mutooroo Magnetite Project Update October 2012Minotaur Exploration
 
oxygen permeability tester
oxygen permeability testeroxygen permeability tester
oxygen permeability tester
Labthink Instruments Co., Ltd
 
Chlor #555 Britt
Chlor #555 BrittChlor #555 Britt
Chlor #555 Britt
SandyBritt
 
Recyclability for paper and board from the viewpoint of de inking
 Recyclability for paper and board from the viewpoint of de inking Recyclability for paper and board from the viewpoint of de inking
Recyclability for paper and board from the viewpoint of de inking
Shimizu Printing Inc.
 
Fall 2012 final research presentation
Fall 2012   final research presentationFall 2012   final research presentation
Fall 2012 final research presentationAslan Maleki
 
Particle Size Analysis for Pharmaceutical Homogenization Process Development
Particle Size Analysis for Pharmaceutical Homogenization Process DevelopmentParticle Size Analysis for Pharmaceutical Homogenization Process Development
Particle Size Analysis for Pharmaceutical Homogenization Process Development
HORIBA Particle
 
31770 43553
31770 4355331770 43553
31770 43553
sidhu1560
 
Pfa 2012
Pfa 2012Pfa 2012
Pfa 2012inscore
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
The Air Force Office of Scientific Research
 

What's hot (13)

Powder 2005
Powder 2005Powder 2005
Powder 2005
 
Protogen 18420 Material Sheet
Protogen 18420 Material SheetProtogen 18420 Material Sheet
Protogen 18420 Material Sheet
 
45 lanza ph_d_new magnetron configurations
45 lanza ph_d_new magnetron configurations45 lanza ph_d_new magnetron configurations
45 lanza ph_d_new magnetron configurations
 
Mutooroo Magnetite Project Update October 2012
Mutooroo Magnetite Project Update October 2012Mutooroo Magnetite Project Update October 2012
Mutooroo Magnetite Project Update October 2012
 
oxygen permeability tester
oxygen permeability testeroxygen permeability tester
oxygen permeability tester
 
Chlor #555 Britt
Chlor #555 BrittChlor #555 Britt
Chlor #555 Britt
 
Recyclability for paper and board from the viewpoint of de inking
 Recyclability for paper and board from the viewpoint of de inking Recyclability for paper and board from the viewpoint of de inking
Recyclability for paper and board from the viewpoint of de inking
 
Fall 2012 final research presentation
Fall 2012   final research presentationFall 2012   final research presentation
Fall 2012 final research presentation
 
Particle Size Analysis for Pharmaceutical Homogenization Process Development
Particle Size Analysis for Pharmaceutical Homogenization Process DevelopmentParticle Size Analysis for Pharmaceutical Homogenization Process Development
Particle Size Analysis for Pharmaceutical Homogenization Process Development
 
31770 43553
31770 4355331770 43553
31770 43553
 
Pfa 2012
Pfa 2012Pfa 2012
Pfa 2012
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
 
Focus 6
Focus 6Focus 6
Focus 6
 

Viewers also liked

Capillary electrophoresis principles and applications
Capillary electrophoresis principles and applications   Capillary electrophoresis principles and applications
Capillary electrophoresis principles and applications
Indira Shastry
 
Pharmagupshup supercritical fluid chrometography and flash chromatography p...
Pharmagupshup supercritical fluid chrometography and flash chromatography   p...Pharmagupshup supercritical fluid chrometography and flash chromatography   p...
Pharmagupshup supercritical fluid chrometography and flash chromatography p...
Hitesh Katariya
 
Ion exchange chromatography and gec
Ion exchange chromatography and gecIon exchange chromatography and gec
Ion exchange chromatography and gec
Malla Reddy College of Pharmacy
 
Hplc by niper pharma analysis
Hplc by niper pharma analysisHplc by niper pharma analysis
Hplc by niper pharma analysis
patil17
 
6 isolation of plant pigments using cc and tlc 5_dec2012
6 isolation of plant pigments using cc and tlc 5_dec20126 isolation of plant pigments using cc and tlc 5_dec2012
6 isolation of plant pigments using cc and tlc 5_dec2012owenmcdougal
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
Prachitee Ayare
 
Gel filtration copy
Gel filtration   copyGel filtration   copy
Gel filtration copy
gisha puliyoor
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
krishna tummala
 
Ion exchange chromatography
Ion exchange chromatographyIon exchange chromatography
Ion exchange chromatography
Siva Chaitanya Addala
 
Flash and chiral chromatography
Flash and chiral chromatographyFlash and chiral chromatography
Flash and chiral chromatographyceutics1315
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatographyshishirkawde
 
Protein Purification
Protein PurificationProtein Purification
Protein Purification
angelsalaman
 
Size Exclusion Chromatography
Size Exclusion ChromatographySize Exclusion Chromatography
Size Exclusion Chromatographyscimethp1
 
Gas chromatography by Dr. Anurag Yadav
Gas chromatography by Dr. Anurag YadavGas chromatography by Dr. Anurag Yadav
Gas chromatography by Dr. Anurag Yadav
Dr Anurag Yadav
 
Ion exchange Chromatography
Ion exchange ChromatographyIon exchange Chromatography
Ion exchange Chromatography
Kuldeep Sharma
 
Ion Exchange Chromatography, ppt
Ion Exchange Chromatography, pptIon Exchange Chromatography, ppt
Ion Exchange Chromatography, ppt
shaisejacob
 
Electrophoresis ppt.
Electrophoresis ppt.Electrophoresis ppt.
Electrophoresis ppt.
gulamrafey
 
Techniques of electrophoresis
Techniques of electrophoresisTechniques of electrophoresis
Techniques of electrophoresisSayanti Sau
 
Application of chromatography
Application of chromatographyApplication of chromatography
Application of chromatography
Shankar Yelmame
 

Viewers also liked (20)

Capillary electrophoresis principles and applications
Capillary electrophoresis principles and applications   Capillary electrophoresis principles and applications
Capillary electrophoresis principles and applications
 
Pharmagupshup supercritical fluid chrometography and flash chromatography p...
Pharmagupshup supercritical fluid chrometography and flash chromatography   p...Pharmagupshup supercritical fluid chrometography and flash chromatography   p...
Pharmagupshup supercritical fluid chrometography and flash chromatography p...
 
Ion exchange chromatography and gec
Ion exchange chromatography and gecIon exchange chromatography and gec
Ion exchange chromatography and gec
 
Hplc by niper pharma analysis
Hplc by niper pharma analysisHplc by niper pharma analysis
Hplc by niper pharma analysis
 
6 isolation of plant pigments using cc and tlc 5_dec2012
6 isolation of plant pigments using cc and tlc 5_dec20126 isolation of plant pigments using cc and tlc 5_dec2012
6 isolation of plant pigments using cc and tlc 5_dec2012
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
 
Gel filtration copy
Gel filtration   copyGel filtration   copy
Gel filtration copy
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
 
Ion exchange chromatography
Ion exchange chromatographyIon exchange chromatography
Ion exchange chromatography
 
Flash and chiral chromatography
Flash and chiral chromatographyFlash and chiral chromatography
Flash and chiral chromatography
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
 
Protein Purification
Protein PurificationProtein Purification
Protein Purification
 
Size Exclusion Chromatography
Size Exclusion ChromatographySize Exclusion Chromatography
Size Exclusion Chromatography
 
Gas chromatography by Dr. Anurag Yadav
Gas chromatography by Dr. Anurag YadavGas chromatography by Dr. Anurag Yadav
Gas chromatography by Dr. Anurag Yadav
 
Ion exchange Chromatography
Ion exchange ChromatographyIon exchange Chromatography
Ion exchange Chromatography
 
Ion Exchange Chromatography, ppt
Ion Exchange Chromatography, pptIon Exchange Chromatography, ppt
Ion Exchange Chromatography, ppt
 
ELECTRPOPHOROSIS
ELECTRPOPHOROSISELECTRPOPHOROSIS
ELECTRPOPHOROSIS
 
Electrophoresis ppt.
Electrophoresis ppt.Electrophoresis ppt.
Electrophoresis ppt.
 
Techniques of electrophoresis
Techniques of electrophoresisTechniques of electrophoresis
Techniques of electrophoresis
 
Application of chromatography
Application of chromatographyApplication of chromatography
Application of chromatography
 

Similar to Recent Advances in Micro LC and CEC

My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.
Gururaj M. Shivashimpi
 
Fotocurado Dental
Fotocurado DentalFotocurado Dental
Fotocurado Dental
David Lafuente
 
Moteurs aluminium
Moteurs aluminiumMoteurs aluminium
Moteurs aluminiumEuropages2
 
UV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.pptUV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.ppt
Jgdishrathi
 
Presentation1 832
Presentation1 832Presentation1 832
Presentation1 832Suman Nepal
 
Electrochemical Treatment of Acid Green V dye solution in a tubular flow reactor
Electrochemical Treatment of Acid Green V dye solution in a tubular flow reactorElectrochemical Treatment of Acid Green V dye solution in a tubular flow reactor
Electrochemical Treatment of Acid Green V dye solution in a tubular flow reactor
IJERD Editor
 
GPC-IR To Charaterize Polymer Mixtures--Akron Workshop
GPC-IR To Charaterize Polymer Mixtures--Akron WorkshopGPC-IR To Charaterize Polymer Mixtures--Akron Workshop
GPC-IR To Charaterize Polymer Mixtures--Akron Workshop
mzhou45
 
AK SAHA 2009 , dikha de
AK SAHA 2009 , dikha deAK SAHA 2009 , dikha de
AK SAHA 2009 , dikha deBhavna Dewan
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartle
NZIP
 
Lithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUETLithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUET
A. S. M. Jannatul Islam
 
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONSA NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
IJSIT Editor
 
Lasers in oral surgery
Lasers in oral surgeryLasers in oral surgery
Lasers in oral surgeryshivani gaba
 
Manuale fantoccio mri 76 903
Manuale fantoccio mri 76 903Manuale fantoccio mri 76 903
Manuale fantoccio mri 76 903
Luca Gastaldi
 
35 2 0274(1)
35 2 0274(1)35 2 0274(1)
35 2 0274(1)
raul6832
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
juby5
 
Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...
Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...
Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...
PerkinElmer, Inc.
 
Webinar: How to Figure Out Your Competitors Formula by LC-IR Deformulation
Webinar: How to Figure Out Your Competitors Formula by LC-IR DeformulationWebinar: How to Figure Out Your Competitors Formula by LC-IR Deformulation
Webinar: How to Figure Out Your Competitors Formula by LC-IR Deformulation
mzhou45
 

Similar to Recent Advances in Micro LC and CEC (20)

My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.
 
Fotocurado Dental
Fotocurado DentalFotocurado Dental
Fotocurado Dental
 
Moteurs aluminium
Moteurs aluminiumMoteurs aluminium
Moteurs aluminium
 
UV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.pptUV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.ppt
 
Presentation1 832
Presentation1 832Presentation1 832
Presentation1 832
 
SOLVENT EXTRACTION
SOLVENT EXTRACTIONSOLVENT EXTRACTION
SOLVENT EXTRACTION
 
Electrochemical Treatment of Acid Green V dye solution in a tubular flow reactor
Electrochemical Treatment of Acid Green V dye solution in a tubular flow reactorElectrochemical Treatment of Acid Green V dye solution in a tubular flow reactor
Electrochemical Treatment of Acid Green V dye solution in a tubular flow reactor
 
Photonics @ IITM
Photonics @ IITMPhotonics @ IITM
Photonics @ IITM
 
GPC-IR To Charaterize Polymer Mixtures--Akron Workshop
GPC-IR To Charaterize Polymer Mixtures--Akron WorkshopGPC-IR To Charaterize Polymer Mixtures--Akron Workshop
GPC-IR To Charaterize Polymer Mixtures--Akron Workshop
 
AK SAHA 2009 , dikha de
AK SAHA 2009 , dikha deAK SAHA 2009 , dikha de
AK SAHA 2009 , dikha de
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartle
 
Lithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUETLithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUET
 
Surface analysisversion3
Surface analysisversion3Surface analysisversion3
Surface analysisversion3
 
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONSA NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
 
Lasers in oral surgery
Lasers in oral surgeryLasers in oral surgery
Lasers in oral surgery
 
Manuale fantoccio mri 76 903
Manuale fantoccio mri 76 903Manuale fantoccio mri 76 903
Manuale fantoccio mri 76 903
 
35 2 0274(1)
35 2 0274(1)35 2 0274(1)
35 2 0274(1)
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
 
Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...
Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...
Application Note: Determination of Impurities in Semiconductor-Grade Sulfuric...
 
Webinar: How to Figure Out Your Competitors Formula by LC-IR Deformulation
Webinar: How to Figure Out Your Competitors Formula by LC-IR DeformulationWebinar: How to Figure Out Your Competitors Formula by LC-IR Deformulation
Webinar: How to Figure Out Your Competitors Formula by LC-IR Deformulation
 

Recently uploaded

Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
Peter Spielvogel
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
Matthew Sinclair
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
Pierluigi Pugliese
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
ThomasParaiso2
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 

Recently uploaded (20)

Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 

Recent Advances in Micro LC and CEC

  • 1. Recent Advances in Microcolumn LC and Capillary Electrochromatography James N. Alexander, IV Liquid Separations Group Rohm and Haas Company Spring House, PA CFDV October 14, 1998
  • 2. Presentation Topics Micro LC u Driving Forces u u Instrument Considerations u High Resolution Separations CEC u Gradient Instrumentation u u Comparison of Nano LC and CEC Conclusions u
  • 3. What is Microcolumn LC? Column i.d. Flow Rate Classification (µm) (µL/min) 4600 1000 Analytical 2100 208 Narrowbore 1000 47 Microbore 500 12 Microbore 320 5 Microcolumn 250 3 Microcolumn 50 0.12 Nanocolumn/ Packed Capillary
  • 4. Driving Forces Higher efficiency / resolving power Flexibility LC-MS Novel detection schemes Increased mass sensitivity Temperature control Reduced solvent consumption Two-dimensional chromatography
  • 5. Challenges Hardware u u Detectors u Automation u Column availability u Long analysis times u Dead volume free connections u Detection of micro leaks
  • 6. Flexibility Lengths up to a 1 meter, 25 - 250 µm i.d. Any packing material can be used (0.1 g / micro- column) Microcolumns can be prepared for 1/16 the cost of an analytical column (about $25) Observe packing process Use for scouting purposes
  • 7. Microcolumn Preparation Dense bed (‘slam pack’) Slurry Method Loose bed (‘gradual pack’) 1) Prepare fused silica capillary 2) Slurry stationary phase (1-10%) 3) Sonicate / shake slurry (1-2 hrs) 4) Transfer to slurry reservoir Speaker/ 5) Connect fused silica capillary Ultrasonic bath 6) Pack (2,000-10,000 psi, 2-24 hr) 7) Bleed pressure 8) Secure outlet frit Solvent Pump Fused silica capillary Reservoir Stir plate
  • 8. Microcolumn Assembly Glass Wool Frit Window Column Packing Teflon Sleeve 250 µm i.d. x 365 µm o.d. 50 µm i.d. x 365 µm o.d. Fused silica capillary Fused silica capillary
  • 9. Split and Moving Injections Mobile Phase In Sample In Splitter Vent Fused Silica Column Waste Splitter Tee Injector, internal loop Moving Injection Split Injection M. C. Harvey and S. D. Sterns T. Tsuda and G. Nakagawa Anal. Chem., 1984, 56, 837. J. Chromatogr., 1988, 199, 249.
  • 10. Pre-Injection Split Mobile Phase In Splitter Vent Splitter Tee Sample In Fused Silica Waste Column Injector, internal loop
  • 11. Split Ratios (B i.d.)2 (A i.d.)2 Column Injection Flow Split i.d. Volume Rate Ratio (µm) (µL) (µL/min) 4600 50 1000 333 : 1 2100 10 200 67 : 1 1000 2.4 47 16 : 1 500 0.59 12 4:1 320 0.24 5 2:1 250 0.15 3 50 0.01 0.1
  • 12. Detection Schemes for Microcolumn LC Home Made Commercially Available Condensation Nucleation UV/Vis Electrospray Ionization Electrochemical Gas Phase Detection Fluorescence Refractive Index Mass Spectrometry Conductivity Evaporative Light Scattering Radioactivity Monitor
  • 13. On-Column Detection Cells for Microcolumn LC F. J. Yang, J. Chromatogr., 1982, 236, 265. J.P. Chervet, et al., LC.GC Int., Polyimide Coating 1989, 2, 40. Column Packing Mono- Photo- chrometer multiplier Light Source Mono- Photomultiplier chrometer ‘Z-Shaped’ cell Light Source
  • 14. Micro-LC Systems Microflow HPLC Pump processor Autosampler Detector Injector Autosampler/ Injector Microcolumn Column Oven Micro-pump Detector System A System B
  • 15. Retention Time Reproducibility Alltech Adsorbosphere HS C18 5µm 250 µm x 100 cm, 2.9 µL/min, 254 nm, 30°C 100 nL injection, split 1:10 prior to injector Analyte = Toluene Isocratic Gradient ACN/H2O ACN/H2O (58:42) (30:70 - 90:10) 90 min. Injection Retention Time (min.) Retention Time(min.) 1 63.72 77.64 2 63.80 77.65 3 63.83 77.61 4 63.75 77.57 5 63.73 77.63 6 63.84 77.66 7 63.81 8 63.74 9 63.74 10 63.69 Average 63.76 77.63 std. dev. 0.051 0.033 % RSD 0.08% 0.04%
  • 16. Higher Efficiency / Resolution N = L / h dp N1/2 (α−1) k2 Rs = α k2+1 4 N = theoretical plates Rs = resolution L = column length α = selectivity factor h = reduced height k2 = capacity factor equivalent to a theoretical plate μηL dp = mean particle diameter P= ko dp2 P = pressure drop μ = linear velocity η = mobile phase viscosity ko= constant
  • 17. Octylphenol Ethoxylate Reversed-Phase (OCH2CH2)x OH C8H17 4.6 mm x 25 cm, PLRP-S 1 mL/min R 250 µm x 31 cm, PLRP-S e s 3 µL/min p o n s 250 µm x 100 cm, PLRP-S e 3 µL/min Time (minutes)
  • 18. Linear Alkylbenzene Sulfonate Ion-Pair CH3(CH2)xCH(CH2)yCH3 250 µm x 31 cm, PLRP-S um - SO3 3 µL/min uL/min R e s p o 250 µm x 100 cm, PLRP-S um n 3 µL/min uL/min s e Time (minutes)
  • 19. Sample A Reversed-Phase Alltech Adsorbosphere HS C18 5 µm 210 nm, 30ºC, 20 µL injection ACN/H2O (gradient) R 4.6 mm x 25 cm, 1 mL/min e s p o n 210 nm, 30ºC, 100 nL injection s ACN/H2O (gradient) e 250 µm x 100 cm, 2.9 µL/min Time (minutes)
  • 20. Sample A Characterization 1 11 2 Sample A 33 3 22 3 R e s Isomer 1 p o n s Isomer 2 e Isomer 3 Time (minutes)
  • 21. Water Soluble Polymer Aqueous GPC Macrosphere GPC 60 4.6 cm x 25 cm 0.1 mL/min R e s p o 250 µm x 73 cm n 0.3 µL/min s e Time (minutes)
  • 22. ELSD - Operation LC Effluent Nebulization Gas Nebulizer (Nitrogen) Drift Tube (ambient - 140°C) Laser Diode (670 nm, 7 mW) Silicon Photo Diode Waste
  • 23. Micro - ELSD Fused silica (effluent ) Control A Capillary of capillary Tip Position Bellows Nebulization Effluent capillary secured gas to base of bellows Extended Withdrawn Flush
  • 24. Micro - ELSD Control of Nebulization Height 3 1 5 Insert Nebulization tube tube 3 1 5 Micro-nebulizer Effluent capillary assembly 25 cm from light source Drift tube Aerosol 6 cm from light source Light source Photodiode
  • 25. Complex Sample A Micro-ELS Detection Alltech Adsorbosphere HS C18 5 UV @ 210 nm µm 250 µm x 100 cm, 2.9 µL/min ACN/H2O (gradient), 30ºC R 100 nL injection (0.8 µg) e s p o 170 180 190 200 210 220 230 240 250 n s Micro-ELSD @ 60ºC e = Peaks not detected at 210 nm 170 180 190 200 210 220 230 240 250 Time (minutes)
  • 26. 200 mw Poly(Ethylene Glycol) Micro-ELS Detection at Various Drift Tube Temperatures 6 7 5 EO 70ºC 8 9 R 0 10 20 30 40 50 60 70 80 e 5 6 7 s p 50ºC 8 o 4 EO 9 n s 0 10 20 30 40 50 60 70 80 e 5 6 4 7 30ºC 8 3 EO 9 0 10 20 30 40 50 60 70 80 Time (minutes)
  • 27. What is CEC? Liquid Chromatography Capillary Electrophoresis high efficiency high separation (electroosmotic flow) capacity (packed column) Capillary Electrochromatography packed capillary column electrically driven
  • 28. Advantages of CEC Over Pressure Driven Systems + +- - -- + +- + -- -- Flat flow profile u ++++ - + ++++ ---- increase in efficiency u EOF No pressure drop u smaller particles (<3 µm) can be used u long columns (>50 cm) can be used u
  • 29. Challenges in CEC Column life time u Frits u retain packing u minimize bubble formation u Bubble formation u degas, pressure, temperature u Isocratic separations u Analytes u neutrals u
  • 30. Research Objectives u Build a system that: u allows for nano LC or CEC use under isocratic and gradient conditions u does not require separate columns for nano LC or CEC u make it simple and reproducible u Investigate technique and compare to nano LC
  • 31. Nano Column Assembly Polyimide Window Column Packing Coating Sintered Frits Common dimensions 75 µm I.d. x 350 µm o.d. x 39 cm (25 cm eff.)
  • 32. Schematic of Gradient Elution Nano LC / CEC 11 12 A 6 B 9 5 - 13 10 2 8 3 7 14 1 4 1. Power supply 5. Nanocolumn 9. Ground cable 13. Dynamic mixer 2. Platinum electrode 6. Switching valve 10. Injection valve 14. Micro LC pumps 3. Outlet reservoir vial 7. Stand 11. Plexiglas compartment 4. UV Detector 8. Split device 12. Autosampler
  • 33. Close-up of Split Device and Injector No Restrictor Restrictor CEC Nano LC or PEC 6 1 3 2 1. Nanocolumn 2. Knurled nut and ferrule 4 5 3. Split device 5. Rotor 4. Injection valve 6. Outlet port
  • 34. Relationship Between Applied Voltage and Linear Velocity 1.2 1 Linear Velocity (mm/s) 0.8 0.6 0.4 0.2 5 10 15 20 25 Voltage (-kV)
  • 35. Isocratic Separations at Different Applied Voltages 4 3 N = 19,713 2 5 6 -7.5 kV 1 0 10 20 N = 27,573 -15 kV 1. Uracil 2. Phenol 3. Benzaldehyde 0 10 20 4. N,N-diethyl-m-toluamide N = 18,541 5. Toluene -25 kV 6. Ethylbenzene 0 2 4 6 8 10 12 14 16 Time (min)
  • 36. Isocratic Separation of Test Mixture by Nano LC and CEC 1. Uracil 3 4 16400 Nano LC 2. Phenol 16200 118 nL/min 3. Benzaldehyde 5 16000 v = 1.2 mm/sec 2 4. N,N-diethyl-m-toluamide 6 15800 1 uV 5. Toluene 15600 6. Ethylbenzene 15400 15200 0 2 4 6 8 10 12 Time (min) 20000 CEC -17.5 kV v = 1.1 mm/sec 18000 uV 16000 0 2 4 6 8 10 12 Time (min)
  • 37. Comparison of Efficiencies Between Nano LC and CEC Nano LCa CECa CECb Efficiency Efficiency Efficiency Analyte (N /meter) (N /meter) Increase (N /meter) Uracil 57900 95048 64% 167870 Phenol 69072 92936 35% 174700 Benzaldehyde 76288 106724 40% 146183 N,N-diethyl-m-toluamide 58316 108232 86% 199420 Toluene 78284 123492 58% 127937 Ethylbenzene 78468 126568 61% 135750 Average of all analytes 69721 108833 57% 158643 Reduced plate height (h ) 4.9 3.1 2.2 Nanocolumn A, 75 µm i.d. x 39 cm (25 cm eff. length), C18, 3 µm a Nanocolumn B, 75 µm i.d. x 39 cm (30 cm eff. length), C18, 3 µm b
  • 38. Comparison of Retention Times Using Isocratic Elution Nano LC CEC Retention Retention Time Time Analyte (min.) RSD (min.) RSD Uracil 3.6 0.13% 4.0 0.61% Phenol 4.9 0.11% 5.1 0.54% Benzaldehyde 6.0 0.19% 6.1 0.47% N,N-diethyl-m-toluamide 8.0 0.15% 8.0 0.56% Toluene 8.6 0.13% 8.5 0.64% Ethylbenzene 10.3 0.17% 10.0 0.42%
  • 39. Comparison of Peak Areas Using Isocratic Elution Nano LC CEC Peak Areaa Peak Areaa Analyte RSD RSD Uracil 0.24 2.2% 0.23 4.9% Phenol 0.48 2.5% 0.52 2.8% Benzaldehyde N,N-diethyl-m-toluamide 1.32 1.4% 1.60 2.1% Toluene 0.84 1.2% 0.77 3.3% Ethylbenzene 0.74 1.3% 0.74 4.6% a Normalized on peak area for benzaldehyde
  • 40. Profiles of Linear Gradients 100% %B 20 µL/min 10% 30 µL/min 35 µL/min 40 µL/min 50 µL/min 0 20 40 60 Time (min)
  • 41. Pump Noise - Linear Gradients 15800 uV 20 µL/min 15600 30 µL/min 35 µL/min 40 µL/min 50 µL/min 50 60 70 Time (min)
  • 42. Gradient Separation of Test Mixture by Nano LC and CEC 4 1. Uracil 16000 2. Phenol Nano LC 3 2 3. Benzaldehyde 118 nL/min 5 6 1 4. N,N-diethyl-m-toluamide 15000 uV 5. Toluene 6. Ethylbenzene 0 10 20 4 Time (min) CEC -17.5 kV 3 1 6 2 5 18000 uV 0 10 20 Time (min)
  • 43. Gradient Separations of Test Mixture CEC Nano LC 10 min gradient 0 10 20 0 10 20 Time (min) Time (min) 40 min gradient 0 10 20 0 10 20 Time (min) Time (min)
  • 44. Comparison of Retention Times Using Gradient Elution Retention Retention Analyte Time (min.) %RSD Time (min.) %RSD Uracil 4.2 0.36% 5.7 0.66% Phenol 8.4 0.42% 12.4 0.61% Benzaldehyde 11.6 0.40% 16.5 0.28% N,N-diethyl-m-toluamide 16.8 0.25% 21.6 0.07% Toluene 18.6 0.19% 22.7 0.06% Ethylbenzene 20.8 0.16% 24.6 0.08% Nanocolumn C, 75 µm i.d. x 37 cm (23 cm eff. length), C18, 3 µm a Nanocolumn B, 75 µm i.d. x 39 cm (30 cm eff. length), C18, 3 µm b
  • 45. Comparison of Peak Areas Using Gradient Elution Nano LCa CECb c c Analyte Peak Area %RSD Peak Area %RSD Uracil 0.22 4.0% 0.40 8.2% Phenol 0.59 6.3% 0.50 2.7% Benzaldehyde N,N-diethyl-m-toluamide 1.24 2.9% 1.18 2.0% Toluene 0.87 2.1% 0.48 1.9% Ethylbenzene 0.74 1.3% 0.38 6.1% a Nanocolumn C, 75 µm i.d. x 37 cm (23 cm eff. length), C18, 3 µm b Nanocolumn B, 75 µm i.d. x 39 cm (30 cm eff. length), C18, 3 µm c normalized on benzaldehyde
  • 46. Comparison of Nano LC and CEC Na no LC CEC RSD RSD Retention Time, isocratic 0.11 - 0.19% 0.42 - 0.61% Peak Areaa, isocratic 1.2 - 2.5% 2.1 - 4.9% Retention Time, gradient 0.16 - 0.42% 0.06 - 0.66% Peak Areaa, gradient 1.3 - 6.3% 1.9 - 8.2% N/m e te r (h ) N/m e te r (h ) Efficiency, col 1 69,721 (4.8) 108,833 (3.1) increase of 57% Efficiency, col 2 158,643 (2.1) Normalized on peak area for benzaldehyde a
  • 47. Conclusions scale separations are useful when high uMicro separation efficiency is required uAutomated separation systems can be assembled from modular components for isocratic and gradient elution uHigher efficiencies are obtained with CEC versus nano LC using the same column uRetention time and peak area repeatability's are acceptable for quantitative analysis using nano LC or CEC
  • 48. External Acknowledgments Prof. Jim Jorgenson Univ. of North Carolina Prof. Sandy Dasgupta Texas Tech Univ. Prof. Karin Markides Uppsala Univ. Prof. Vicki McGuffin Michigan State Univ. Dr. Doug Gjerde Sarasep, Inc. Dr. John Stillian Dionex, Corp. Dr. Frank Yang Micro-Tech Scientific, Inc.