Parallelograms
The student is able to (I can):
• Prove and apply properties of parallelograms.
• Use properties of parallelograms to solve problems.
parallelogramparallelogramparallelogramparallelogram – a quadrilateral with two pairs of parallel
sides.
Therefore, a quadrilateral is a parallelogram if and only if it
has two pairs of parallel sides.
>>
>>
T I
ME
,TI ME TE IM
Properties ofProperties ofProperties ofProperties of ParallelogramsParallelogramsParallelogramsParallelograms
If a quadrilateral is a parallelogram, then opposite sides are
congruent.
If a quadrilateral is a parallelogram, then opposite angles are
congruent.
,KI NG GK IN≅ ≅
K
NG
I
>>
>>
K
NG
O
∠K ≅ ∠N, ∠O ≅ ∠G
Properties ofProperties ofProperties ofProperties of Parallelograms (cont.)Parallelograms (cont.)Parallelograms (cont.)Parallelograms (cont.)
If a quadrilateral is a parallelogram, then consecutive angles
are supplementary.
If a quadrilateral is a parallelogram, then its diagonals bisect
each other.
1 2
34
>>
>>
T U
NE
S
,TS NS ES US≅ ≅
m 1 m 2 180
m 2 m 3 180
m 3 m 4 180
m 4 m 1 180
∠ + ∠ = °
∠ + ∠ = °
∠ + ∠ = °
∠ + ∠ = °
Examples Find the value of the variable:
1. x =
2. x =
3. y =
5x + 3 2x + 15
(3x)°
(x + 84)°
y°
Examples Find the value of the variable:
1. x =
2. x =
3. y =
5x + 3 2x + 15
4
(3x)°
(x + 84)°
y°
5x + 3 = 2x + 15
3x = 12
3x = x + 84
2x = 84
42
3(42) = 126°
y = 180 – 126
54

2.8.2 Parallelograms

  • 1.
    Parallelograms The student isable to (I can): • Prove and apply properties of parallelograms. • Use properties of parallelograms to solve problems.
  • 2.
    parallelogramparallelogramparallelogramparallelogram – aquadrilateral with two pairs of parallel sides. Therefore, a quadrilateral is a parallelogram if and only if it has two pairs of parallel sides. >> >> T I ME ,TI ME TE IM
  • 3.
    Properties ofProperties ofPropertiesofProperties of ParallelogramsParallelogramsParallelogramsParallelograms If a quadrilateral is a parallelogram, then opposite sides are congruent. If a quadrilateral is a parallelogram, then opposite angles are congruent. ,KI NG GK IN≅ ≅ K NG I >> >> K NG O ∠K ≅ ∠N, ∠O ≅ ∠G
  • 4.
    Properties ofProperties ofPropertiesofProperties of Parallelograms (cont.)Parallelograms (cont.)Parallelograms (cont.)Parallelograms (cont.) If a quadrilateral is a parallelogram, then consecutive angles are supplementary. If a quadrilateral is a parallelogram, then its diagonals bisect each other. 1 2 34 >> >> T U NE S ,TS NS ES US≅ ≅ m 1 m 2 180 m 2 m 3 180 m 3 m 4 180 m 4 m 1 180 ∠ + ∠ = ° ∠ + ∠ = ° ∠ + ∠ = ° ∠ + ∠ = °
  • 5.
    Examples Find thevalue of the variable: 1. x = 2. x = 3. y = 5x + 3 2x + 15 (3x)° (x + 84)° y°
  • 6.
    Examples Find thevalue of the variable: 1. x = 2. x = 3. y = 5x + 3 2x + 15 4 (3x)° (x + 84)° y° 5x + 3 = 2x + 15 3x = 12 3x = x + 84 2x = 84 42 3(42) = 126° y = 180 – 126 54