SlideShare a Scribd company logo
PSpiceアプリケーションセミナー



   シンプルモデルの活用でPSpiceを有効活用

          シンプルモデル
             =
      ユーザーが簡単にモデリング可能
    スペックを入力するだけでモデリング完成
           簡単・便利

                  2011年10月20日
             株式会社ビー・テクノロジー
              http://www.beetech.info/
           All Rights Reserved Copyright (C) Bee Technologies 2011   1
ビー・テクノロジーの事業分野

                                                                         環境分野
 エンジニアリン     スパイス・パー
  グサービス         ク                           自社ブランド
                                                                       【太陽光システ
               日本語版                                                       ム】
                                          ●シンプルモデル
 ●デバイスモデリン    【日本市場】                      ●コンセプトキット                     【自然エネル
 グ・                                                                      ギー】
                                          ●デザインキット
   サービス
                                          ●デバイスモデリング
 ●デザインキット・
                                            教材                         システム・シミュレー
   サービス
                                                                           ション
                                                                       詳細シミュレーション

             スパイス・パー
                ク
              グローバル版
              【世界市場】




             All Rights Reserved Copyright (C) Bee Technologies 2011                2
お客様を徹底的にサポートする

                                                                [第三の壁]
                                                             シミュレーション
                                                             が実機波形と合わ
                                                             ない。ゼロから動
                                                             かすのは物凄く工
                                                               数がかかる。
                                                              各回路方式のシ
                          [第二の壁]
                                                             ミュレーションの
                        自分がシミュレー
                                                             テンプレートをご
                        ションしたい電子
                                                                  提供
                        部品のスパイスモ
                                                              デザインキット
                        デルが揃わない。
                                                              シンプルキット
     [第一の壁]
                        スパイス・パーク                             お客様の回路図を
     回路解析               デバイスモデリン                              回路解析シミュ
   シミュレータの導               グサービス                              レーションデータ
       入                  でサポート                                一式でご提供



          All Rights Reserved Copyright (C) Bee Technologies 2011        3
デバイスモデリングサービス
お客様の必要なスパイスモデルをご提供致します
               [半導体部品]              サイリスタ                                      水晶発振子
ダイオード                               PWM IC                                     抵抗
ショットキ・バリア・ダイオード                     アナログIC                                             [バッテリー]
ツェナー・ダイオード                          デジタルトランジスタ                                 アルカリ電池
レーザー・ダイオード                          BRT                                        リチウム電池
LED                                 デジタルIC                                     リチウムイオン電池
Junction FET                        PUT                                        ニッケルマンガン電池
MOSFET                              水晶振動子                                      ニッケル水素電池
トランジスタ                              フォトダイオード                                   オキサイド電池
ダーリントン・トランジスタ                       PINダイオード                                   マンガン電池
IGBT                                ESDデバイス                                    太陽電池
ボルテージ・リファレンス                        バス・スイッチ                                    鉛蓄電池
ボルテージ・レギュレータ                                       [受動部品]                      リチウムポリマー電池
シャント・レギュレータ                         セラミックコンデンサ                                         [機構部品]
オペアンプ                               電解コンデンサ                                    トグルスイッチ
コンパレータ                              フィルムコンデンサ                                  スピーカー
サイダック                               チョークコイル                                             [モータ]
フォトカプラ                              コモンモード・チョークコイル                             DCモータ
光デバイス                               チョークコイル                                    ステッピングモーター
バリスタ                                トランス                                                [ランプ]
サージ・アブソーバ                           コイル                                        白熱電球
サーミスタ                               コア                                         ハロゲンランプ
                         All Rights Reserved Copyright (C) Bee Technologies 2011                 4
スパイス・パーク



                                                     購入し
                                                     やすい



                                                                            便利
                                                     検証
                                                     データ


   http://www.spicepark.com

メールアドレスとパスワードのご登録でご利用できます。
グローバル版も順次公開中→ http://spicepark.net

                                                          3,709モデルをご提供(2011年10月12日現在)

                  All Rights Reserved Copyright (C) Bee Technologies 2011         5
[NEW] シンプルモデル

         製品                  価格(円)            PSpice版    LTspice版
DCDCコンバータ                            15,750   ご提供開始      ご提供開始
DCACインバータ                            15,750   ご提供開始      ご提供開始
三相インバータ                              15,750   ご提供開始      ご提供開始
DC電源                                 15,750   ご提供開始      ご提供開始
ヒューズモデル                              15,750   ご提供開始      ご提供開始
リチウムイオン電池モデル                         84,000   ご提供開始      ご提供開始
ニッケル水素電池モデル                          84,000   ご提供開始      ご提供開始
鉛蓄電池モデル                              84,000    開発中         開発中




 あったら便利なアプリ的なスパイスモデルです。詳細はhttp://ow.ly/5sw4N
 です。      All Rights Reserved Copyright (C) Bee Technologies 2011   6
[NEW]コンセプトキットとは




           製品                        価格(円)                     PSpice版      LTspice版
ユニポーラステッピングモータ制御回                            42,000             ご提供中        ご提供中
路
バイポーラステッピングモータ制御回                            42,000             ご提供中        ご提供中
路
アベレージモデルの降圧コンバータ                             84,000             ご提供中        ご提供中
過渡解析モデルの降圧コンバータ                              63,000             ご提供中        ご提供中
アベレージモデルの昇圧コンバータ                             84,000             ご提供中        ご提供中
過渡解析モデルの昇圧コンバータ                              63,000             ご提供中        ご提供中
詳細は、 http://ow.ly/5swdV       をご参照下さい。
                  All Rights Reserved Copyright (C) Bee Technologies 2011              7
デザインキット(パッケージ商品)

            製品                                                         分野
FCC回路                                  電源回路
RCC回路                                  電源回路
低損失リニアレギュレータ                           電源回路
高精度リニアレギュレータ                           電源回路
D級アンプ                                  アンプ回路
擬似共振電源回路                               電源回路
マイクロコントローラ                             電源回路
ステッピングモータドライブ回路                        モーター制御回路
PWM ICによる電源回路                          電源回路
バッテリー回路(リチウムイオン電池)                     バッテリーアプリケーション回路
バッテリー回路(ニッケル水素電池)                      バッテリーアプリケーション回路
バッテリー回路(鉛蓄電池)                          バッテリーアプリケーション回路
DCDCコンバータ                              電源回路
DCモータ制御回路                              モーター制御回路
上記の価格は、こちらのサイトでご確認出来ます。特にご要望が多い
インバータ回路方式を中心に20種類の新製品を開発中。
                 All Rights Reserved Copyright (C) Bee Technologies 2011    8
デザインキット(カスタムサービス)

お客様の回路図をご提供して頂き、デバイスモデリング、シミュレーション技術を
付加して、シミュレーション一式をご提供致します。お客様は、解析に専念出来る
のがメリットです。お客様に準備して頂くものは回路図と材料表(BOM)と材料表に
あるサンプル(電子部品)です。




          All Rights Reserved Copyright (C) Bee Technologies 2011   9
デバイスモデリング教材




         All Rights Reserved Copyright (C) Bee Technologies 2011   10
シンプルモデルとは




            All Rights Reserved Copyright (C) Bee Technologies 2011   11
シンプルモデルとは




                                                                  価格は2011年9月現在、5万円以下です。

            All Rights Reserved Copyright (C) Bee Technologies 2011                       12
シンプルモデルとは

(1)DC電源モデル
⇒Vdcでは負荷抵抗によって、無限大の電流が流れてしまう
⇒安全動作領域が考慮されたモデル

(2)ヒューズモデル
⇒SPICEシミュレーションには破壊の概念がない
⇒定格を超えてもエラーメッセージもないままにシミュレーションできてしまう
⇒I^2tのエネルギーを考慮したモデルであり、
           破壊の概念をシミュレーションに反映できる

(3)&(4)バッテリーモデル
⇒充放電特性モデルであり、バッテリーのアプリケーション回路で
            シミュレーションできます
⇒2011年9月2日現在では(3)リチウムイオン電池、(4)ニッケル水素電池をご提供
   現在、鉛蓄電池のシンプルモデルを開発中




            All Rights Reserved Copyright (C) Bee Technologies 2011   13
DC Power Supply
Simplified SPICE Behavioral Model
[PSpice Version]



         All Rights Reserved Copyright (C) Bee Technologies 2011   14
Contents

 1.   Model Overview
 2.   Benefit of the Model
 3.   Concept of the Model
 4.   DC Power Supply Specification (Example)
 5.   Parameter Settings
 6.   Operation Area Characteristics
      6.1 Simulation Circuit and Setting
 7. Rated Output Voltage Characteristics
      7.1 Simulation Circuit and Setting
      Simulation Index




                            All Rights Reserved Copyright (C) Bee Technologies 2011   15
1. Model Overview

•   This DC Power Supply Simplified SPICE Behavioral Model is for users who
    require the model of a DC power supply as a part of their system.

•   The model focuses on the power supply’s behavior in their operation
    area, which user can input rated voltage, rated power, and maximum output
    current.
               Output Voltage [V]



                                    Rated output voltage




                                              Rated output line (from Rated Power)



                         Operation Area                                        Maximum output current


                                               Output Current [A]



                           All Rights Reserved Copyright (C) Bee Technologies 2011                      16
2. Benefit of the Model

•   Can be easily adjusted to your own DC power supply specifications by editing the model
    parameters.

•   The simplified model is an easy-to-use, which can be provided without the circuit detail.

•   Time and costs are saved because only the necessary parts are simulated.




                              All Rights Reserved Copyright (C) Bee Technologies 2011           17
3. Concept of the Model


                                                                                            Load Current


                           DC Power Supply
                                                                                   +
                           Simplified SPICE Behavioral Model
                                                                                            VOUT
                           [Spec: PRATED, VMAX, IMAX]

                           Adjustable VOUT ( VMAX)                                      -

•      The model is characterized by parameters: VMAX, POWER (for PRATED), VOUT and
    IMAX, which represent the output voltage vs. output current characteristics of the power
    supply.


                              All Rights Reserved Copyright (C) Bee Technologies 2011                      18
4.DC Power Supply Specification (Example)


                                                                                        Load Current


                       DC Power Supply
                                                                               +
                       Simplified SPICE Behavioral Model
                                                                                        VOUT
                       [Spec: PRATED, VMAX, IMAX]

                       Adjustable VOUT ( VMAX)                                      -

•   DC Power Supply with
•   POWER = 1600W, VMAX = 80Vdc, and IMAX = 160Adc
•   VOUT is adjustable between 0 to 80V (VMAX)



                          All Rights Reserved Copyright (C) Bee Technologies 2011                      19
5. Parameter Settings (Example)
                                                                  Model Parameters:
                                                                     POWER Rated power
                                                                     – e.g. 400W, 800W, 1600W
                                                                     – Value = <POWER>


                        U1                                           VMAX DC maximum output voltage
                                                                     – e.g. 80V, 320V, 650V
                        DC_POWER_SUPPLY
                                                                     – Value = <VMAX>
    POWER = 1600W
    VMAX = 80Vdc                                                     IMAX DC maximum output current
    IMAX = 160Adc                                                    – e.g. 40A, 80A, 160A
    VOUT = 80Vdc                                                     – Value = <IMAX>

                                                                     VOUT Output voltage
                                                                     – 0 ~ VMAX
                                                                     – Value = <VOUT>


•    From the DC power supply specification, the model is characterized by setting
     parameters POWER, VMAX, and IMAX, then input VOUT value (from 0 to VMAX).



                           All Rights Reserved Copyright (C) Bee Technologies 2011                    20
6. Operation Area Characteristics
100V




                 (20.000,79.991)

 80V                             Rated output voltage




 60V




 40V
                                                    Rated output line



 20V                       Rated operation
                                                                                                    (160.000,9.990)
                                range
                                                                                                              Maximum output current


  0V
       0A            20A         40A         60A         80A            100A     120A        140A     160A       180A     200A
            V(OUT)
                                                                    I(OUT)




                                         All Rights Reserved Copyright (C) Bee Technologies 2011                                 21
6.1 Simulation Circuit and Setting

                                                              OUT
                                                                                  OUT



                                                                                        DC Sweep: ILOAD
                      U1                                                                    0-200A
                      DC_POWER_SUPPLY
      POWER = 1600W
      VMAX = 80Vdc                                                                      ILOAD
      IMAX = 160Adc
      VOUT = 80Vdc




                                      0


  •   *Analysis directives:
  •   .DC LIN I_ILOAD 0 200 10m
  •   .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                        All Rights Reserved Copyright (C) Bee Technologies 2011                      22
7. Rated Output Voltage Characteristics
100V


            V(OUT) is limited by the model parameter VMAX (80V)
                                                                                               80V, and 100V
 80V




                                                                                                       60V
 60V




                                                                                         Parameter VOUT = 40V
 40V




 20V




  0V
       0s                                                                                                      10ms
             V(OUT)
                                                            Time




                               All Rights Reserved Copyright (C) Bee Technologies 2011                           23
7.1 Simulation Circuit and Setting
                           Sweep VOUT with
                          40, 60, 80, and 100 V
                                                                    OUT
        PARAMETERS:                                                                      OUT
        OUTPUT = 0Vdc



                          U1                                                                      Open Load
                          DC_POWER_SUPPLY
        POWER = 1600W
        VMAX = 80Vdc                                                                           RL_Open
        IMAX = 160Adc                                                                          100MEG
        VOUT = {OUTPUT}




                                             0


•   *Analysis directives:
•   .TRAN 0 10m 0 10u
•   .STEP PARAM OUTPUT LIST 40,60,80,100
•   .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                               All Rights Reserved Copyright (C) Bee Technologies 2011                        24
Fuse
Simplified SPICE Behavioral Model



         All Rights Reserved Copyright (C) Bee Technologies 2011   25
Contents

 1.Benefit of the Model
 2.Model Feature
 3.Parameter Settings
 4.Fuse Specification (Example)
 5.Fusing Time vs. DC Current
 6.Fusing Time vs. Current Pattern
 7.Specific Fuse Model

 Simulation Index



                All Rights Reserved Copyright (C) Bee Technologies 2011   26
1. Benefit of the Model


• Easily create your own fuse models by setting a few
  parameters, that’s usually provided by the
  manufacturer’s datasheet.

• Enables circuit designer to safely test and optimize their
  circuit protection design, and to predict component and
  circuit stress under extreme conditions (e.g. at the fuse
  blow).

• The model is optimized to reduce the convergence error.



                     All Rights Reserved Copyright (C) Bee Technologies 2011   27
2. Model Feature
The model accounts for:                                                          10

     • Current Rating

     • Fuse Factor                                                                1




                                                           Fusing Time (Sec.)
     • Internal Resistance
                                                                                 0.1
     • Normal Melting   I2t
Enable the model to simulate fusing time
   (blow time) as a function of I2t.                                            0.01




The model can be used for testing the                                     0.001
   blow time for the different current                                                 0.1        1               10           100
   pattern.                                                                                       Fusing Current (A)



A one-shot switch, once fuse is opened it                                       Fig.1 Fusing Time vs. Fusing Current Characteristic
   cannot be closed.



                              All Rights Reserved Copyright (C) Bee Technologies 2011                                           28
3. Parameter Settings
•      From the fuse specification, the model is characterized by setting parameters
       Irate, FF, Rint and I2t.

                                                             Model Parameters:
            U1                                                Irate = the current rating of fuse [A]

                                                              FF     = Fusing Factor, the ratio of the
                                                                       minimum fusing current (the current
            FUSE                                                       that fuse start to heat up) to Irate.
                                                                       (e.g. Irate =400mA and the minimum
            IRATE = 400m                                               fusing current is 620mA then FF =
            FF = 1.55                                                  620m/400m = 1.55)

            RINT = 650m                                       Rint = internal resistance of fuse
            I2T = 0.024
                                                              I2t     = Normal Melting value [A2, seconds]
    Fig.2 Fuse model with default parameters



                                   All Rights Reserved Copyright (C) Bee Technologies 2011                   29
4. Fuse Specification (Example)
                                                                                10
            Current   Internal        I2t   (A2,                                                 the minimum fusing current
 Part No.   Rating    R. max.        seconds                                                     is 620mA, FF = 20m/400m
                                                                                                 = 1.55
             (mA)      (m )             )                                        1




                                                          Fusing Time (Sec.)
CCF1N0.4        400         650          0.024
                                                                                0.1
                          U1

                                                                               0.01
                          FUSE
                          IRATE = 400m
                          FF = 1.55                                      0.001
                          RINT = 650m                                                 0.1    1                10              100

                          I2T = 0.024                                                       Fusing Current (A)




Fig.3 Shows the complete setting of fuse model parameters by using data from the
datasheet of CCF1N0.4 provided by KOA Speer Electronics, Inc.


                       All Rights Reserved Copyright (C) Bee Technologies 2011                                                      30
5. Fusing Time vs. DC Current
Simulation Result                                                                 Simulation Circuit

      10A
                                                                                        PARAMETERS:
            (960.962u,5.0000)                                                           dc_current = 1
                                                                                                                                sense
                                                                                                                 U1

             tF = 960.962usec. at IF = 5A                                                                        FUSE
                                                                                             I1                  IRATE = 400m
                      (6.0051m,2.0000)                                                       I1 = 0              FF = 1.55                  RL
                                                                                             I2 = {dc_current}   RINT = 650m                1
                                tF = 6.0051msec. at IF = 2A                                                      I2T = 0.024
                                                                                             T1 = 0
                                 (24.013m,1.0000)                                            T2 = 100n

     1.0A

                                       tF = 24.013msec. at IF = 1A                       0                                              0


                                                                                        *Analysis directives:
                                                                                        .TRAN 0 1s 500u 100u
                                                                                        .STEP PARAM dc_current LIST 1, 2, 5



    100mA
             1.0ms              10ms              100ms          1.0s
                 I(sense)
                                        Time


•      The simulation result shows the fusing times, tF, (the time that fuse blows) at
       the different fuse currents, IF .


                                               All Rights Reserved Copyright (C) Bee Technologies 2011                                           31
5. Fusing Time vs. DC Current
Comparison Graph
                           10
                                                                                                       Measurement
                                                                                                       Simulation


                            1
 Fusing Time (Sec.)




                           0.1




                          0.01




                      0.001
                                 0.1                      1                                     10                   100

                                                                     Fusing Current


                      •      Graph shows the comparison result between the simulation result vs. the
                            measurement data. The fusing current error (average from 0.001-10 sec.) =
                            4.9%

                                             All Rights Reserved Copyright (C) Bee Technologies 2011                       32
6 Fusing Time vs. Current Pattern
Simulation Result                                                                Simulation Circuit
     2.0A
                                                                                                                       sense1
                                                                                                        U1

     1.5A                          tF = 149.796msec. for triangle wave
                                                                                                        FUSE
                                                                                          I1            IRATE = 400m
                                                (149.796m,959.222m)                       IOFF = 0      FF = 1.55                   RL1
                                                                                                        RINT = 650m                 1
     1.0A                                                                                 FREQ = 50
                                                                                                        I2T = 0.024
                                                                                          IAMPL = 1
                                                                                          PHASE = -90
                                                                                      0                                         0
     0.5A

                                                                                                                       sense2
                                                                                                        U2
       0A
                                                                                                        FUSE
                                                                                          I2            IRATE = 400m
    -0.5A                                                                                 TD = 0        FF = 1.55                   RL2
                                                                                          TF = 10m      RINT = 650m                 1
                                                                                                        I2T = 0.024
                                                                                          PW = 0
    -1.0A                                                                                 PER = 20m
                                                                                      0   I1 = -1                               0
                                                                                          I2 = 1
                          (59.503m,-987.814m)                                             TR = 10m
    -1.5A
                  tF = 59.503msec. for sine wave
    -2.0A
                                                                                      .TRAN 0 0.2s 0 100u
            0s    20ms 40ms 60ms 80ms 100ms        140ms       180ms
                 I(sense1)  I(sense2)
                                       Time



•      The simulation result shows the fusing times, tF, (the time that fuse blows)
       for the same peak current but different in current patterns(waveforms).


                                              All Rights Reserved Copyright (C) Bee Technologies 2011                                     33
7. Specific Fuse Model
                                                     Comparison Graph
                                                                           10
                                                                                                         Measurement
                                                                                                         Simulation

           U1                                                               1
                                                                                                   Error reduce
                                                                                                     to 0.4%




                                                     Fusing Time (Sec.)
           CCF1N0_4                                                        0.1




 Model of fuse part number                                                0.01

CCF10.4, all parameters and
  function are already set
                                                                     0.001
                                                                                 0.1   1            10             100

                                                                                       Fusing Current


If the most accurate result is required, we could provide the specific model that
optimized for each part number of fuse. The fusing current error (average from 0.001-
10 sec.) will reduce from 4.9% (simplified model) to 0.4% (specific fuse model)

                        All Rights Reserved Copyright (C) Bee Technologies 2011                                        34
Lithium Ion Battery
Simplified SPICE Behavioral Model



         All Rights Reserved Copyright (C) Bee Technologies 2011   35
Contents
 1. Benefit of the Model
 2. Model Feature
 3. Concept of the Model
 4. Parameter Settings
 5. Li-Ion Battery Specification (Example)
      5.1 Charge Time Characteristic
      5.2 Discharge Time Characteristic
      5.3 Vbat vs. SOC Characteristic
 6. Extend the number of Cell (Example)
      6.1 Charge Time Characteristic, NS=4
      6.2 Discharge Time Characteristic, NS=4
      Simulation Index




                           All Rights Reserved Copyright (C) Bee Technologies 2011   36
1. Benefit of the Model

•   The model enables circuit designer to predict and optimize battery runtime and circuit
    performance.

•   The model can be easily adjusted to your own battery specifications by editing a few parameters
    that are provided in the datasheet.

•   The model is optimized to reduce the convergence error and the simulation time




                              All Rights Reserved Copyright (C) Bee Technologies 2011                 37
2. Model Feature


•   This Li-Ion Battery Simplified SPICE Behavioral Model is for users who
    require the model of a Li-Ion Battery as a part of their system.
•   Battery Voltage(Vbat) vs. Battery Capacity Level (SOC) Characteristic, that can
    perform battery charge and discharge time at various current rate conditions,
    are accounted by the model.
•   As a simplified model, the effects of cycle number and temperature are
    neglected.




                        All Rights Reserved Copyright (C) Bee Technologies 2011   38
3. Concept of the Model



                            Li-Ion battery
                                                                                    +
                            Simplified SPICE Behavioral Model                                   Output
                            [Spec: C, NS]                                                    Characteristics

                            Adjustable SOC [ 0-1(100%) ]                                 -

•   The model is characterized by parameters: C, which represent the battery capacity and SOC, which
    represent the battery initial capacity level.
•   Open-circuit voltage (VOC) vs. SOC is included in the model as an analog behavioral model (ABM).
•   NS (Number of Cells in series) is used when the Li-ion cells are in series to increase battery voltage
    level.




                               All Rights Reserved Copyright (C) Bee Technologies 2011                         39
4. Parameter Settings
                                                     Model Parameters:
                                                      C is the amp-hour battery capacity [Ah]
                                                      – e.g. C = 0.3, 1.4, or 2.8 [Ah]

                                                      NS is the number of cells in series
                                                      – e.g. NS=1 for 1 cell battery, NS=2 for 2 cells
        +    -         LI-ION_BATTERY                    battery (battery voltage is double from 1 cell)
                       TSCALE = 1
         U1            C = 1.4                        SOC is the initial state of charge in percent
                       SOC = 1                        – e.g. SOC=0 for a empty battery (0%), SOC=1 for
                                                        a full charged battery (100%)
                       NS = 1
    (Default values)                                  TSCALE turns TSCALE seconds into a second
                                                      – e.g. TSCALE=60 turns 60s or 1min into a
                                                        second, TSCALE=3600 turns 3600s or 1h into a
                                                        second,


•       From the Li-Ion Battery specification, the model is characterized by setting parameters
        C, NS, SOC and TSCALE.

                              All Rights Reserved Copyright (C) Bee Technologies 2011                      40
5. Li-Ion Battery Specification (Example)


                                               Nominal Voltage                             3.7V
    +   -   LI-ION_BATTERY
            TSCALE = 60                        Nominal
                                                                         Typical           1400mAh (0.2C discharge)
                                               Capacity
    U1      SOC = 1
            C = 1.4                            Charging Voltage                            4.20V±0.05V
            NS = 1
              Battery capacity                 Charging Std. Current                       700mA
               is input as a
              model parameter
                                                                         Charge            1400mA
                                               Max Current
                                                                       Discharge           2800mA

                                               Discharge cut-off voltage                   2.75V




•   The battery information refer to a battery part number LIR18500 of EEMB BATTERY.


                                 All Rights Reserved Copyright (C) Bee Technologies 2011                              41
5.1 Charge Time Characteristic
  Measurement                                                                Simulation
                                                                  1.0V
                                                                                    Capacity=100%
                                                                  0.8V

                                                                  0.6V

                                                                  0.4V

                                                                  0.2V

                                                                     0V
                                                                             V(X_U1.SOC)
                                                       4.4V       1.4A
                                                   1          2
                                                       4.2V       1.2A
                                                       4.0V       1.0A        Voltage=4.20V
                                                       3.8V       0.8A

  +   -   LI-ION_BATTERY                               3.6V       0.6A
                                                       3.4V       0.4A
          TSCALE = 60                                                                                     Current=700mA
                                                       3.2V
   U1     C = 1.4                                                 SEL>>
                                                       3.0V          0A
          SOC = 0                                                       0s              50s        100s       150s        200s
          NS = 1                                                         1      V(HI)     2   I(IBATT)
                                                                                                   Time
                                                                                                                      (minute)
                    SOC=0 means
                 battery start from 0%
                  of capacity (empty)

                                                          • Charging Voltage: 4.20V±0.05V
                                                          • Charging Current: 700mA (0.5 Charge)


                       All Rights Reserved Copyright (C) Bee Technologies 2011                                        42
5.1 Charge Time Characteristic
 Simulation Circuit and Setting


                 PARAMETERS:                                                                     Over-Voltage Protector:
                 N=1                                                                          (Charging Voltage*1) - VF of D1
                 CAh = 1.4
                 rate = 0.5                                                            D1
                                                                                       DMOD
                                                                      HI
                                                                                                    Voch
 Input Voltage                   OUT+
                                 OUT-
                                                            C1                                      {(4.20*N)-8.2m}
                      Vin                                   10n
                      5V
                                                                               IBATT
                                 IN+
                                 IN-


                                                           0                                    0

                            G1
                            Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )
                  0
                                                                                       0

                                                                       +   -     LI-ION_BATTERY
                                                                                 TSCALE = 60
                                                                       U1        C = 1.4
                                                                                 SOC = 0     1 minute   in seconds
                                                                                 NS = {N}



    •    *Analysis directives:
    •    .TRAN 0 200 0 0.5
    •    .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                    All Rights Reserved Copyright (C) Bee Technologies 2011                                     43
5.2 Discharge Time Characteristic
  •      Battery voltage vs. time are simulated at 0.2C, 0.5C, and 1C discharge rates.

PARAMETERS:
rate = 1
CAh = 1.4                                                                                 4.4V


                            sense                                                         4.2V
                                                    HI
                                                                                          4.0V
                                              C1                  0
                                              10n                                                                 0.2C
                                                     +    -   LI-ION_BATTERY              3.8V
                                                              TSCALE = 60
                                          0              U1   C = 1.4
   IN+    OUT+                                                SOC = 1                     3.6V
                                                              NS = 1
   IN-    OUT-
G1
limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )                                                   3.4V

                                                                                                                  0.5C
                                                                                          3.2V
                                       TSCALE turns 1 minute in seconds,
                 0             battery starts from 100% of capacity (fully charged)
                                                                                          3.0V
                                                                                                       1C
                                                                                          2.8V


                                                                                          2.6V
  *Analysis directives:                                                                          0s        100s          200s   300s    400s
                                                                                                      V(HI)                            (minute)
  .TRAN 0 300 0 0.5                                                                                                      Time

  .STEP PARAM rate LIST 0.2,0.5,1
  .PROBE V(*) I(*) W(*) D(*) NOISE(*)
                                                     All Rights Reserved Copyright (C) Bee Technologies 2011                           44
5.3 Vbat vs. SOC Characteristic
 Measurement                                                                       Simulation
                                                                        4.40
                                                                        4.20
                                                                        4.00                       0.2C
                                                                        3.80




                                                          Voltage (V)
                                                                                                                                    0.5C
                                                                        3.60                                   1C
                                                                        3.40
                                                                        3.20
                                                                        3.00
                                                                        2.80
                                                                        2.60
                                                                               1        0.8      0.6         0.4       0.2      0           -0.2
                                                                                                          Capacity (%)

                                                                                   Simulation
                                                                         1.2
 +   -    LI-ION_BATTERY



                                                   Discharge Capacity
                                                                         1.0
          TSCALE = 60


                                                       (%vs. 0.2C)
  U1      C = 1.4                                                        0.8

          SOC = 1                                                        0.6

          NS = 1                                                         0.4
                                                                                                                             Mesurement
                                                                         0.2
                                                                                                                             Simulation
                                                                         0.0
 • Nominal Voltage: 3.7V                                                       0          0.2          0.4          0.6       0.8            1
 • Capacity: 1400mAh (0.2C discharge)                                                    Battery Discharge Current (vs. C Rate)
 • Discharge cut-off voltage: 2.75V


                      All Rights Reserved Copyright (C) Bee Technologies 2011                                                          45
5.3 Vbat vs. SOC Characteristic
 Simulation Circuit and Setting


                         PARAMETERS:
                         rate = 0.2
                         CAh = 1.4


                                                   sense
                                                                                   HI


                                                                         C1                       0
                                                                         10n
            IN+    OUT+                                                              +   -   LI-ION_BATTERY
                                                                                             TSCALE = 60
            IN-    OUT-                                              0                  U1   C = 1.4
         G1                                                                                  SOC = 1
         limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )                                             NS = 1     1 minute   in seconds




                          0



   •   *Analysis directives:
   •   .TRAN 0 296.82 0 0.5
   •   .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                               All Rights Reserved Copyright (C) Bee Technologies 2011                                   46
6. Extend the number of Cell (Example)

                                                                                                       Li-ion needs 4
                                                                                                      cells to reach this
                                                                                                        voltage level
                                              Basic Specification
    +   -   LI-ION_BATTERY
            TSCALE = 60                               Output Voltage                       DC 12.8~16.4V
    U1      SOC = 1
            C = 4.4                                   Capacity of Approximately            4400mAh
            NS = 4
                                                      Input Voltage                        DC 20.5V
              The number of cells
              in series is input as
              a model parameter                       Charging Time                        About 5 hours




•   The battery information refer to a battery part number PBT-BAT-0001 of BAYSUN
    Co., Ltd.

                                 All Rights Reserved Copyright (C) Bee Technologies 2011                                47
6.1 Charge Time Characteristic, NS=4
                                                                                   The battery needs 5 hours to be fully charged
               1.0V
                                                       Capacity=100%
               0.8V

               0.6V


               0.4V


               0.2V
               SEL>>
                  0V
                         V(X_U1.SOC)
     18V       2.4A
 1         2
     17V       2.0A

     16V       1.6A
                                       Voltage=16.8V
     15V       1.2A

     14V       0.8A

     13V                                                                      Current=880mA
                 >>
     12V         0A
                    0s          1s         2s           3s        4s         5s           6s         7s         8s          9s     10s
                     1      V(HI) 2      I(IBATT)                                                                                        (hour)
                                                                            Time


 • Input Voltage: 20.5V
 • Charging Voltage: 16.8V
 • Charging Current: 880mA (0.2 Charge)

                                          All Rights Reserved Copyright (C) Bee Technologies 2011                                    48
6.1 Charge Time Characteristic, NS=4
   Simulation Circuit and Setting


                 PARAMETERS:                                                                       Over-Voltage Protector:
                 N=4                                                                            (Charging Voltage*4) - VF of D1
                 CAh = 4.4
                 rate = 0.2                                                              D1
                                                                                         DMOD
                                                                        HI
                                                                                                         Voch
 Input Voltage                     OUT+
                                   OUT-
                                                              C1                                         {(4.2*N)-8.2m}
                      Vin                                     10n
                      20.5V
                                                                                 IBATT
                                   IN+
                                   IN-

                                                             0                                       0

                              G1
                              Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )
                  0
                                                                                         0

                                                                         +   -     LI-ION_BATTERY
                                                                                   TSCALE = 3600
                                                                         U1        C = 4.4
                                                                                   SOC = 0       1   Hour in seconds
                                                                                   NS = {N}



    •    *Analysis directives:
    •    .TRAN 0 10 0 0.05
    •    .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                      All Rights Reserved Copyright (C) Bee Technologies 2011                                     49
6.2 Discharge Time Characteristic, NS=4
          18V



          17V
16.4V
          16V


Output    15V
voltage                                                                                              0.5C
range
          14V



12.8V     13V

                                                                1C
          12V



          11V



          10V
                0s           0.4s                   0.8s                  1.2s                1.6s          2.0s
                     V(HI)                                                                                         (hour)
                                                               Time


        • Charging Voltage: 16.8V
        • Charging Current: 880mA (0.2 Charge)


                                    All Rights Reserved Copyright (C) Bee Technologies 2011                            50
6.2 Discharge Time Characteristic, NS=4
      Simulation Circuit and Setting

    Parametric sweep “rate”
                                PARAMETERS:
                                rate = 1
                                CAh = 4.4


                                                          sense
                                                                                          HI


                                                                                C1                       0
                                                                                10n
                   IN+    OUT+                                                              +   -   LI-ION_BATTERY
                                                                                                    TSCALE = 3600
                   IN-    OUT-                                              0                  U1   C = 4.4
                G1                                                                                  SOC = 1
                limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )                                             NS = 4     1 Hour   in seconds




                                 0


•     *Analysis directives:
•     .TRAN 0 3 0 0.05
•     .STEP PARAM rate LIST 0.5,1
•     .PROBE V(*) I(*) W(*) D(*) NOISE(*)
                                      All Rights Reserved Copyright (C) Bee Technologies 2011                                   51
Nickel-Metal Hydride Battery
Simplified SPICE Behavioral Model



         All Rights Reserved Copyright (C) Bee Technologies 2011   52
Contents
 1. Benefit of the Model
 2. Model Feature
 3. Concept of the Model
 4. Parameter Settings
 5. Ni-Mh Battery Specification (Example)
     5.1 Charge Time Characteristic
     5.2 Discharge Time Characteristic
     5.3 Vbat vs. SOC Characteristic
 6. Extend the number of Cell (Example)
     6.1 Charge Time Characteristic, NS=7
     6.2 Discharge Time Characteristic, NS=7
     Simulation Index




                           All Rights Reserved Copyright (C) Bee Technologies 2011   53
1. Benefit of the Model

•   The model enables circuit designer to predict and optimize Ni-MH battery runtime and circuit
    performance.

•   The model can be easily adjusted to your own Ni-MH battery specifications by editing a few
    parameters that are provided in the datasheet.

•   The model is optimized to reduce the convergence error and the simulation time.




                             All Rights Reserved Copyright (C) Bee Technologies 2011               54
2. Model Feature


•   This Ni-MH Battery Simplified SPICE Behavioral Model is for users who
    require the model of a Ni-MH Battery as a part of their system.
•   The model accounts for Battery Voltage(Vbat) vs. Battery Capacity Level
    (SOC) Characteristic, so it can perform battery charge and discharge time at
    various current rate conditions.
•   As a simplified model, the effects of cycle number and temperature are
    neglected.




                        All Rights Reserved Copyright (C) Bee Technologies 2011   55
3. Concept of the Model



                            Ni-Mh battery
                                                                                    +
                            Simplified SPICE Behavioral Model                                   Output
                            [Spec: C, NS]                                                    Characteristics

                            Adjustable SOC [ 0-1(100%) ]                                 -

•   The model is characterized by parameters: C which represent the battery capacity and SOC which
    represent the battery initial capacity level.
•   Open-circuit voltage (VOC) vs. SOC is included in the model as an analog behavioral model (ABM).
•   NS (Number of Cells in series) is used when the Ni-mh cells are in series to increase battery voltage
    level.




                               All Rights Reserved Copyright (C) Bee Technologies 2011                         56
4. Parameter Settings
                                           Model Parameters:
                                          C is the amp-hour battery capacity [Ah]
                                          – e.g. C = 0.3, 1.4, or 2.8 [Ah]

                                          NS is the number of cells in series
       +    -      NI-MH_BATTERY          – e.g. NS=1 for 1 cell battery, NS=2 for 2 cells battery
                   TSCALE = 1                (battery voltage is double from 1 cell)
        U1         C = 1350M
                   SOC = 1                SOC is the initial state of charge in percent
                   NS = 1                 – e.g. SOC=0 for a empty battery (0%), SOC=1 for a full
                                            charged battery (100%)


    (Default values)                      TSCALE turns TSCALE seconds(in the real world) into a
                                            second(in simulation)
                                          – e.g. TSCALE=60 turns 60s or 1min (in the real world)
                                            into a second(in simulation), TSCALE=3600 turns 3600s
                                            or 1h into a second.


•       From the Ni-Mh Battery specification, the model is characterized by setting parameters
        C, NS, SOC and TSCALE.

                              All Rights Reserved Copyright (C) Bee Technologies 2011                57
5. Ni-Mh Battery Specification (Example)


                                           Nominal Voltage                             1.2V

                                                                     Typical           1350mAh
                                           Capacity
    +   -   NI-MH_BATTERY
                                                                    Minimum            1250mAh
            TSCALE = 1
     U1     SOC = 1
            C = 1350M                      Charging Current      Time                  1350mA    about 1.1h
            NS = 1
                                           Discharge cut-off voltage                   1.0V
                 Battery capacity
                [Typ.] is input as a
                 model parameter




•   The battery information refer to a battery part number HF-A1U of SANYO.


                             All Rights Reserved Copyright (C) Bee Technologies 2011                          58
5.1 Charge Time Characteristic
   Measurement                                                  Simulation
                                                        1.8V


                                                        1.7V


                                                        1.6V


                                                        1.5V

                                                                                                      Charge: 1350mA
                                                        1.4V


                                                        1.3V


                                                        1.2V


                                                        1.1V


                                                        1.0V
                                                               0s      10s   20s   30s   40s    50s     60s    70s     80s
                                                                    V(HI)
                                                                                                                       (min.)
                                                                                         Time


   +   -   NI-MH_BATTERY
                                                          • Charging Current: 1350mA                   about 1.1h
           TSCALE = 60
    U1     C = 1350M
           SOC = 0        SOC=0 means
           NS = 1      battery start from 0%
                           of capacity (empty)



                        All Rights Reserved Copyright (C) Bee Technologies 2011                                      59
5.1 Charge Time Characteristic
 Simulation Circuit and Setting


                 PARAMETERS:
                 rate = 1
                 CAh = 1350m


                                                                               HI
Charge Voltage
                                 OUT+
                                 OUT-
                                                                         C1
                      Vin                                                10n
                      3V
                                                                        0                   IBATT
                                 IN+
                                 IN-




                            G1
                            Limit(V(%IN+, %IN-)/1m, 0, rate*CAh )                                   0
                  0                                                                 +   -     NI-MH_BATTERY
                                                                                              TSCALE = 60
                                                                                    U1        C = 1350M
                   A constant current charger at                                              SOC = 0
                 rate of capacity (e.g. 1 1350mA)                                             NS = 1    1 minute into a second
                                                                                                             (in simulation)

    •   *Analysis directives:
    •   .TRAN 0 62 0 25m
    •   .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                  All Rights Reserved Copyright (C) Bee Technologies 2011                                      60
5.2 Discharge Time Characteristic
•      Battery voltage vs. time are simulated at 0.2C, 1.0C, and 2.0C discharge rates.


                                                                                          1.6V

                PARAMETERS:
                rate = 1
                CAh = 1350m
                                        sense                                             1.5V
                                                             HI

                                                                                          1.4V
                                                       C1                   0
   IN+    OUT+                                         10n        +   -   NI-MH_BATTERY
                                                                          TSCALE = 60
   IN-    OUT-                                     0              U1      C = 1350M       1.3V                            0.2C
G1                                                                        SOC = 1
GVALUE                                                                    NS = 1
limit(V(%IN+, %IN-)/1m, 0, rate*CAh )
                                                                                          1.2V

                 0
                                               TSCALE turns 1 minute into a                                1C
                                                                                          1.1V
                                            second(in simulation), battery starts
                                           from 100% of capacity (fully charged)
                                                                                                      2C
                                                                                          1.0V



                                                                                          0.9V
*Analysis directives:                                                                            0s     60s
                                                                                                       V(HI)
                                                                                                                120s   180s   240s   300s    360s
                                                                                                                                                 (min.)
.TRAN 0 360 0 100m                                                                                                     Time

.STEP PARAM rate LIST 0.2,1,2
.PROBE V(*) I(*) W(*) D(*) NOISE(*)
                                                 All Rights Reserved Copyright (C) Bee Technologies 2011                                    61
5.3 Vbat vs. SOC Characteristic
   Measurement                                                                               Simulation
                                                                                   1.6
                                                                                                                               0.2C (270mA)
                                                                                   1.5                                         1.0C (1350mA)
                                                                                                                               2.0C (2700mA)
                                                                                   1.4




                                                                Cell Voltage [V]
                                                                                   1.3

                                                                                   1.2

                                                                                   1.1            270mA
                                                                                                                1350mA
                                                                                   1.0                                    2700mA

                                                                                   0.9
                                                                                         0       250      500       750       1000    1250        1500
                                                                                                          Discharge Capacity [mAh]

                                                                                             Simulation
                                                                                   1.2
   +   -   NI-MH_BATTERY

                                                      (% of Rated Capacity)
                                                                                   1.0
           TSCALE = 60                                  Actual Capacity
                                                                                   0.8
   U1      C = 1350M
           SOC = 1                                                                 0.6
           NS = 1                                                                  0.4
                                                                                                                                     Mesurement
                                                                                   0.2
 • Nominal Voltage: 1.2V                                                           0.0
                                                                                                                                     Simulation

 • Capacity: 1350mAh                                                                     0          1           2         3            4            5
 • Discharge cut-off voltage: 1.0V                                                                Discharge Rate (Multiples of C)

                        All Rights Reserved Copyright (C) Bee Technologies 2011                                                                     62
5.3 Vbat vs. SOC Characteristic
 Simulation Circuit and Setting


                       PARAMETERS:
                       rate = 0.2
                       CAh = 1350m
                                              sense
                                                                               HI


                                                                         C1                   0
           IN+    OUT+              A constant current                   10n        +   -   NI-MH_BATTERY
                                   discharger at rate of                                    TSCALE = 60
           IN-    OUT-                                               0              U1      C = 1350M
                               capacity (e.g. 1 1350mA)
        G1                                                                                  SOC = 1
        GVALUE                                                                              NS = 1
        limit(V(%IN+, %IN-)/1m, 0, rate*CAh )                                                     1 minute into a second
                                                                                                      (in simulation)


                         0



   •   *Analysis directives:
   •   .TRAN 0 296.4 0 100m
   •   .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                             All Rights Reserved Copyright (C) Bee Technologies 2011                               63
6. Extend the number of Cell (Example)

                                                                                                   Ni-MH needs 7
                                                                                                  cells to reach this
                                                                                                    voltage level
                                             Basic Specification
    +   -   NI-MH_BATTERY
            TSCALE = 3600                            Voltage - Rated                      8.4V
    U1      SOC = 1
            C = 1500M                                Capacity                             1500mAh
            NS = 7
                                                     Structure                            1 Row x 7 Cells Side to Side
            The number of cells
            in series is input as
            a model parameter                        Number of Cells                      7



                                         Voltage Rated                                    8.4
                       NS
                                    Ni - MH Nominal Voltage                               1.2

•   The battery information refer to a battery part number HHR-150AAB01F7
    of Panasonic.


                                All Rights Reserved Copyright (C) Bee Technologies 2011                                  64
6.1 Charge Time Characteristic, NS=7
                                                                          The battery needs 5 hours to be fully charged
    12.6V



    11.9V



    11.2V



    10.5V

                                             Voltage
     9.8V



     9.1V



     8.4V



     7.7V



     7.0V
            0s           1s   2s           3s          4s        5s         6s          7s        8s          9s      10s
                 V(HI)                                                                                                    (hour)
                                                                Time



•   Charging Current: 300mA (0.2 Charge)


                                   All Rights Reserved Copyright (C) Bee Technologies 2011                                     65
6.1 Charge Time Characteristic, NS=7
   Simulation Circuit and Setting


                 PARAMETERS:
                 rate = 0.2
                 CAh = 1500m


                                                                               HI
Charge Voltage                   OUT+
                                 OUT-
                                                                         C1
                      Vin                                                10n
                      12V
                                                                        0                   IBATT
                                 IN+
                                 IN-




                            G1
                            Limit(V(%IN+, %IN-)/1m, 0, rate*CAh )                                   0
                  0                                                                 +   -     NI-MH_BATTERY
                                                                                              TSCALE = 3600
                                                                                    U1        C = 1500M
                                                                                              SOC = 0
                                                                                              NS = 7
                                                                                                        1 hour into a second
                                                                                                           (in simulation)

    •    *Analysis directives:
    •    .TRAN 0 5.2 0 2.5m
    •    .PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                  All Rights Reserved Copyright (C) Bee Technologies 2011                                  66
6.2 Discharge Time Characteristic, NS=7
     11.2V



     10.5V



      9.8V



      9.1V

                                                                                           0.2C
      8.4V
                                            0.5C

      7.7V                 1C


      7.0V



      6.3V
             0s           1.0s             2.0s              3.0s              4.0s               5.0s   6.0s
                  V(HI)                                                                                     (hour)
                                                             Time



• Voltage - Rated: 8.4V
• Discharging Current: 300mA(0.2C), 750mA(0.5C), 1500mA(1.0C)

                                 All Rights Reserved Copyright (C) Bee Technologies 2011                             67
6.2 Discharge Time Characteristic, NS=7
      Simulation Circuit and Setting
    Parametric sweep “rate”
        for multiple rate
     discharge simulation
                              PARAMETERS:
                              rate = 1
                              CAh = 1500m
                                                     sense
                                                                                     HI


                                                                               C1                    0
                IN+    OUT+                                                    10n        +   -   NI-MH_BATTERY
                                                                                                  TSCALE = 3600
                IN-    OUT-                                                0                 U1   C = 1500M
             G1                                                                                   SOC = 1
             GVALUE                                                                               NS = 7
             limit(V(%IN+, %IN-)/1m, 0, rate*CAh )                                                        1 hour into a second
                                                                                                             (in simulation)


                               0


•     *Analysis directives:
•     .TRAN 0 6 0 2.5m
•     .STEP PARAM rate LIST 0.2,0.5,1
•     .PROBE V(*) I(*) W(*) D(*) NOISE(*)
                                   All Rights Reserved Copyright (C) Bee Technologies 2011                               68
Bee Technologies Group




 【本社】                                                           本ドキュメントは予告なき変更をする場合がございます。
                                                                ご了承下さい。また、本文中に登場する製品及びサービス
 株式会社ビー・テクノロジー                                                  の名称は全て関係各社または個人の各国における商標
 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階                           または登録商標です。本原稿に関するお問い合わせは、
 代表電話: 03-5401-3851                                             当社にご連絡下さい。
 設立日:2002年9月10日
 資本金:8,830万円
 【子会社】                                                           お問合わせ先)
 Bee Technologies Corporation (アメリカ)
 Siam Bee Technologies Co.,Ltd. (タイランド)                          info@bee-tech.com
                    All Rights Reserved Copyright (C) Bee Technologies 2011             69

More Related Content

Similar to セミナー資料(20OCT2011)Power Point

トランスのスパイスモデル(PART3)
トランスのスパイスモデル(PART3)トランスのスパイスモデル(PART3)
トランスのスパイスモデル(PART3)
Tsuyoshi Horigome
 
Nityanand gopalika digital detectors for industrial applications
Nityanand gopalika   digital detectors for industrial applicationsNityanand gopalika   digital detectors for industrial applications
Nityanand gopalika digital detectors for industrial applications
Nityanand Gopalika
 
Ph.D. Presentation
Ph.D. PresentationPh.D. Presentation
Ph.D. Presentation
Keddex
 
Menterjemah Lukisan Skematik
Menterjemah Lukisan SkematikMenterjemah Lukisan Skematik
Menterjemah Lukisan SkematikKry Said
 
Training Videovigilancia IP: Capture
Training Videovigilancia IP: CaptureTraining Videovigilancia IP: Capture
Training Videovigilancia IP: Capture
Nestor Carralero
 
Contract Manufacturing Location India -ECDS
Contract Manufacturing Location India -ECDSContract Manufacturing Location India -ECDS
Contract Manufacturing Location India -ECDS
Ecds India
 
Ot Tech Site Ahlgren
Ot Tech Site AhlgrenOt Tech Site Ahlgren
Ot Tech Site Ahlgren
Deb Ahlgren
 
Situation Normal Everything Must Change - from innovation to commoditisation ...
Situation Normal Everything Must Change - from innovation to commoditisation ...Situation Normal Everything Must Change - from innovation to commoditisation ...
Situation Normal Everything Must Change - from innovation to commoditisation ...
Simon Wardley
 
01 introduction image processing analysis
01 introduction image processing analysis01 introduction image processing analysis
01 introduction image processing analysis
Rumah Belajar
 
SPICE MODEL of BT151X-500 in SPICE PARK
SPICE MODEL of BT151X-500 in SPICE PARKSPICE MODEL of BT151X-500 in SPICE PARK
SPICE MODEL of BT151X-500 in SPICE PARK
Tsuyoshi Horigome
 
capacitor-inspection-system.pptx
capacitor-inspection-system.pptxcapacitor-inspection-system.pptx
capacitor-inspection-system.pptx
Neometrix_Engineering_Pvt_Ltd
 
SPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARKSPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARK
Tsuyoshi Horigome
 
Technical portfolio03 16 17
Technical portfolio03 16 17Technical portfolio03 16 17
Technical portfolio03 16 17
Technical Optics LLC
 
Mems seismology
Mems seismologyMems seismology
Mems seismologyajsatienza
 
Mems seismology
Mems seismologyMems seismology
Mems seismologyajsatienza
 
SPICE MODEL of MCR68-2 in SPICE PARK
SPICE MODEL of MCR68-2 in SPICE PARKSPICE MODEL of MCR68-2 in SPICE PARK
SPICE MODEL of MCR68-2 in SPICE PARK
Tsuyoshi Horigome
 
An Introduction to Deep Learning with Apache MXNet (November 2017)
An Introduction to Deep Learning with Apache MXNet (November 2017)An Introduction to Deep Learning with Apache MXNet (November 2017)
An Introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
Design & simulation capability
Design & simulation capabilityDesign & simulation capability
Design & simulation capabilityrogercooke
 
V diagram por inverter control
V diagram por inverter controlV diagram por inverter control
V diagram por inverter control
Javier Gutierrez
 

Similar to セミナー資料(20OCT2011)Power Point (20)

トランスのスパイスモデル(PART3)
トランスのスパイスモデル(PART3)トランスのスパイスモデル(PART3)
トランスのスパイスモデル(PART3)
 
Nityanand gopalika digital detectors for industrial applications
Nityanand gopalika   digital detectors for industrial applicationsNityanand gopalika   digital detectors for industrial applications
Nityanand gopalika digital detectors for industrial applications
 
Ph.D. Presentation
Ph.D. PresentationPh.D. Presentation
Ph.D. Presentation
 
Menterjemah Lukisan Skematik
Menterjemah Lukisan SkematikMenterjemah Lukisan Skematik
Menterjemah Lukisan Skematik
 
Training Videovigilancia IP: Capture
Training Videovigilancia IP: CaptureTraining Videovigilancia IP: Capture
Training Videovigilancia IP: Capture
 
Contract Manufacturing Location India -ECDS
Contract Manufacturing Location India -ECDSContract Manufacturing Location India -ECDS
Contract Manufacturing Location India -ECDS
 
Ot Tech Site Ahlgren
Ot Tech Site AhlgrenOt Tech Site Ahlgren
Ot Tech Site Ahlgren
 
Situation Normal Everything Must Change - from innovation to commoditisation ...
Situation Normal Everything Must Change - from innovation to commoditisation ...Situation Normal Everything Must Change - from innovation to commoditisation ...
Situation Normal Everything Must Change - from innovation to commoditisation ...
 
01 introduction image processing analysis
01 introduction image processing analysis01 introduction image processing analysis
01 introduction image processing analysis
 
SPICE MODEL of BT151X-500 in SPICE PARK
SPICE MODEL of BT151X-500 in SPICE PARKSPICE MODEL of BT151X-500 in SPICE PARK
SPICE MODEL of BT151X-500 in SPICE PARK
 
capacitor-inspection-system.pptx
capacitor-inspection-system.pptxcapacitor-inspection-system.pptx
capacitor-inspection-system.pptx
 
virtual studio
virtual studiovirtual studio
virtual studio
 
SPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARKSPICE MODEL of PS2501L-1 in SPICE PARK
SPICE MODEL of PS2501L-1 in SPICE PARK
 
Technical portfolio03 16 17
Technical portfolio03 16 17Technical portfolio03 16 17
Technical portfolio03 16 17
 
Mems seismology
Mems seismologyMems seismology
Mems seismology
 
Mems seismology
Mems seismologyMems seismology
Mems seismology
 
SPICE MODEL of MCR68-2 in SPICE PARK
SPICE MODEL of MCR68-2 in SPICE PARKSPICE MODEL of MCR68-2 in SPICE PARK
SPICE MODEL of MCR68-2 in SPICE PARK
 
An Introduction to Deep Learning with Apache MXNet (November 2017)
An Introduction to Deep Learning with Apache MXNet (November 2017)An Introduction to Deep Learning with Apache MXNet (November 2017)
An Introduction to Deep Learning with Apache MXNet (November 2017)
 
Design & simulation capability
Design & simulation capabilityDesign & simulation capability
Design & simulation capability
 
V diagram por inverter control
V diagram por inverter controlV diagram por inverter control
V diagram por inverter control
 

More from Tsuyoshi Horigome

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Tsuyoshi Horigome
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
Tsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
Tsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
Tsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
Tsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
Tsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 

Recently uploaded (20)

GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 

セミナー資料(20OCT2011)Power Point

  • 1. PSpiceアプリケーションセミナー シンプルモデルの活用でPSpiceを有効活用 シンプルモデル = ユーザーが簡単にモデリング可能 スペックを入力するだけでモデリング完成 簡単・便利 2011年10月20日 株式会社ビー・テクノロジー http://www.beetech.info/ All Rights Reserved Copyright (C) Bee Technologies 2011 1
  • 2. ビー・テクノロジーの事業分野 環境分野 エンジニアリン スパイス・パー グサービス ク 自社ブランド 【太陽光システ 日本語版 ム】 ●シンプルモデル ●デバイスモデリン 【日本市場】 ●コンセプトキット 【自然エネル グ・ ギー】 ●デザインキット サービス ●デバイスモデリング ●デザインキット・ 教材 システム・シミュレー サービス ション 詳細シミュレーション スパイス・パー ク グローバル版 【世界市場】 All Rights Reserved Copyright (C) Bee Technologies 2011 2
  • 3. お客様を徹底的にサポートする [第三の壁] シミュレーション が実機波形と合わ ない。ゼロから動 かすのは物凄く工 数がかかる。 各回路方式のシ [第二の壁] ミュレーションの 自分がシミュレー テンプレートをご ションしたい電子 提供 部品のスパイスモ デザインキット デルが揃わない。 シンプルキット [第一の壁] スパイス・パーク お客様の回路図を 回路解析 デバイスモデリン 回路解析シミュ シミュレータの導 グサービス レーションデータ 入 でサポート 一式でご提供 All Rights Reserved Copyright (C) Bee Technologies 2011 3
  • 4. デバイスモデリングサービス お客様の必要なスパイスモデルをご提供致します [半導体部品] サイリスタ 水晶発振子 ダイオード PWM IC 抵抗 ショットキ・バリア・ダイオード アナログIC [バッテリー] ツェナー・ダイオード デジタルトランジスタ アルカリ電池 レーザー・ダイオード BRT リチウム電池 LED デジタルIC リチウムイオン電池 Junction FET PUT ニッケルマンガン電池 MOSFET 水晶振動子 ニッケル水素電池 トランジスタ フォトダイオード オキサイド電池 ダーリントン・トランジスタ PINダイオード マンガン電池 IGBT ESDデバイス 太陽電池 ボルテージ・リファレンス バス・スイッチ 鉛蓄電池 ボルテージ・レギュレータ [受動部品] リチウムポリマー電池 シャント・レギュレータ セラミックコンデンサ [機構部品] オペアンプ 電解コンデンサ トグルスイッチ コンパレータ フィルムコンデンサ スピーカー サイダック チョークコイル [モータ] フォトカプラ コモンモード・チョークコイル DCモータ 光デバイス チョークコイル ステッピングモーター バリスタ トランス [ランプ] サージ・アブソーバ コイル 白熱電球 サーミスタ コア ハロゲンランプ All Rights Reserved Copyright (C) Bee Technologies 2011 4
  • 5. スパイス・パーク 購入し やすい 便利 検証 データ http://www.spicepark.com メールアドレスとパスワードのご登録でご利用できます。 グローバル版も順次公開中→ http://spicepark.net 3,709モデルをご提供(2011年10月12日現在) All Rights Reserved Copyright (C) Bee Technologies 2011 5
  • 6. [NEW] シンプルモデル 製品 価格(円) PSpice版 LTspice版 DCDCコンバータ 15,750 ご提供開始 ご提供開始 DCACインバータ 15,750 ご提供開始 ご提供開始 三相インバータ 15,750 ご提供開始 ご提供開始 DC電源 15,750 ご提供開始 ご提供開始 ヒューズモデル 15,750 ご提供開始 ご提供開始 リチウムイオン電池モデル 84,000 ご提供開始 ご提供開始 ニッケル水素電池モデル 84,000 ご提供開始 ご提供開始 鉛蓄電池モデル 84,000 開発中 開発中 あったら便利なアプリ的なスパイスモデルです。詳細はhttp://ow.ly/5sw4N です。 All Rights Reserved Copyright (C) Bee Technologies 2011 6
  • 7. [NEW]コンセプトキットとは 製品 価格(円) PSpice版 LTspice版 ユニポーラステッピングモータ制御回 42,000 ご提供中 ご提供中 路 バイポーラステッピングモータ制御回 42,000 ご提供中 ご提供中 路 アベレージモデルの降圧コンバータ 84,000 ご提供中 ご提供中 過渡解析モデルの降圧コンバータ 63,000 ご提供中 ご提供中 アベレージモデルの昇圧コンバータ 84,000 ご提供中 ご提供中 過渡解析モデルの昇圧コンバータ 63,000 ご提供中 ご提供中 詳細は、 http://ow.ly/5swdV をご参照下さい。 All Rights Reserved Copyright (C) Bee Technologies 2011 7
  • 8. デザインキット(パッケージ商品) 製品 分野 FCC回路 電源回路 RCC回路 電源回路 低損失リニアレギュレータ 電源回路 高精度リニアレギュレータ 電源回路 D級アンプ アンプ回路 擬似共振電源回路 電源回路 マイクロコントローラ 電源回路 ステッピングモータドライブ回路 モーター制御回路 PWM ICによる電源回路 電源回路 バッテリー回路(リチウムイオン電池) バッテリーアプリケーション回路 バッテリー回路(ニッケル水素電池) バッテリーアプリケーション回路 バッテリー回路(鉛蓄電池) バッテリーアプリケーション回路 DCDCコンバータ 電源回路 DCモータ制御回路 モーター制御回路 上記の価格は、こちらのサイトでご確認出来ます。特にご要望が多い インバータ回路方式を中心に20種類の新製品を開発中。 All Rights Reserved Copyright (C) Bee Technologies 2011 8
  • 10. デバイスモデリング教材 All Rights Reserved Copyright (C) Bee Technologies 2011 10
  • 11. シンプルモデルとは All Rights Reserved Copyright (C) Bee Technologies 2011 11
  • 12. シンプルモデルとは 価格は2011年9月現在、5万円以下です。 All Rights Reserved Copyright (C) Bee Technologies 2011 12
  • 13. シンプルモデルとは (1)DC電源モデル ⇒Vdcでは負荷抵抗によって、無限大の電流が流れてしまう ⇒安全動作領域が考慮されたモデル (2)ヒューズモデル ⇒SPICEシミュレーションには破壊の概念がない ⇒定格を超えてもエラーメッセージもないままにシミュレーションできてしまう ⇒I^2tのエネルギーを考慮したモデルであり、 破壊の概念をシミュレーションに反映できる (3)&(4)バッテリーモデル ⇒充放電特性モデルであり、バッテリーのアプリケーション回路で シミュレーションできます ⇒2011年9月2日現在では(3)リチウムイオン電池、(4)ニッケル水素電池をご提供 現在、鉛蓄電池のシンプルモデルを開発中 All Rights Reserved Copyright (C) Bee Technologies 2011 13
  • 14. DC Power Supply Simplified SPICE Behavioral Model [PSpice Version] All Rights Reserved Copyright (C) Bee Technologies 2011 14
  • 15. Contents 1. Model Overview 2. Benefit of the Model 3. Concept of the Model 4. DC Power Supply Specification (Example) 5. Parameter Settings 6. Operation Area Characteristics 6.1 Simulation Circuit and Setting 7. Rated Output Voltage Characteristics 7.1 Simulation Circuit and Setting Simulation Index All Rights Reserved Copyright (C) Bee Technologies 2011 15
  • 16. 1. Model Overview • This DC Power Supply Simplified SPICE Behavioral Model is for users who require the model of a DC power supply as a part of their system. • The model focuses on the power supply’s behavior in their operation area, which user can input rated voltage, rated power, and maximum output current. Output Voltage [V] Rated output voltage Rated output line (from Rated Power) Operation Area Maximum output current Output Current [A] All Rights Reserved Copyright (C) Bee Technologies 2011 16
  • 17. 2. Benefit of the Model • Can be easily adjusted to your own DC power supply specifications by editing the model parameters. • The simplified model is an easy-to-use, which can be provided without the circuit detail. • Time and costs are saved because only the necessary parts are simulated. All Rights Reserved Copyright (C) Bee Technologies 2011 17
  • 18. 3. Concept of the Model Load Current DC Power Supply + Simplified SPICE Behavioral Model VOUT [Spec: PRATED, VMAX, IMAX] Adjustable VOUT ( VMAX) - • The model is characterized by parameters: VMAX, POWER (for PRATED), VOUT and IMAX, which represent the output voltage vs. output current characteristics of the power supply. All Rights Reserved Copyright (C) Bee Technologies 2011 18
  • 19. 4.DC Power Supply Specification (Example) Load Current DC Power Supply + Simplified SPICE Behavioral Model VOUT [Spec: PRATED, VMAX, IMAX] Adjustable VOUT ( VMAX) - • DC Power Supply with • POWER = 1600W, VMAX = 80Vdc, and IMAX = 160Adc • VOUT is adjustable between 0 to 80V (VMAX) All Rights Reserved Copyright (C) Bee Technologies 2011 19
  • 20. 5. Parameter Settings (Example) Model Parameters: POWER Rated power – e.g. 400W, 800W, 1600W – Value = <POWER> U1 VMAX DC maximum output voltage – e.g. 80V, 320V, 650V DC_POWER_SUPPLY – Value = <VMAX> POWER = 1600W VMAX = 80Vdc IMAX DC maximum output current IMAX = 160Adc – e.g. 40A, 80A, 160A VOUT = 80Vdc – Value = <IMAX> VOUT Output voltage – 0 ~ VMAX – Value = <VOUT> • From the DC power supply specification, the model is characterized by setting parameters POWER, VMAX, and IMAX, then input VOUT value (from 0 to VMAX). All Rights Reserved Copyright (C) Bee Technologies 2011 20
  • 21. 6. Operation Area Characteristics 100V (20.000,79.991) 80V Rated output voltage 60V 40V Rated output line 20V Rated operation (160.000,9.990) range Maximum output current 0V 0A 20A 40A 60A 80A 100A 120A 140A 160A 180A 200A V(OUT) I(OUT) All Rights Reserved Copyright (C) Bee Technologies 2011 21
  • 22. 6.1 Simulation Circuit and Setting OUT OUT DC Sweep: ILOAD U1 0-200A DC_POWER_SUPPLY POWER = 1600W VMAX = 80Vdc ILOAD IMAX = 160Adc VOUT = 80Vdc 0 • *Analysis directives: • .DC LIN I_ILOAD 0 200 10m • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 22
  • 23. 7. Rated Output Voltage Characteristics 100V V(OUT) is limited by the model parameter VMAX (80V) 80V, and 100V 80V 60V 60V Parameter VOUT = 40V 40V 20V 0V 0s 10ms V(OUT) Time All Rights Reserved Copyright (C) Bee Technologies 2011 23
  • 24. 7.1 Simulation Circuit and Setting Sweep VOUT with 40, 60, 80, and 100 V OUT PARAMETERS: OUT OUTPUT = 0Vdc U1 Open Load DC_POWER_SUPPLY POWER = 1600W VMAX = 80Vdc RL_Open IMAX = 160Adc 100MEG VOUT = {OUTPUT} 0 • *Analysis directives: • .TRAN 0 10m 0 10u • .STEP PARAM OUTPUT LIST 40,60,80,100 • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 24
  • 25. Fuse Simplified SPICE Behavioral Model All Rights Reserved Copyright (C) Bee Technologies 2011 25
  • 26. Contents 1.Benefit of the Model 2.Model Feature 3.Parameter Settings 4.Fuse Specification (Example) 5.Fusing Time vs. DC Current 6.Fusing Time vs. Current Pattern 7.Specific Fuse Model Simulation Index All Rights Reserved Copyright (C) Bee Technologies 2011 26
  • 27. 1. Benefit of the Model • Easily create your own fuse models by setting a few parameters, that’s usually provided by the manufacturer’s datasheet. • Enables circuit designer to safely test and optimize their circuit protection design, and to predict component and circuit stress under extreme conditions (e.g. at the fuse blow). • The model is optimized to reduce the convergence error. All Rights Reserved Copyright (C) Bee Technologies 2011 27
  • 28. 2. Model Feature The model accounts for: 10 • Current Rating • Fuse Factor 1 Fusing Time (Sec.) • Internal Resistance 0.1 • Normal Melting I2t Enable the model to simulate fusing time (blow time) as a function of I2t. 0.01 The model can be used for testing the 0.001 blow time for the different current 0.1 1 10 100 pattern. Fusing Current (A) A one-shot switch, once fuse is opened it Fig.1 Fusing Time vs. Fusing Current Characteristic cannot be closed. All Rights Reserved Copyright (C) Bee Technologies 2011 28
  • 29. 3. Parameter Settings • From the fuse specification, the model is characterized by setting parameters Irate, FF, Rint and I2t. Model Parameters: U1 Irate = the current rating of fuse [A] FF = Fusing Factor, the ratio of the minimum fusing current (the current FUSE that fuse start to heat up) to Irate. (e.g. Irate =400mA and the minimum IRATE = 400m fusing current is 620mA then FF = FF = 1.55 620m/400m = 1.55) RINT = 650m Rint = internal resistance of fuse I2T = 0.024 I2t = Normal Melting value [A2, seconds] Fig.2 Fuse model with default parameters All Rights Reserved Copyright (C) Bee Technologies 2011 29
  • 30. 4. Fuse Specification (Example) 10 Current Internal I2t (A2, the minimum fusing current Part No. Rating R. max. seconds is 620mA, FF = 20m/400m = 1.55 (mA) (m ) ) 1 Fusing Time (Sec.) CCF1N0.4 400 650 0.024 0.1 U1 0.01 FUSE IRATE = 400m FF = 1.55 0.001 RINT = 650m 0.1 1 10 100 I2T = 0.024 Fusing Current (A) Fig.3 Shows the complete setting of fuse model parameters by using data from the datasheet of CCF1N0.4 provided by KOA Speer Electronics, Inc. All Rights Reserved Copyright (C) Bee Technologies 2011 30
  • 31. 5. Fusing Time vs. DC Current Simulation Result Simulation Circuit 10A PARAMETERS: (960.962u,5.0000) dc_current = 1 sense U1 tF = 960.962usec. at IF = 5A FUSE I1 IRATE = 400m (6.0051m,2.0000) I1 = 0 FF = 1.55 RL I2 = {dc_current} RINT = 650m 1 tF = 6.0051msec. at IF = 2A I2T = 0.024 T1 = 0 (24.013m,1.0000) T2 = 100n 1.0A tF = 24.013msec. at IF = 1A 0 0 *Analysis directives: .TRAN 0 1s 500u 100u .STEP PARAM dc_current LIST 1, 2, 5 100mA 1.0ms 10ms 100ms 1.0s I(sense) Time • The simulation result shows the fusing times, tF, (the time that fuse blows) at the different fuse currents, IF . All Rights Reserved Copyright (C) Bee Technologies 2011 31
  • 32. 5. Fusing Time vs. DC Current Comparison Graph 10 Measurement Simulation 1 Fusing Time (Sec.) 0.1 0.01 0.001 0.1 1 10 100 Fusing Current • Graph shows the comparison result between the simulation result vs. the measurement data. The fusing current error (average from 0.001-10 sec.) = 4.9% All Rights Reserved Copyright (C) Bee Technologies 2011 32
  • 33. 6 Fusing Time vs. Current Pattern Simulation Result Simulation Circuit 2.0A sense1 U1 1.5A tF = 149.796msec. for triangle wave FUSE I1 IRATE = 400m (149.796m,959.222m) IOFF = 0 FF = 1.55 RL1 RINT = 650m 1 1.0A FREQ = 50 I2T = 0.024 IAMPL = 1 PHASE = -90 0 0 0.5A sense2 U2 0A FUSE I2 IRATE = 400m -0.5A TD = 0 FF = 1.55 RL2 TF = 10m RINT = 650m 1 I2T = 0.024 PW = 0 -1.0A PER = 20m 0 I1 = -1 0 I2 = 1 (59.503m,-987.814m) TR = 10m -1.5A tF = 59.503msec. for sine wave -2.0A .TRAN 0 0.2s 0 100u 0s 20ms 40ms 60ms 80ms 100ms 140ms 180ms I(sense1) I(sense2) Time • The simulation result shows the fusing times, tF, (the time that fuse blows) for the same peak current but different in current patterns(waveforms). All Rights Reserved Copyright (C) Bee Technologies 2011 33
  • 34. 7. Specific Fuse Model Comparison Graph 10 Measurement Simulation U1 1 Error reduce to 0.4% Fusing Time (Sec.) CCF1N0_4 0.1 Model of fuse part number 0.01 CCF10.4, all parameters and function are already set 0.001 0.1 1 10 100 Fusing Current If the most accurate result is required, we could provide the specific model that optimized for each part number of fuse. The fusing current error (average from 0.001- 10 sec.) will reduce from 4.9% (simplified model) to 0.4% (specific fuse model) All Rights Reserved Copyright (C) Bee Technologies 2011 34
  • 35. Lithium Ion Battery Simplified SPICE Behavioral Model All Rights Reserved Copyright (C) Bee Technologies 2011 35
  • 36. Contents 1. Benefit of the Model 2. Model Feature 3. Concept of the Model 4. Parameter Settings 5. Li-Ion Battery Specification (Example) 5.1 Charge Time Characteristic 5.2 Discharge Time Characteristic 5.3 Vbat vs. SOC Characteristic 6. Extend the number of Cell (Example) 6.1 Charge Time Characteristic, NS=4 6.2 Discharge Time Characteristic, NS=4 Simulation Index All Rights Reserved Copyright (C) Bee Technologies 2011 36
  • 37. 1. Benefit of the Model • The model enables circuit designer to predict and optimize battery runtime and circuit performance. • The model can be easily adjusted to your own battery specifications by editing a few parameters that are provided in the datasheet. • The model is optimized to reduce the convergence error and the simulation time All Rights Reserved Copyright (C) Bee Technologies 2011 37
  • 38. 2. Model Feature • This Li-Ion Battery Simplified SPICE Behavioral Model is for users who require the model of a Li-Ion Battery as a part of their system. • Battery Voltage(Vbat) vs. Battery Capacity Level (SOC) Characteristic, that can perform battery charge and discharge time at various current rate conditions, are accounted by the model. • As a simplified model, the effects of cycle number and temperature are neglected. All Rights Reserved Copyright (C) Bee Technologies 2011 38
  • 39. 3. Concept of the Model Li-Ion battery + Simplified SPICE Behavioral Model Output [Spec: C, NS] Characteristics Adjustable SOC [ 0-1(100%) ] - • The model is characterized by parameters: C, which represent the battery capacity and SOC, which represent the battery initial capacity level. • Open-circuit voltage (VOC) vs. SOC is included in the model as an analog behavioral model (ABM). • NS (Number of Cells in series) is used when the Li-ion cells are in series to increase battery voltage level. All Rights Reserved Copyright (C) Bee Technologies 2011 39
  • 40. 4. Parameter Settings Model Parameters: C is the amp-hour battery capacity [Ah] – e.g. C = 0.3, 1.4, or 2.8 [Ah] NS is the number of cells in series – e.g. NS=1 for 1 cell battery, NS=2 for 2 cells + - LI-ION_BATTERY battery (battery voltage is double from 1 cell) TSCALE = 1 U1 C = 1.4 SOC is the initial state of charge in percent SOC = 1 – e.g. SOC=0 for a empty battery (0%), SOC=1 for a full charged battery (100%) NS = 1 (Default values) TSCALE turns TSCALE seconds into a second – e.g. TSCALE=60 turns 60s or 1min into a second, TSCALE=3600 turns 3600s or 1h into a second, • From the Li-Ion Battery specification, the model is characterized by setting parameters C, NS, SOC and TSCALE. All Rights Reserved Copyright (C) Bee Technologies 2011 40
  • 41. 5. Li-Ion Battery Specification (Example) Nominal Voltage 3.7V + - LI-ION_BATTERY TSCALE = 60 Nominal Typical 1400mAh (0.2C discharge) Capacity U1 SOC = 1 C = 1.4 Charging Voltage 4.20V±0.05V NS = 1 Battery capacity Charging Std. Current 700mA is input as a model parameter Charge 1400mA Max Current Discharge 2800mA Discharge cut-off voltage 2.75V • The battery information refer to a battery part number LIR18500 of EEMB BATTERY. All Rights Reserved Copyright (C) Bee Technologies 2011 41
  • 42. 5.1 Charge Time Characteristic Measurement Simulation 1.0V Capacity=100% 0.8V 0.6V 0.4V 0.2V 0V V(X_U1.SOC) 4.4V 1.4A 1 2 4.2V 1.2A 4.0V 1.0A Voltage=4.20V 3.8V 0.8A + - LI-ION_BATTERY 3.6V 0.6A 3.4V 0.4A TSCALE = 60 Current=700mA 3.2V U1 C = 1.4 SEL>> 3.0V 0A SOC = 0 0s 50s 100s 150s 200s NS = 1 1 V(HI) 2 I(IBATT) Time (minute) SOC=0 means battery start from 0% of capacity (empty) • Charging Voltage: 4.20V±0.05V • Charging Current: 700mA (0.5 Charge) All Rights Reserved Copyright (C) Bee Technologies 2011 42
  • 43. 5.1 Charge Time Characteristic Simulation Circuit and Setting PARAMETERS: Over-Voltage Protector: N=1 (Charging Voltage*1) - VF of D1 CAh = 1.4 rate = 0.5 D1 DMOD HI Voch Input Voltage OUT+ OUT- C1 {(4.20*N)-8.2m} Vin 10n 5V IBATT IN+ IN- 0 0 G1 Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) 0 0 + - LI-ION_BATTERY TSCALE = 60 U1 C = 1.4 SOC = 0 1 minute in seconds NS = {N} • *Analysis directives: • .TRAN 0 200 0 0.5 • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 43
  • 44. 5.2 Discharge Time Characteristic • Battery voltage vs. time are simulated at 0.2C, 0.5C, and 1C discharge rates. PARAMETERS: rate = 1 CAh = 1.4 4.4V sense 4.2V HI 4.0V C1 0 10n 0.2C + - LI-ION_BATTERY 3.8V TSCALE = 60 0 U1 C = 1.4 IN+ OUT+ SOC = 1 3.6V NS = 1 IN- OUT- G1 limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) 3.4V 0.5C 3.2V TSCALE turns 1 minute in seconds, 0 battery starts from 100% of capacity (fully charged) 3.0V 1C 2.8V 2.6V *Analysis directives: 0s 100s 200s 300s 400s V(HI) (minute) .TRAN 0 300 0 0.5 Time .STEP PARAM rate LIST 0.2,0.5,1 .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 44
  • 45. 5.3 Vbat vs. SOC Characteristic Measurement Simulation 4.40 4.20 4.00 0.2C 3.80 Voltage (V) 0.5C 3.60 1C 3.40 3.20 3.00 2.80 2.60 1 0.8 0.6 0.4 0.2 0 -0.2 Capacity (%) Simulation 1.2 + - LI-ION_BATTERY Discharge Capacity 1.0 TSCALE = 60 (%vs. 0.2C) U1 C = 1.4 0.8 SOC = 1 0.6 NS = 1 0.4 Mesurement 0.2 Simulation 0.0 • Nominal Voltage: 3.7V 0 0.2 0.4 0.6 0.8 1 • Capacity: 1400mAh (0.2C discharge) Battery Discharge Current (vs. C Rate) • Discharge cut-off voltage: 2.75V All Rights Reserved Copyright (C) Bee Technologies 2011 45
  • 46. 5.3 Vbat vs. SOC Characteristic Simulation Circuit and Setting PARAMETERS: rate = 0.2 CAh = 1.4 sense HI C1 0 10n IN+ OUT+ + - LI-ION_BATTERY TSCALE = 60 IN- OUT- 0 U1 C = 1.4 G1 SOC = 1 limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) NS = 1 1 minute in seconds 0 • *Analysis directives: • .TRAN 0 296.82 0 0.5 • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 46
  • 47. 6. Extend the number of Cell (Example) Li-ion needs 4 cells to reach this voltage level Basic Specification + - LI-ION_BATTERY TSCALE = 60 Output Voltage DC 12.8~16.4V U1 SOC = 1 C = 4.4 Capacity of Approximately 4400mAh NS = 4 Input Voltage DC 20.5V The number of cells in series is input as a model parameter Charging Time About 5 hours • The battery information refer to a battery part number PBT-BAT-0001 of BAYSUN Co., Ltd. All Rights Reserved Copyright (C) Bee Technologies 2011 47
  • 48. 6.1 Charge Time Characteristic, NS=4 The battery needs 5 hours to be fully charged 1.0V Capacity=100% 0.8V 0.6V 0.4V 0.2V SEL>> 0V V(X_U1.SOC) 18V 2.4A 1 2 17V 2.0A 16V 1.6A Voltage=16.8V 15V 1.2A 14V 0.8A 13V Current=880mA >> 12V 0A 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 1 V(HI) 2 I(IBATT) (hour) Time • Input Voltage: 20.5V • Charging Voltage: 16.8V • Charging Current: 880mA (0.2 Charge) All Rights Reserved Copyright (C) Bee Technologies 2011 48
  • 49. 6.1 Charge Time Characteristic, NS=4 Simulation Circuit and Setting PARAMETERS: Over-Voltage Protector: N=4 (Charging Voltage*4) - VF of D1 CAh = 4.4 rate = 0.2 D1 DMOD HI Voch Input Voltage OUT+ OUT- C1 {(4.2*N)-8.2m} Vin 10n 20.5V IBATT IN+ IN- 0 0 G1 Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) 0 0 + - LI-ION_BATTERY TSCALE = 3600 U1 C = 4.4 SOC = 0 1 Hour in seconds NS = {N} • *Analysis directives: • .TRAN 0 10 0 0.05 • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 49
  • 50. 6.2 Discharge Time Characteristic, NS=4 18V 17V 16.4V 16V Output 15V voltage 0.5C range 14V 12.8V 13V 1C 12V 11V 10V 0s 0.4s 0.8s 1.2s 1.6s 2.0s V(HI) (hour) Time • Charging Voltage: 16.8V • Charging Current: 880mA (0.2 Charge) All Rights Reserved Copyright (C) Bee Technologies 2011 50
  • 51. 6.2 Discharge Time Characteristic, NS=4 Simulation Circuit and Setting Parametric sweep “rate” PARAMETERS: rate = 1 CAh = 4.4 sense HI C1 0 10n IN+ OUT+ + - LI-ION_BATTERY TSCALE = 3600 IN- OUT- 0 U1 C = 4.4 G1 SOC = 1 limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) NS = 4 1 Hour in seconds 0 • *Analysis directives: • .TRAN 0 3 0 0.05 • .STEP PARAM rate LIST 0.5,1 • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 51
  • 52. Nickel-Metal Hydride Battery Simplified SPICE Behavioral Model All Rights Reserved Copyright (C) Bee Technologies 2011 52
  • 53. Contents 1. Benefit of the Model 2. Model Feature 3. Concept of the Model 4. Parameter Settings 5. Ni-Mh Battery Specification (Example) 5.1 Charge Time Characteristic 5.2 Discharge Time Characteristic 5.3 Vbat vs. SOC Characteristic 6. Extend the number of Cell (Example) 6.1 Charge Time Characteristic, NS=7 6.2 Discharge Time Characteristic, NS=7 Simulation Index All Rights Reserved Copyright (C) Bee Technologies 2011 53
  • 54. 1. Benefit of the Model • The model enables circuit designer to predict and optimize Ni-MH battery runtime and circuit performance. • The model can be easily adjusted to your own Ni-MH battery specifications by editing a few parameters that are provided in the datasheet. • The model is optimized to reduce the convergence error and the simulation time. All Rights Reserved Copyright (C) Bee Technologies 2011 54
  • 55. 2. Model Feature • This Ni-MH Battery Simplified SPICE Behavioral Model is for users who require the model of a Ni-MH Battery as a part of their system. • The model accounts for Battery Voltage(Vbat) vs. Battery Capacity Level (SOC) Characteristic, so it can perform battery charge and discharge time at various current rate conditions. • As a simplified model, the effects of cycle number and temperature are neglected. All Rights Reserved Copyright (C) Bee Technologies 2011 55
  • 56. 3. Concept of the Model Ni-Mh battery + Simplified SPICE Behavioral Model Output [Spec: C, NS] Characteristics Adjustable SOC [ 0-1(100%) ] - • The model is characterized by parameters: C which represent the battery capacity and SOC which represent the battery initial capacity level. • Open-circuit voltage (VOC) vs. SOC is included in the model as an analog behavioral model (ABM). • NS (Number of Cells in series) is used when the Ni-mh cells are in series to increase battery voltage level. All Rights Reserved Copyright (C) Bee Technologies 2011 56
  • 57. 4. Parameter Settings Model Parameters: C is the amp-hour battery capacity [Ah] – e.g. C = 0.3, 1.4, or 2.8 [Ah] NS is the number of cells in series + - NI-MH_BATTERY – e.g. NS=1 for 1 cell battery, NS=2 for 2 cells battery TSCALE = 1 (battery voltage is double from 1 cell) U1 C = 1350M SOC = 1 SOC is the initial state of charge in percent NS = 1 – e.g. SOC=0 for a empty battery (0%), SOC=1 for a full charged battery (100%) (Default values) TSCALE turns TSCALE seconds(in the real world) into a second(in simulation) – e.g. TSCALE=60 turns 60s or 1min (in the real world) into a second(in simulation), TSCALE=3600 turns 3600s or 1h into a second. • From the Ni-Mh Battery specification, the model is characterized by setting parameters C, NS, SOC and TSCALE. All Rights Reserved Copyright (C) Bee Technologies 2011 57
  • 58. 5. Ni-Mh Battery Specification (Example) Nominal Voltage 1.2V Typical 1350mAh Capacity + - NI-MH_BATTERY Minimum 1250mAh TSCALE = 1 U1 SOC = 1 C = 1350M Charging Current Time 1350mA about 1.1h NS = 1 Discharge cut-off voltage 1.0V Battery capacity [Typ.] is input as a model parameter • The battery information refer to a battery part number HF-A1U of SANYO. All Rights Reserved Copyright (C) Bee Technologies 2011 58
  • 59. 5.1 Charge Time Characteristic Measurement Simulation 1.8V 1.7V 1.6V 1.5V Charge: 1350mA 1.4V 1.3V 1.2V 1.1V 1.0V 0s 10s 20s 30s 40s 50s 60s 70s 80s V(HI) (min.) Time + - NI-MH_BATTERY • Charging Current: 1350mA about 1.1h TSCALE = 60 U1 C = 1350M SOC = 0 SOC=0 means NS = 1 battery start from 0% of capacity (empty) All Rights Reserved Copyright (C) Bee Technologies 2011 59
  • 60. 5.1 Charge Time Characteristic Simulation Circuit and Setting PARAMETERS: rate = 1 CAh = 1350m HI Charge Voltage OUT+ OUT- C1 Vin 10n 3V 0 IBATT IN+ IN- G1 Limit(V(%IN+, %IN-)/1m, 0, rate*CAh ) 0 0 + - NI-MH_BATTERY TSCALE = 60 U1 C = 1350M A constant current charger at SOC = 0 rate of capacity (e.g. 1 1350mA) NS = 1 1 minute into a second (in simulation) • *Analysis directives: • .TRAN 0 62 0 25m • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 60
  • 61. 5.2 Discharge Time Characteristic • Battery voltage vs. time are simulated at 0.2C, 1.0C, and 2.0C discharge rates. 1.6V PARAMETERS: rate = 1 CAh = 1350m sense 1.5V HI 1.4V C1 0 IN+ OUT+ 10n + - NI-MH_BATTERY TSCALE = 60 IN- OUT- 0 U1 C = 1350M 1.3V 0.2C G1 SOC = 1 GVALUE NS = 1 limit(V(%IN+, %IN-)/1m, 0, rate*CAh ) 1.2V 0 TSCALE turns 1 minute into a 1C 1.1V second(in simulation), battery starts from 100% of capacity (fully charged) 2C 1.0V 0.9V *Analysis directives: 0s 60s V(HI) 120s 180s 240s 300s 360s (min.) .TRAN 0 360 0 100m Time .STEP PARAM rate LIST 0.2,1,2 .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 61
  • 62. 5.3 Vbat vs. SOC Characteristic Measurement Simulation 1.6 0.2C (270mA) 1.5 1.0C (1350mA) 2.0C (2700mA) 1.4 Cell Voltage [V] 1.3 1.2 1.1 270mA 1350mA 1.0 2700mA 0.9 0 250 500 750 1000 1250 1500 Discharge Capacity [mAh] Simulation 1.2 + - NI-MH_BATTERY (% of Rated Capacity) 1.0 TSCALE = 60 Actual Capacity 0.8 U1 C = 1350M SOC = 1 0.6 NS = 1 0.4 Mesurement 0.2 • Nominal Voltage: 1.2V 0.0 Simulation • Capacity: 1350mAh 0 1 2 3 4 5 • Discharge cut-off voltage: 1.0V Discharge Rate (Multiples of C) All Rights Reserved Copyright (C) Bee Technologies 2011 62
  • 63. 5.3 Vbat vs. SOC Characteristic Simulation Circuit and Setting PARAMETERS: rate = 0.2 CAh = 1350m sense HI C1 0 IN+ OUT+ A constant current 10n + - NI-MH_BATTERY discharger at rate of TSCALE = 60 IN- OUT- 0 U1 C = 1350M capacity (e.g. 1 1350mA) G1 SOC = 1 GVALUE NS = 1 limit(V(%IN+, %IN-)/1m, 0, rate*CAh ) 1 minute into a second (in simulation) 0 • *Analysis directives: • .TRAN 0 296.4 0 100m • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 63
  • 64. 6. Extend the number of Cell (Example) Ni-MH needs 7 cells to reach this voltage level Basic Specification + - NI-MH_BATTERY TSCALE = 3600 Voltage - Rated 8.4V U1 SOC = 1 C = 1500M Capacity 1500mAh NS = 7 Structure 1 Row x 7 Cells Side to Side The number of cells in series is input as a model parameter Number of Cells 7 Voltage Rated 8.4 NS Ni - MH Nominal Voltage 1.2 • The battery information refer to a battery part number HHR-150AAB01F7 of Panasonic. All Rights Reserved Copyright (C) Bee Technologies 2011 64
  • 65. 6.1 Charge Time Characteristic, NS=7 The battery needs 5 hours to be fully charged 12.6V 11.9V 11.2V 10.5V Voltage 9.8V 9.1V 8.4V 7.7V 7.0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(HI) (hour) Time • Charging Current: 300mA (0.2 Charge) All Rights Reserved Copyright (C) Bee Technologies 2011 65
  • 66. 6.1 Charge Time Characteristic, NS=7 Simulation Circuit and Setting PARAMETERS: rate = 0.2 CAh = 1500m HI Charge Voltage OUT+ OUT- C1 Vin 10n 12V 0 IBATT IN+ IN- G1 Limit(V(%IN+, %IN-)/1m, 0, rate*CAh ) 0 0 + - NI-MH_BATTERY TSCALE = 3600 U1 C = 1500M SOC = 0 NS = 7 1 hour into a second (in simulation) • *Analysis directives: • .TRAN 0 5.2 0 2.5m • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 66
  • 67. 6.2 Discharge Time Characteristic, NS=7 11.2V 10.5V 9.8V 9.1V 0.2C 8.4V 0.5C 7.7V 1C 7.0V 6.3V 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s V(HI) (hour) Time • Voltage - Rated: 8.4V • Discharging Current: 300mA(0.2C), 750mA(0.5C), 1500mA(1.0C) All Rights Reserved Copyright (C) Bee Technologies 2011 67
  • 68. 6.2 Discharge Time Characteristic, NS=7 Simulation Circuit and Setting Parametric sweep “rate” for multiple rate discharge simulation PARAMETERS: rate = 1 CAh = 1500m sense HI C1 0 IN+ OUT+ 10n + - NI-MH_BATTERY TSCALE = 3600 IN- OUT- 0 U1 C = 1500M G1 SOC = 1 GVALUE NS = 7 limit(V(%IN+, %IN-)/1m, 0, rate*CAh ) 1 hour into a second (in simulation) 0 • *Analysis directives: • .TRAN 0 6 0 2.5m • .STEP PARAM rate LIST 0.2,0.5,1 • .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies 2011 68
  • 69. Bee Technologies Group 【本社】 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス 株式会社ビー・テクノロジー の名称は全て関係各社または個人の各国における商標 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 または登録商標です。本原稿に関するお問い合わせは、 代表電話: 03-5401-3851 当社にご連絡下さい。 設立日:2002年9月10日 資本金:8,830万円 【子会社】 お問合わせ先) Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) info@bee-tech.com All Rights Reserved Copyright (C) Bee Technologies 2011 69