SlideShare a Scribd company logo
1
読書会 「トピックモデルによる統計的潜在意味解析」
第2回
3.2節 サンプリング近似法
日時: 2015/06/18 19:30~
場所: 株式会社 ALBERT
発表者: @aoki_kenji
目次
2
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
今回は時間の都合上省略
目次
3
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
グラフィカルモデル? or 数式?
4
前回の@ksmznさんの資料から引用
• 前回はグラフィカルモデルを参照して条件付き分布を導出した
• 今回は数式から直接条件付き分布を導出してみる
数式からの条件付き独立性の導出(p.22の図1.7)
5
𝑏
𝑎
𝑐
𝑎
𝑏
𝑐
𝑎
𝑏
𝑐
tail-to-tail head-to-tail head-to-head
𝑝 𝑎, 𝑏, 𝑐
= 𝑝 𝑎|𝑐 𝑝 𝑏|𝑐 𝑝 𝑐
𝑝 𝑎, 𝑏|𝑐
∝ 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐
⇒ 𝑎 ⊥ 𝑏|𝑐
𝑝 𝑎, 𝑏, 𝑐
= 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎
𝑝 𝑎, 𝑏|𝑐
∝ 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎
⇒ 𝑎 ⊥ 𝑏|𝑐
𝑝 𝑎, 𝑏, 𝑐
= 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏
𝑝 𝑎, 𝑏|𝑐
∝ 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏
⇒ 𝑎 ⊥ 𝑏|𝑐
グラフィカル
モデル
数式
条件付き
独立性
数式からの条件付き独立性の導出(p.35の図2.4)
6
𝜷𝜶
LDAの生成モデル
𝑝 𝑧 𝑑,𝑖|𝒘, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓
𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑
, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝒘 𝒛, 𝝓 𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝝓−𝑘, 𝜷
𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖
𝐾𝑛 𝑑
𝑀
𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑
𝑑,𝑖
𝑝 𝜽 𝑑 𝜶
𝑑
𝑝 𝝓 𝑘 𝜷
𝑘
各確率変数の条件付き分布を数式から
導出してみる
1段目と3段目の式に関しては
実際よりも冗長
数式からの条件付き独立性の導出(p.35の図2.4)
7
𝜷𝜶
LDAの生成モデル
𝑝 𝑧 𝑑,𝑖 = 𝑘|𝒘, 𝑧−𝑑,𝑖
, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖 = 𝑘|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘
𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘
, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖 = 𝑘 , 𝒛, 𝜷
𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖
𝐾𝑛 𝑑
𝑀
𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖
𝑝 𝑧 𝑑,𝑖 𝜽 𝑑
𝑑,𝑖
𝑝 𝜽 𝑑 𝜶
𝑑
𝑝 𝝓 𝑘 𝜷
𝑘
𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖
という構造を既知とすると…
目次
8
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
ギブスサンプリングのアルゴリズム概要
9
例えば
𝑝 𝑎, 𝑏, 𝑐|𝜃
から直接乱数を生成できないようなときでも、以下の手順(ギブスサンプリング)に
よって上記分布からの乱数を生成することができる
Step1: 𝑏, 𝑐の初期値𝑏 0 , 𝑐 0 と正数𝑆を与える
Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す
𝑝 𝑎 𝑠
|𝑏 𝑠−1
, 𝑐 𝑠−1
, 𝜃 から𝑎 𝑠
をサンプリング
𝑝 𝑏 𝑠 |𝑎 𝑠 , 𝑐 𝑠−1 , 𝜃 から𝑏 𝑠 をサンプリング
𝑝 𝑐 𝑠 |𝑎 𝑠 , 𝑏 𝑠 , 𝜃 から𝑐 𝑠 をサンプリング
上記の手順によって生成された乱数が𝑝 𝑎, 𝑏, 𝑐|𝜃 に従う理論的説明は、例えば
• 伊庭他(2005)、『計算統計Ⅱマルコフ連鎖モンテカルロ法とその周辺
(統計科学のフロンティア12)』、岩波書店
を参照
ギブスサンプリングのアルゴリズム概要
10
• もちろん上記の手順を実行するためには各確率変数の条件付き分布からの
サンプリングが可能でなければならない
(LDAの場合は条件付き分布が解析的に導出可能である)
• 𝑎, 𝑏, 𝑐はそれぞれベクトル(多次元)であっても構わない(その場合はブロック
化ギブスサンプリングと呼ばれる)
• 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠
s=1
S
を利用して、例えば𝑝 𝑎, 𝑏, 𝑐|𝜃 に関する任意の関数
𝑓 𝑎, 𝑏, 𝑐 の期待値を近似することができる
𝑝 𝑎, 𝑏, 𝑐|𝜃 𝑓 𝑎, 𝑏, 𝑐 𝑑𝑎𝑑𝑏𝑑𝑐 ≈
1
𝑆
𝑓 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠
𝑆
𝑠=1
• 実際は、上記のように𝑠 = 1から𝑆までの全てのサンプルを使わずに、初期値
に依存した最初の方のサンプルを捨てることがある
このサンプルを捨てる期間を破棄する期間(burn-in period)と呼ぶ
目次
11
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
ギブスサンプリングの動機
12
• LDAのベイズ推定では予測分布以前に事後分布のサンプル生成すら難しい
◎予測分布(積分計算が難しい)
𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
, 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
𝑑𝜽𝑑𝝓
= 𝑝 𝑤 𝑑
∗
𝝓 𝑧 𝑑
∗ 𝑝 𝑧 𝑑
∗
𝜽 𝑑 𝑝 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
𝑑𝜽𝑑𝝓
◎事後分布からのサンプリングによる近似
(事後分布の導出が困難&サンプル生成が難しい)
𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 ≈
1
𝑆
𝑝 𝑤 𝑑
∗
𝝓 𝑧 𝑑
∗
𝑠
𝑝 𝑧 𝑑
∗
𝜽 𝑑
𝑠
𝑧 𝑑
∗
𝑆
𝑠=1
• LDAの場合、 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 を一度にサンプリングするのは難しいが、
𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 をそれぞれ個別にサンプリングすることは容易である(条件付き
分布が解析的に導出可能である)
ギブスサンプリングによる近似が可能
条件付き分布の導出その1
13
◎𝑧 𝑑,𝑖について(𝑤 𝑑,𝑖 = 𝑣とする)
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑
= 𝜙 𝑘,𝑣 𝜃 𝑑,𝑘
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜽, 𝝓, 𝜶, 𝜷 = 1𝐾
𝑘=1 となるように正規化すると
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜽, 𝝓, 𝜶, 𝜷 =
𝜙 𝑘,𝑣 𝜃 𝑑,𝑘
𝜙 𝑘′,𝑣 𝜃 𝑑,𝑘′
𝐾
𝑘′=1
条件付き分布の導出その2
14
◎𝜽 𝑑について
𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑
, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑 𝜽 𝑑 𝑝 𝜽 𝑑 𝜶
∝ 𝜃 𝑘
𝛼 𝑘+𝑛 𝑑,𝑘−1
𝐾
𝑘=1
ここで𝑛 𝑑,𝑘は文書𝑑の中でトピック𝑘に属する単語の数とする
すなわち𝑛 𝑑,𝑘 = 𝛿 𝑧 𝑑,𝑖 = 𝑘
𝑛 𝑑
𝑖=1
上の式から𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑
, 𝝓, 𝜶, 𝜷 はディリクレ分布の形をしているので
𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 ,  𝒏 𝑑 = 𝑛 𝑑,1, ⋯ , 𝑛 𝑑,𝐾
条件付き分布の導出その3
15
◎𝝓 𝑘について
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑝 𝝓 𝑘 𝜷
∝ 𝜙 𝑣
𝛽 𝑣+𝑛 𝑘,𝑣−1
𝑉
𝑣=1
ここで𝑛 𝑘,𝑣は全文書の中でトピック𝑘に属する単語𝑣の数とする
すなわち𝑛 𝑘,𝑣 = 𝛿 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖 = 𝑣
𝑛 𝑑
𝑖=1
𝑀
𝑑=1
上の式から𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘
, 𝜶, 𝜷 はディリクレ分布の形をしているので
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 ,  𝒏 𝑘 = 𝑛 𝑘,1, ⋯ , 𝑛 𝑘,𝑉
条件付き分布の導出まとめ
16
• どの確率変数𝑧 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘に関しても
事後分布
↓
結合分布(生成モデル)
↓
定数項を除外
のステップを踏むことにより条件付き事後分布を導出することができた
LDAのギブスサンプリングの擬似コード
17
• 以下に、LDAのギブスサンプリングの擬似コードを示す
• 𝜶, 𝜷の更新に関しては3.6節で取り扱う
Step1: 𝜶, 𝜷, 𝜽, 𝝓の初期値𝜶 0 , 𝜷 0 , 𝜽 0 , 𝝓 0 と正数𝑆を与える
Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す
全ての𝑧 𝑑,𝑖に対して𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑
𝑠−1
, 𝝓 𝑘
𝑠−1
から𝑧 𝑑,𝑖
𝑠
をサンプリング
全ての𝜽 𝑑に対して𝑝 𝜽 𝑑|𝒛 𝑑
𝑠
, 𝜶 から𝜽 𝑑
𝑠
をサンプリング
全ての𝝓 𝑘に対して𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖
𝑠
= 𝑘 , 𝒛 𝑠 , 𝜷 から𝝓 𝑘
𝑠
をサンプリング
𝜶, 𝜷を更新する:𝜶 𝑠−1 , 𝜷 𝑠−1 → 𝜶 𝑠 , 𝜷 𝑠
目次
18
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
周辺化ギブスサンプリングの動機
19
• LDAのギブスサンプリングでは予測分布𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 を計算するために事後
分布から 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠
𝑠=1
𝑆
をサンプリングした
• より効率的なサンプリング方法として、𝜽, 𝝓を積分消去(周辺化)して𝒛のみを
サンプリングする方法がある(逆は不可)
• この方法は周辺化ギブスサンプリングと呼ばれる
• 周辺化ギブスサンプリングでは以下のように予測分布を近似することになる
𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
, 𝒛 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
= 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛, 𝜶, 𝜷 𝑝 𝒛 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
≈
1
𝑆
𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛 𝑠
, 𝜶, 𝜷
𝑧 𝑑
∗
𝑆
𝑠=1
• 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛, 𝜶, 𝜷 の具体的な形については次ページ以降で導出する
条件付き分布の導出その1
20
◎𝑧 𝑑,𝑖の条件付き分布のみを導出すればよい(𝑤 𝑑,𝑖 = 𝑣とする)
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
∝ 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘
−𝑑,𝑖
𝑑𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑
−𝑑,𝑖
𝑑𝜽 𝑑
= 𝜙 𝑘,𝑣 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘
−𝑑,𝑖
𝑑𝝓 𝑘 𝜃 𝑑,𝑘 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑
−𝑑,𝑖
𝑑𝜽 𝑑
=
𝑛 𝑘,𝑣
−𝑑,𝑖
+ 𝛽𝑣
𝑛 𝑘,𝑣′
−𝑑,𝑖
+ 𝛽𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘
−𝑑,𝑖
+ 𝛼 𝑘
𝑛 𝑑,𝑘′
−𝑑,𝑖
+ 𝛼 𝑘′
𝐾
𝑘′=1
𝑛 𝑘,𝑣
−𝑑,𝑖
, 𝑛 𝑑,𝑘
−𝑑,𝑖
は𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘の計算から𝑧 𝑑,𝑖を
抜いたもの
ここの導出は次ページ
に記載
条件付き分布の導出その2
21
◎𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して
𝑝 𝑤 𝑑,𝑖, 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑑′,𝑖′≠𝑑,𝑖
𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛
𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑑′,𝑖′≠𝑑,𝑖
𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛
したがって
𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘
−𝑑,𝑖
𝑑𝝓 𝑘
条件付き分布の導出その3
22
◎𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して
𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑
𝑖′=𝑖
𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖, 𝒛−𝑑
𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
= 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑
𝑖′=𝑖
𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖
, 𝒛−𝑑
したがって
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜷 + 𝒏 𝑑
−𝑑,𝑖
𝑑𝜽 𝑑
予測分布の具体的な形
23
◎積み残しにしていた𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛, 𝜶, 𝜷 の具体的な形に関して
前ページまでの結果から
𝑝 𝑤 𝑑,𝑖 = 𝑣, 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
=
𝑛 𝑘,𝑣
−𝑑,𝑖
+ 𝛽𝑣
𝑛 𝑘,𝑣′
−𝑑,𝑖
+ 𝛽𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘
−𝑑,𝑖
+ 𝛼 𝑘
𝑛 𝑑,𝑘′
−𝑑,𝑖
+ 𝛼 𝑘′
𝐾
𝑘′=1
したがって
𝑝 𝑤 𝑑
∗
= 𝑣, 𝑧 𝑑
∗
= 𝑘 𝒘, 𝒛, 𝜶, 𝜷 =
𝑛 𝑘,𝑣 + 𝛽𝑣
𝑛 𝑘,𝑣′ + 𝛽𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘 + 𝛼 𝑘
𝑛 𝑑,𝑘′ + 𝛼 𝑘′
𝐾
𝑘′=1
LDAの周辺化ギブスサンプリングの擬似コード
24
• 以下に、LDAの周辺化ギブスサンプリングの擬似コードを示す
• 𝜶, 𝜷の更新に関しては3.6節で取り扱う
Step1: 𝜶, 𝜷, 𝒛の初期値 𝜶 0
, 𝜷 0
, 𝒛 0
(=𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘)と正数𝑆を与える
Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す
全ての𝑑, 𝑖 に対して以下を繰り返す
𝑛 𝑘,𝑣
−𝑑,𝑖
, 𝑛 𝑑,𝑘
−𝑑,𝑖
𝑘 = 1, ⋯ , 𝐾 を計算する
𝑛 𝑘,𝑣
−𝑑,𝑖
+𝛽 𝑣
𝑛
𝑘,𝑣′
−𝑑,𝑖
+𝛽 𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘
−𝑑,𝑖
+𝛼 𝑘
𝑛
𝑑,𝑘′
−𝑑,𝑖
+𝛼 𝑘′
𝐾
𝑘′=1
から𝑧 𝑑,𝑖
𝑠
をサンプリング
𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘を更新する
𝜶, 𝜷を更新する:𝜶 𝑠−1
, 𝜷 𝑠−1
→ 𝜶 𝑠
, 𝜷 𝑠

More Related Content

What's hot

レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成
Nagi Teramo
 
[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習
Deep Learning JP
 
トピックモデルの評価指標 Coherence 研究まとめ #トピ本
トピックモデルの評価指標 Coherence 研究まとめ #トピ本トピックモデルの評価指標 Coherence 研究まとめ #トピ本
トピックモデルの評価指標 Coherence 研究まとめ #トピ本
hoxo_m
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
Hiroshi Shimizu
 
[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎
Deep Learning JP
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
EMアルゴリズム
EMアルゴリズムEMアルゴリズム
PRML上巻勉強会 at 東京大学 資料 第1章前半
PRML上巻勉強会 at 東京大学 資料 第1章前半PRML上巻勉強会 at 東京大学 資料 第1章前半
PRML上巻勉強会 at 東京大学 資料 第1章前半Ohsawa Goodfellow
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333Issei Kurahashi
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
hoxo_m
 
2 3.GLMの基礎
2 3.GLMの基礎2 3.GLMの基礎
2 3.GLMの基礎
logics-of-blue
 
3.3節 変分近似法(前半)
3.3節 変分近似法(前半)3.3節 変分近似法(前半)
3.3節 変分近似法(前半)tn1031
 
DeepLearning 輪読会 第1章 はじめに
DeepLearning 輪読会 第1章 はじめにDeepLearning 輪読会 第1章 はじめに
DeepLearning 輪読会 第1章 はじめに
Deep Learning JP
 
統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)
Kota Mori
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Koichiro Gibo
 
Oracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslassoOracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslasso
Satoshi Kato
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択
kazutantan
 
[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数
Deep Learning JP
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 

What's hot (20)

レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成
 
[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習
 
トピックモデルの評価指標 Coherence 研究まとめ #トピ本
トピックモデルの評価指標 Coherence 研究まとめ #トピ本トピックモデルの評価指標 Coherence 研究まとめ #トピ本
トピックモデルの評価指標 Coherence 研究まとめ #トピ本
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
 
[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
EMアルゴリズム
EMアルゴリズムEMアルゴリズム
EMアルゴリズム
 
PRML上巻勉強会 at 東京大学 資料 第1章前半
PRML上巻勉強会 at 東京大学 資料 第1章前半PRML上巻勉強会 at 東京大学 資料 第1章前半
PRML上巻勉強会 at 東京大学 資料 第1章前半
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
 
2 3.GLMの基礎
2 3.GLMの基礎2 3.GLMの基礎
2 3.GLMの基礎
 
3.3節 変分近似法(前半)
3.3節 変分近似法(前半)3.3節 変分近似法(前半)
3.3節 変分近似法(前半)
 
DeepLearning 輪読会 第1章 はじめに
DeepLearning 輪読会 第1章 はじめにDeepLearning 輪読会 第1章 はじめに
DeepLearning 輪読会 第1章 はじめに
 
統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
 
Oracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslassoOracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslasso
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択
 
[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
 

Viewers also liked

強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
Naoki Nishimura
 
20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節
MOTOGRILL
 
3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム
Akito Nakano
 
トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半
Shinya Akiba
 
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
ksmzn
 
逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -
y-uti
 
第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDA第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDAMasayuki Isobe
 
Prism.Formsについて
Prism.FormsについてPrism.Formsについて
Prism.Formsについて
一希 大田
 
AutoEncoderで特徴抽出
AutoEncoderで特徴抽出AutoEncoderで特徴抽出
AutoEncoderで特徴抽出
Kai Sasaki
 
TensorFlowで逆強化学習
TensorFlowで逆強化学習TensorFlowで逆強化学習
TensorFlowで逆強化学習
Mitsuhisa Ohta
 

Viewers also liked (10)

強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
 
20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節
 
3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム
 
トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半
 
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
 
逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -
 
第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDA第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDA
 
Prism.Formsについて
Prism.FormsについてPrism.Formsについて
Prism.Formsについて
 
AutoEncoderで特徴抽出
AutoEncoderで特徴抽出AutoEncoderで特徴抽出
AutoEncoderで特徴抽出
 
TensorFlowで逆強化学習
TensorFlowで逆強化学習TensorFlowで逆強化学習
TensorFlowで逆強化学習
 

Similar to 読書会 「トピックモデルによる統計的潜在意味解析」 第2回 3.2節 サンプリング近似法

PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
Keisuke Sugawara
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between Capsules
yukihiro domae
 
Blow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel systemBlow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel system
Takahiro Hashira
 
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
Takahiro Hashira
 
速習情報幾何 2018_10_25
速習情報幾何 2018_10_25速習情報幾何 2018_10_25
速習情報幾何 2018_10_25
Arithmer Inc.
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学
MITSUNARI Shigeo
 
退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について
Takahiro Hashira
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
Keisuke Sugawara
 
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
TakaakiYonekura
 
強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現
Kazu Ghalamkari
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
nishio
 
Prml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングPrml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティング
takutori
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
表現論 ゼミ資料
表現論 ゼミ資料表現論 ゼミ資料
表現論 ゼミ資料
HanpenRobot
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
sleepy_yoshi
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装する
sleepy_yoshi
 
グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―
Yutaka Nagahata
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
ryosuke-kojima
 
オンライン学習 : Online learning
オンライン学習 : Online learningオンライン学習 : Online learning
オンライン学習 : Online learning
Daiki Tanaka
 
A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)
Morpho, Inc.
 

Similar to 読書会 「トピックモデルによる統計的潜在意味解析」 第2回 3.2節 サンプリング近似法 (20)

PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between Capsules
 
Blow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel systemBlow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel system
 
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
 
速習情報幾何 2018_10_25
速習情報幾何 2018_10_25速習情報幾何 2018_10_25
速習情報幾何 2018_10_25
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学
 
退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
 
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
 
強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
 
Prml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングPrml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティング
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
表現論 ゼミ資料
表現論 ゼミ資料表現論 ゼミ資料
表現論 ゼミ資料
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装する
 
グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
 
オンライン学習 : Online learning
オンライン学習 : Online learningオンライン学習 : Online learning
オンライン学習 : Online learning
 
A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)
 

読書会 「トピックモデルによる統計的潜在意味解析」 第2回 3.2節 サンプリング近似法

  • 2. 目次 2 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング 今回は時間の都合上省略
  • 3. 目次 3 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 4. グラフィカルモデル? or 数式? 4 前回の@ksmznさんの資料から引用 • 前回はグラフィカルモデルを参照して条件付き分布を導出した • 今回は数式から直接条件付き分布を導出してみる
  • 5. 数式からの条件付き独立性の導出(p.22の図1.7) 5 𝑏 𝑎 𝑐 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 tail-to-tail head-to-tail head-to-head 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑎|𝑐 𝑝 𝑏|𝑐 𝑝 𝑐 𝑝 𝑎, 𝑏|𝑐 ∝ 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐 ⇒ 𝑎 ⊥ 𝑏|𝑐 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎 𝑝 𝑎, 𝑏|𝑐 ∝ 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎 ⇒ 𝑎 ⊥ 𝑏|𝑐 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏 𝑝 𝑎, 𝑏|𝑐 ∝ 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏 ⇒ 𝑎 ⊥ 𝑏|𝑐 グラフィカル モデル 数式 条件付き 独立性
  • 6. 数式からの条件付き独立性の導出(p.35の図2.4) 6 𝜷𝜶 LDAの生成モデル 𝑝 𝑧 𝑑,𝑖|𝒘, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑 , 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝒘 𝒛, 𝝓 𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝝓−𝑘, 𝜷 𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖 𝐾𝑛 𝑑 𝑀 𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 𝑑,𝑖 𝑝 𝜽 𝑑 𝜶 𝑑 𝑝 𝝓 𝑘 𝜷 𝑘 各確率変数の条件付き分布を数式から 導出してみる 1段目と3段目の式に関しては 実際よりも冗長
  • 7. 数式からの条件付き独立性の導出(p.35の図2.4) 7 𝜷𝜶 LDAの生成モデル 𝑝 𝑧 𝑑,𝑖 = 𝑘|𝒘, 𝑧−𝑑,𝑖 , 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖 = 𝑘|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘 𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘 , 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖 = 𝑘 , 𝒛, 𝜷 𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖 𝐾𝑛 𝑑 𝑀 𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 𝑑,𝑖 𝑝 𝜽 𝑑 𝜶 𝑑 𝑝 𝝓 𝑘 𝜷 𝑘 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖 という構造を既知とすると…
  • 8. 目次 8 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 9. ギブスサンプリングのアルゴリズム概要 9 例えば 𝑝 𝑎, 𝑏, 𝑐|𝜃 から直接乱数を生成できないようなときでも、以下の手順(ギブスサンプリング)に よって上記分布からの乱数を生成することができる Step1: 𝑏, 𝑐の初期値𝑏 0 , 𝑐 0 と正数𝑆を与える Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す 𝑝 𝑎 𝑠 |𝑏 𝑠−1 , 𝑐 𝑠−1 , 𝜃 から𝑎 𝑠 をサンプリング 𝑝 𝑏 𝑠 |𝑎 𝑠 , 𝑐 𝑠−1 , 𝜃 から𝑏 𝑠 をサンプリング 𝑝 𝑐 𝑠 |𝑎 𝑠 , 𝑏 𝑠 , 𝜃 から𝑐 𝑠 をサンプリング 上記の手順によって生成された乱数が𝑝 𝑎, 𝑏, 𝑐|𝜃 に従う理論的説明は、例えば • 伊庭他(2005)、『計算統計Ⅱマルコフ連鎖モンテカルロ法とその周辺 (統計科学のフロンティア12)』、岩波書店 を参照
  • 10. ギブスサンプリングのアルゴリズム概要 10 • もちろん上記の手順を実行するためには各確率変数の条件付き分布からの サンプリングが可能でなければならない (LDAの場合は条件付き分布が解析的に導出可能である) • 𝑎, 𝑏, 𝑐はそれぞれベクトル(多次元)であっても構わない(その場合はブロック 化ギブスサンプリングと呼ばれる) • 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠 s=1 S を利用して、例えば𝑝 𝑎, 𝑏, 𝑐|𝜃 に関する任意の関数 𝑓 𝑎, 𝑏, 𝑐 の期待値を近似することができる 𝑝 𝑎, 𝑏, 𝑐|𝜃 𝑓 𝑎, 𝑏, 𝑐 𝑑𝑎𝑑𝑏𝑑𝑐 ≈ 1 𝑆 𝑓 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠 𝑆 𝑠=1 • 実際は、上記のように𝑠 = 1から𝑆までの全てのサンプルを使わずに、初期値 に依存した最初の方のサンプルを捨てることがある このサンプルを捨てる期間を破棄する期間(burn-in period)と呼ぶ
  • 11. 目次 11 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 12. ギブスサンプリングの動機 12 • LDAのベイズ推定では予測分布以前に事後分布のサンプル生成すら難しい ◎予測分布(積分計算が難しい) 𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ , 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ 𝑑𝜽𝑑𝝓 = 𝑝 𝑤 𝑑 ∗ 𝝓 𝑧 𝑑 ∗ 𝑝 𝑧 𝑑 ∗ 𝜽 𝑑 𝑝 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ 𝑑𝜽𝑑𝝓 ◎事後分布からのサンプリングによる近似 (事後分布の導出が困難&サンプル生成が難しい) 𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 ≈ 1 𝑆 𝑝 𝑤 𝑑 ∗ 𝝓 𝑧 𝑑 ∗ 𝑠 𝑝 𝑧 𝑑 ∗ 𝜽 𝑑 𝑠 𝑧 𝑑 ∗ 𝑆 𝑠=1 • LDAの場合、 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 を一度にサンプリングするのは難しいが、 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 をそれぞれ個別にサンプリングすることは容易である(条件付き 分布が解析的に導出可能である) ギブスサンプリングによる近似が可能
  • 13. 条件付き分布の導出その1 13 ◎𝑧 𝑑,𝑖について(𝑤 𝑑,𝑖 = 𝑣とする) 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 = 𝜙 𝑘,𝑣 𝜃 𝑑,𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜽, 𝝓, 𝜶, 𝜷 = 1𝐾 𝑘=1 となるように正規化すると 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜽, 𝝓, 𝜶, 𝜷 = 𝜙 𝑘,𝑣 𝜃 𝑑,𝑘 𝜙 𝑘′,𝑣 𝜃 𝑑,𝑘′ 𝐾 𝑘′=1
  • 14. 条件付き分布の導出その2 14 ◎𝜽 𝑑について 𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑 , 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑 𝜽 𝑑 𝑝 𝜽 𝑑 𝜶 ∝ 𝜃 𝑘 𝛼 𝑘+𝑛 𝑑,𝑘−1 𝐾 𝑘=1 ここで𝑛 𝑑,𝑘は文書𝑑の中でトピック𝑘に属する単語の数とする すなわち𝑛 𝑑,𝑘 = 𝛿 𝑧 𝑑,𝑖 = 𝑘 𝑛 𝑑 𝑖=1 上の式から𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑 , 𝝓, 𝜶, 𝜷 はディリクレ分布の形をしているので 𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 ,  𝒏 𝑑 = 𝑛 𝑑,1, ⋯ , 𝑛 𝑑,𝐾
  • 15. 条件付き分布の導出その3 15 ◎𝝓 𝑘について 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑝 𝝓 𝑘 𝜷 ∝ 𝜙 𝑣 𝛽 𝑣+𝑛 𝑘,𝑣−1 𝑉 𝑣=1 ここで𝑛 𝑘,𝑣は全文書の中でトピック𝑘に属する単語𝑣の数とする すなわち𝑛 𝑘,𝑣 = 𝛿 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖 = 𝑣 𝑛 𝑑 𝑖=1 𝑀 𝑑=1 上の式から𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘 , 𝜶, 𝜷 はディリクレ分布の形をしているので 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 ,  𝒏 𝑘 = 𝑛 𝑘,1, ⋯ , 𝑛 𝑘,𝑉
  • 16. 条件付き分布の導出まとめ 16 • どの確率変数𝑧 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘に関しても 事後分布 ↓ 結合分布(生成モデル) ↓ 定数項を除外 のステップを踏むことにより条件付き事後分布を導出することができた
  • 17. LDAのギブスサンプリングの擬似コード 17 • 以下に、LDAのギブスサンプリングの擬似コードを示す • 𝜶, 𝜷の更新に関しては3.6節で取り扱う Step1: 𝜶, 𝜷, 𝜽, 𝝓の初期値𝜶 0 , 𝜷 0 , 𝜽 0 , 𝝓 0 と正数𝑆を与える Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す 全ての𝑧 𝑑,𝑖に対して𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑 𝑠−1 , 𝝓 𝑘 𝑠−1 から𝑧 𝑑,𝑖 𝑠 をサンプリング 全ての𝜽 𝑑に対して𝑝 𝜽 𝑑|𝒛 𝑑 𝑠 , 𝜶 から𝜽 𝑑 𝑠 をサンプリング 全ての𝝓 𝑘に対して𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖 𝑠 = 𝑘 , 𝒛 𝑠 , 𝜷 から𝝓 𝑘 𝑠 をサンプリング 𝜶, 𝜷を更新する:𝜶 𝑠−1 , 𝜷 𝑠−1 → 𝜶 𝑠 , 𝜷 𝑠
  • 18. 目次 18 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 19. 周辺化ギブスサンプリングの動機 19 • LDAのギブスサンプリングでは予測分布𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 を計算するために事後 分布から 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 𝑠=1 𝑆 をサンプリングした • より効率的なサンプリング方法として、𝜽, 𝝓を積分消去(周辺化)して𝒛のみを サンプリングする方法がある(逆は不可) • この方法は周辺化ギブスサンプリングと呼ばれる • 周辺化ギブスサンプリングでは以下のように予測分布を近似することになる 𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ , 𝒛 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ = 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛, 𝜶, 𝜷 𝑝 𝒛 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ ≈ 1 𝑆 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛 𝑠 , 𝜶, 𝜷 𝑧 𝑑 ∗ 𝑆 𝑠=1 • 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛, 𝜶, 𝜷 の具体的な形については次ページ以降で導出する
  • 20. 条件付き分布の導出その1 20 ◎𝑧 𝑑,𝑖の条件付き分布のみを導出すればよい(𝑤 𝑑,𝑖 = 𝑣とする) 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 ∝ 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 −𝑑,𝑖 𝑑𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 −𝑑,𝑖 𝑑𝜽 𝑑 = 𝜙 𝑘,𝑣 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 −𝑑,𝑖 𝑑𝝓 𝑘 𝜃 𝑑,𝑘 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 −𝑑,𝑖 𝑑𝜽 𝑑 = 𝑛 𝑘,𝑣 −𝑑,𝑖 + 𝛽𝑣 𝑛 𝑘,𝑣′ −𝑑,𝑖 + 𝛽𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 −𝑑,𝑖 + 𝛼 𝑘 𝑛 𝑑,𝑘′ −𝑑,𝑖 + 𝛼 𝑘′ 𝐾 𝑘′=1 𝑛 𝑘,𝑣 −𝑑,𝑖 , 𝑛 𝑑,𝑘 −𝑑,𝑖 は𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘の計算から𝑧 𝑑,𝑖を 抜いたもの ここの導出は次ページ に記載
  • 21. 条件付き分布の導出その2 21 ◎𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して 𝑝 𝑤 𝑑,𝑖, 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑑′,𝑖′≠𝑑,𝑖 𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑑′,𝑖′≠𝑑,𝑖 𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛 したがって 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 −𝑑,𝑖 𝑑𝝓 𝑘
  • 22. 条件付き分布の導出その3 22 ◎𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑 𝑖′=𝑖 𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖, 𝒛−𝑑 𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑 𝑖′=𝑖 𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖 , 𝒛−𝑑 したがって 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜷 + 𝒏 𝑑 −𝑑,𝑖 𝑑𝜽 𝑑
  • 23. 予測分布の具体的な形 23 ◎積み残しにしていた𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛, 𝜶, 𝜷 の具体的な形に関して 前ページまでの結果から 𝑝 𝑤 𝑑,𝑖 = 𝑣, 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑛 𝑘,𝑣 −𝑑,𝑖 + 𝛽𝑣 𝑛 𝑘,𝑣′ −𝑑,𝑖 + 𝛽𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 −𝑑,𝑖 + 𝛼 𝑘 𝑛 𝑑,𝑘′ −𝑑,𝑖 + 𝛼 𝑘′ 𝐾 𝑘′=1 したがって 𝑝 𝑤 𝑑 ∗ = 𝑣, 𝑧 𝑑 ∗ = 𝑘 𝒘, 𝒛, 𝜶, 𝜷 = 𝑛 𝑘,𝑣 + 𝛽𝑣 𝑛 𝑘,𝑣′ + 𝛽𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 + 𝛼 𝑘 𝑛 𝑑,𝑘′ + 𝛼 𝑘′ 𝐾 𝑘′=1
  • 24. LDAの周辺化ギブスサンプリングの擬似コード 24 • 以下に、LDAの周辺化ギブスサンプリングの擬似コードを示す • 𝜶, 𝜷の更新に関しては3.6節で取り扱う Step1: 𝜶, 𝜷, 𝒛の初期値 𝜶 0 , 𝜷 0 , 𝒛 0 (=𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘)と正数𝑆を与える Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す 全ての𝑑, 𝑖 に対して以下を繰り返す 𝑛 𝑘,𝑣 −𝑑,𝑖 , 𝑛 𝑑,𝑘 −𝑑,𝑖 𝑘 = 1, ⋯ , 𝐾 を計算する 𝑛 𝑘,𝑣 −𝑑,𝑖 +𝛽 𝑣 𝑛 𝑘,𝑣′ −𝑑,𝑖 +𝛽 𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 −𝑑,𝑖 +𝛼 𝑘 𝑛 𝑑,𝑘′ −𝑑,𝑖 +𝛼 𝑘′ 𝐾 𝑘′=1 から𝑧 𝑑,𝑖 𝑠 をサンプリング 𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘を更新する 𝜶, 𝜷を更新する:𝜶 𝑠−1 , 𝜷 𝑠−1 → 𝜶 𝑠 , 𝜷 𝑠