 We will look at 3 different ways to
add polynomials:
1. Using algebra tiles
2. Horizontal method
3. Vertical method
 Group like terms and simplify.
 Example:
 (-x2 + 5x + 4) + (3x2 – 8x + 9)
 Line up like terms vertically, then add.
 Leave a space for any missing terms.
 Example:
 (3a2 + 8) + (5a – 1)
 Find the sum:
 (b – 10) + (4b – 3)
 (x2 – x – 2) + (7x2 – x)
 Just add the opposite!
Change all the signs of the subtracted
polynomial
Then add like terms
 Example:
 (y2 + 4y + 2) – (2y2 – 5y – 3)
 Find the difference:
 (5x2 + 4x – 1) – (2x2 – 6)
 Find the difference:
 (p2 + p + 3) – (-4p2 – p + 3)
 (-k + 5) – (3k2 – 6)
 Just like one-variable, but be EXTRA
careful grouping like terms.
 Example:
 (x2 – 2xy – y2) + (x2 + xy + y2)
 (2s2 – 5st – t2) – (s2 + 7st – t2)
 (c2 – 6d2) + (c2 – 2cd + 2d2)
 (-x2 + 9xy) – (x2 + 6xy – 8y2)
 (a2 – 3ab + 2b2) + (-4a2 + 5ab – b2)

7 2 adding and subtracting polynomials

  • 2.
     We willlook at 3 different ways to add polynomials: 1. Using algebra tiles 2. Horizontal method 3. Vertical method
  • 3.
     Group liketerms and simplify.  Example:  (-x2 + 5x + 4) + (3x2 – 8x + 9)
  • 4.
     Line uplike terms vertically, then add.  Leave a space for any missing terms.  Example:  (3a2 + 8) + (5a – 1)
  • 5.
     Find thesum:  (b – 10) + (4b – 3)  (x2 – x – 2) + (7x2 – x)
  • 6.
     Just addthe opposite! Change all the signs of the subtracted polynomial Then add like terms  Example:  (y2 + 4y + 2) – (2y2 – 5y – 3)
  • 7.
     Find thedifference:  (5x2 + 4x – 1) – (2x2 – 6)
  • 8.
     Find thedifference:  (p2 + p + 3) – (-4p2 – p + 3)  (-k + 5) – (3k2 – 6)
  • 9.
     Just likeone-variable, but be EXTRA careful grouping like terms.  Example:  (x2 – 2xy – y2) + (x2 + xy + y2)
  • 10.
     (2s2 –5st – t2) – (s2 + 7st – t2)
  • 11.
     (c2 –6d2) + (c2 – 2cd + 2d2)
  • 12.
     (-x2 +9xy) – (x2 + 6xy – 8y2)  (a2 – 3ab + 2b2) + (-4a2 + 5ab – b2)