Do you really know where you are?
Feb-12   Alejandro Menéndez , MA   2
PROPERTIES:
                                               •Circle = 360º
         Sexagesimal system:                   •1º = 60’
                                               •1’ = 60’’

         Directions always refered to a datum (North, Prime
                Meridian or Equator)
         Cartesian System (x,y)


Feb-12               Alejandro Menéndez , MA                    3
PROPERTIES:

           Always mesured in clockwise direction
                 from the reference datum

           Recap trigonometry!




Feb-12             Alejandro Menéndez , MA         4
DEFINITION: Angle of the arc along the
     meridian joining the Eq. and the point.
     Also, the angle of the arc along a meridian
     between the Eq. and the paralel where the
     point is.



Feb-12             Alejandro Menéndez , MA         5
Feb-12   Alejandro Menéndez , MA   6
PROPERTIES:
         • From 0º up to 90º (North/South)
         • 2 digits needed
         • Standard expressions:
                 • 6015N or N6015 (Accuracy 0.5’ of arc or
                        0.5nm)
                 • 601508N or N601508 (Accuracy 0.5’’ of arc
                        or 15.4m)
                 • 6015.13N or N6015.13 (Accuracy 0.5’’ of arc
                        or 15.4m)

Feb-12                Alejandro Menéndez , MA               7
DEFINITION: Shortest angular distance
     between the Prime Meridian and the
     meridian passing through that point




Feb-12            Alejandro Menéndez , MA   8
Feb-12   Alejandro Menéndez , MA   9
PROPERTIES:
         •   From 0º to 180º (East/West) (Up to Greenwich
                 Anti- Meridian)
         •   3 Digits
         •   Standard expressions:
                  • 05530E or E05530 (Accuracy of 0.5’
                      of arc)
                  • 0553020E or E0553020 (Accuracy
                      of 0.5’’ of arc)
                  • 05530.30E or E05530.30 (Accuracy
                      the same)
Feb-12                  Alejandro Menéndez , MA             10
DEFINITION: Shortest angular distance along a
     meridian between two parallels of latitude.

                 D LAT: Minutes
                 CH LAT: Degrees and minutes

         *Exercises!



Feb-12                 Alejandro Menéndez , MA     11
DEFINITION: Shortest angular distance along a
     parallel between two meridians

               D LONG: Minutes
               CH LONG: Degrees and minutes

         *Exercises!




Feb-12                 Alejandro Menéndez , MA   12
DEFINITION: Algebraic middle value of latitude
     for two positions.




Feb-12             Alejandro Menéndez , MA        13
DEFINITION: Algebraic middle value of
     longitude for two positions.




Feb-12            Alejandro Menéndez , MA   14
DEFINITION: Net drawn on the surface of the
     Earth formed by the Prime Meridian and
     the rest of meridians in one sense, and the
     Equator plus the parallels of latitude.

Basis for Position                             Creates a Cartesian
Reference System                               System

Feb-12               Alejandro Menéndez , MA                         15
Feb-12   Alejandro Menéndez , MA   16
DEFINITION: Longitudinal distance along a
     parallel of latitude between two
     predetermined meridians




Feb-12            Alejandro Menéndez , MA    17
D = (2 π R/360) β
                 r
         NP
                          d                    d = (2 π r / 360) β

                                   D
                                                   β = CHLong
                 R


          000º
Feb-12               Alejandro Menéndez , MA                         18
r



         α = LAT                 r = R Cos α = R Cos LAT
             R




Feb-12       Alejandro Menéndez , MA                       19
d = (2 π r / 360) β         β = CHLong              r = R Cos LAT




                  d = (2 π /360) R CosLAT CHLong




           Departure (d) = 60 CHLong CosLAT

Feb-12                    Alejandro Menéndez , MA                   20
D = 60(nm/º) CHLong Cos(Lat)



         For every GC:            1nm = 1’ -> 60nm = 1º




Feb-12                   Alejandro Menéndez , MA          21
DEFINITION: Tilt angle of meridians towards
     one another.
     Angular change of direction of a GC
     course as it passes from one meridian to
     the other




Feb-12            Alejandro Menéndez , MA       22
PROPERTIES:
         • All meridians meet at the poles with an angle
                 equal to the CHLong between them
         • All meridians are parallel as they cross the
                 Equator
         • Increases with an increasing latitude
         • Increases with and increasing change in longitude
         • Angular difference between the initial and final
                 course along a GC passing through two
                 definite points

Feb-12                Alejandro Menéndez , MA              23
Feb-12   Alejandro Menéndez , MA   24
CALCULATION:

         CONVERGENCY : CHLong x Sin (LAT)

           CONVERGENCY: GCTTin - GCTTfin

         ¡ Convergency between two positions on different latitudes
               might be calculated using the mean latitude !

Feb-12                       Alejandro Menéndez , MA                  25
Feb-12   Alejandro Menéndez , MA   26
DEFINITION: Difference in direction between
     the GC track and the RL track running
     through two positions, observed at any of
     the points
           C.A. = ½ CONVERGENCY

          C.A. = 0.5 CHLong Sin MLat

Feb-12            Alejandro Menéndez , MA        27
Feb-12   Alejandro Menéndez , MA   28
Feb-12   Alejandro Menéndez , MA   29
Feb-12   Alejandro Menéndez , MA   30
The GC track will always be closer to the
                 nearest pole than a RL




Feb-12                 Alejandro Menéndez , MA       31
Feb-12   Alejandro Menéndez , MA   32
What is the difference in nm and km from position A
         (41º25’N) to position B(79º30’N). Both on the same meridian?

         An aircraft is to fly from position 72ºN 002º30’E to position
 72ºN 177º30’W on the shortest possible route
    a) Give the initial True track direction.
    b) Will the track direction remain the same for the whole flight?
    c) Give a reason for the answer given in b above




Feb-12                        Alejandro Menéndez , MA                    33

2.Position on the Earth

  • 1.
    Do you reallyknow where you are?
  • 2.
    Feb-12 Alejandro Menéndez , MA 2
  • 3.
    PROPERTIES: •Circle = 360º Sexagesimal system: •1º = 60’ •1’ = 60’’ Directions always refered to a datum (North, Prime Meridian or Equator) Cartesian System (x,y) Feb-12 Alejandro Menéndez , MA 3
  • 4.
    PROPERTIES: Always mesured in clockwise direction from the reference datum Recap trigonometry! Feb-12 Alejandro Menéndez , MA 4
  • 5.
    DEFINITION: Angle ofthe arc along the meridian joining the Eq. and the point. Also, the angle of the arc along a meridian between the Eq. and the paralel where the point is. Feb-12 Alejandro Menéndez , MA 5
  • 6.
    Feb-12 Alejandro Menéndez , MA 6
  • 7.
    PROPERTIES: • From 0º up to 90º (North/South) • 2 digits needed • Standard expressions: • 6015N or N6015 (Accuracy 0.5’ of arc or 0.5nm) • 601508N or N601508 (Accuracy 0.5’’ of arc or 15.4m) • 6015.13N or N6015.13 (Accuracy 0.5’’ of arc or 15.4m) Feb-12 Alejandro Menéndez , MA 7
  • 8.
    DEFINITION: Shortest angulardistance between the Prime Meridian and the meridian passing through that point Feb-12 Alejandro Menéndez , MA 8
  • 9.
    Feb-12 Alejandro Menéndez , MA 9
  • 10.
    PROPERTIES: • From 0º to 180º (East/West) (Up to Greenwich Anti- Meridian) • 3 Digits • Standard expressions: • 05530E or E05530 (Accuracy of 0.5’ of arc) • 0553020E or E0553020 (Accuracy of 0.5’’ of arc) • 05530.30E or E05530.30 (Accuracy the same) Feb-12 Alejandro Menéndez , MA 10
  • 11.
    DEFINITION: Shortest angulardistance along a meridian between two parallels of latitude. D LAT: Minutes CH LAT: Degrees and minutes *Exercises! Feb-12 Alejandro Menéndez , MA 11
  • 12.
    DEFINITION: Shortest angulardistance along a parallel between two meridians D LONG: Minutes CH LONG: Degrees and minutes *Exercises! Feb-12 Alejandro Menéndez , MA 12
  • 13.
    DEFINITION: Algebraic middlevalue of latitude for two positions. Feb-12 Alejandro Menéndez , MA 13
  • 14.
    DEFINITION: Algebraic middlevalue of longitude for two positions. Feb-12 Alejandro Menéndez , MA 14
  • 15.
    DEFINITION: Net drawnon the surface of the Earth formed by the Prime Meridian and the rest of meridians in one sense, and the Equator plus the parallels of latitude. Basis for Position Creates a Cartesian Reference System System Feb-12 Alejandro Menéndez , MA 15
  • 16.
    Feb-12 Alejandro Menéndez , MA 16
  • 17.
    DEFINITION: Longitudinal distancealong a parallel of latitude between two predetermined meridians Feb-12 Alejandro Menéndez , MA 17
  • 18.
    D = (2π R/360) β r NP d d = (2 π r / 360) β D β = CHLong R 000º Feb-12 Alejandro Menéndez , MA 18
  • 19.
    r α = LAT r = R Cos α = R Cos LAT R Feb-12 Alejandro Menéndez , MA 19
  • 20.
    d = (2π r / 360) β β = CHLong r = R Cos LAT d = (2 π /360) R CosLAT CHLong Departure (d) = 60 CHLong CosLAT Feb-12 Alejandro Menéndez , MA 20
  • 21.
    D = 60(nm/º)CHLong Cos(Lat) For every GC: 1nm = 1’ -> 60nm = 1º Feb-12 Alejandro Menéndez , MA 21
  • 22.
    DEFINITION: Tilt angleof meridians towards one another. Angular change of direction of a GC course as it passes from one meridian to the other Feb-12 Alejandro Menéndez , MA 22
  • 23.
    PROPERTIES: • All meridians meet at the poles with an angle equal to the CHLong between them • All meridians are parallel as they cross the Equator • Increases with an increasing latitude • Increases with and increasing change in longitude • Angular difference between the initial and final course along a GC passing through two definite points Feb-12 Alejandro Menéndez , MA 23
  • 24.
    Feb-12 Alejandro Menéndez , MA 24
  • 25.
    CALCULATION: CONVERGENCY : CHLong x Sin (LAT) CONVERGENCY: GCTTin - GCTTfin ¡ Convergency between two positions on different latitudes might be calculated using the mean latitude ! Feb-12 Alejandro Menéndez , MA 25
  • 26.
    Feb-12 Alejandro Menéndez , MA 26
  • 27.
    DEFINITION: Difference indirection between the GC track and the RL track running through two positions, observed at any of the points C.A. = ½ CONVERGENCY C.A. = 0.5 CHLong Sin MLat Feb-12 Alejandro Menéndez , MA 27
  • 28.
    Feb-12 Alejandro Menéndez , MA 28
  • 29.
    Feb-12 Alejandro Menéndez , MA 29
  • 30.
    Feb-12 Alejandro Menéndez , MA 30
  • 31.
    The GC trackwill always be closer to the nearest pole than a RL Feb-12 Alejandro Menéndez , MA 31
  • 32.
    Feb-12 Alejandro Menéndez , MA 32
  • 33.
    What is thedifference in nm and km from position A (41º25’N) to position B(79º30’N). Both on the same meridian? An aircraft is to fly from position 72ºN 002º30’E to position 72ºN 177º30’W on the shortest possible route a) Give the initial True track direction. b) Will the track direction remain the same for the whole flight? c) Give a reason for the answer given in b above Feb-12 Alejandro Menéndez , MA 33