SlideShare a Scribd company logo
Hargreeves [1969]: Part 1
A Review of Results from the
First Decade of Riometry
Auroral Absorption of HF Radio
Waves in the Ionosphere: 
Kevin	
  Urban,	
  NJIT,	
  2015-­‐Feb-­‐20	
  
Riometer	
  Paper	
  Reviews,	
  Spring	
  2015	
  
MoAvaAon:	
  What	
  is	
  a	
  Riometer	
  used	
  to	
  study?	
  
Riometer_RF	
  =	
  20-­‐50	
  MHz	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  Riometer_λ	
  =	
  6	
  –	
  15	
  m	
  	
  
Directly:	
  	
  	
  	
  	
  	
  Short-­‐:me	
  varia:ons	
  in	
  cosmic	
  radio	
  noise	
  intensity	
  
Indirectly:	
  	
  	
  Ionospheric	
  electron	
  density,	
  conduc:vity	
  	
  
Indirectly:	
  	
  	
  Par:cle	
  precipita:on	
  	
  
Causes	
  of	
  this	
  cosmic	
  noise	
  varia:on	
  differ	
  at	
  equatorial	
  
(diurnal	
  solar-­‐control)	
  and	
  polar	
  la:tudes	
  (geomagne:c	
  and	
  
solar	
  events)	
  
*	
  With	
  a	
  riometer,	
  we	
  
measure	
  the	
  absorp:on	
  of	
  
cosmic	
  radio	
  waves,	
  but	
  we	
  
do	
  so	
  as	
  a	
  means	
  to	
  infer	
  
ionospheric	
  parameters,	
  such	
  
as	
  electron	
  density	
  
	
  
*	
  In	
  other	
  words:	
  	
  absorp:on	
  
is	
  a	
  quan:ta:ve	
  observable	
  
(it	
  can	
  be	
  measured!)	
  that	
  
can	
  then	
  be	
  used	
  to	
  deduce	
  
informa:on	
  about	
  other	
  
physical	
  parameters	
  of	
  
interest	
  that	
  might	
  not	
  be	
  
directly	
  or	
  easily	
  measurable,	
  
at	
  least	
  from	
  the	
  ground	
  	
  
Riometers	
  at	
  High	
  LaAtudes	
  
Picture	
  it:	
  	
  You’re	
  on	
  a	
  navy	
  vessel	
  in	
  the	
  1930s,	
  rounding	
  the	
  :p	
  of	
  Antarc:ca;	
  you’re	
  closing	
  in	
  
on	
  the	
  enemy	
  and	
  -­‐-­‐-­‐	
  suddenly,	
  your	
  communica:ons	
  are	
  wiped	
  out.	
  	
  
Two	
  major	
  types	
  of	
  ionospheric	
  radio	
  wave	
  
absorp:on	
  events:	
  
1.  Auroral	
  Absorp:on	
  [AA]	
  
2.  Polar	
  Cap	
  Absorp:on	
  [PCA]	
  
	
  
Both	
  can	
  produce	
  over	
  10	
  dB	
  of	
  absorp:on	
  
on	
  a	
  30MHz	
  riometer,	
  so	
  before	
  satellite	
  era	
  
the	
  categories	
  were	
  dis:nguished	
  by	
  :me	
  
and	
  geographic	
  signatures.	
  	
  	
  
	
  
*	
  Time:	
  PCAs	
  lasted	
  several	
  days	
  while	
  
AA	
  was	
  reserved	
  for	
  rela:vely	
  frequent,	
  
shorter-­‐lived	
  and	
  irregular	
  absorp:on	
  
events.	
  
*	
  Geography:	
  PCA	
  covers	
  the	
  en:re	
  
polar	
  cap,	
  while	
  AA	
  is	
  limited	
  to	
  auroral	
  
zone.	
  
A	
  recommended	
  3rd	
  category	
  by	
  Hargreaves	
  and	
  others	
  circa	
  1969:	
  
3.  Sudden	
  Commencement	
  Absorp:on	
  [SCA]	
  
Auroral	
  AbsorpAon	
  
*	
  Most	
  frequent	
  and	
  most	
  complex	
  high-­‐la:tude	
  type	
  of	
  
absorp:on	
  event	
  
Sporadic	
  and	
  non-­‐obvious:	
  	
  grows	
  and	
  decays	
  with	
  
auroral	
  and	
  magne:c	
  ac:vity,	
  yet	
  does	
  so	
  without	
  
any	
  exact	
  correspondence	
  
	
  
*	
  First	
  iden:fied	
  in	
  Appleton	
  et	
  al	
  [1933]:	
  “Ionospheric	
  
inves:ga:ons	
  in	
  high	
  la:tudes”	
  
	
  They	
  no:ced	
  that	
  reflected	
  radio	
  waves	
  were	
  
weakened	
  or	
  wiped	
  out	
  during	
  periods	
  of	
  auroral	
  
and	
  magne:c	
  ac:vity	
  
	
  
*	
  Produced	
  by	
  the	
  entry	
  of	
  auroral	
  electrons	
  	
  	
  
Appleton	
  [1933]	
  inferred	
  the	
  cause	
  to	
  be	
  "ionizing	
  
charged	
  par:cles	
  [which]	
  produce	
  electrifica:on	
  
below	
  the	
  normal	
  lower	
  region	
  [i.e.,	
  the	
  E	
  region].”	
  	
  
	
  
hfp://spears.lancs.ac.uk/data/summary/interpret/	
  
Polar	
  Cap	
  AbsorpAon	
  
*	
  Due	
  to	
  abnormal	
  ioniza:on	
  produced	
  
by	
  the	
  incidence	
  of	
  solar	
  protons	
  ajer	
  
an	
  intense	
  solar	
  flare.	
  
	
  	
  	
  	
  	
  	
  
*	
  Hargreeves	
  [1969]	
  says	
  PCA	
  was	
  
prefy	
  well	
  understood	
  (solar	
  energe:c	
  
protons	
  from	
  solar	
  flares),	
  unlike	
  AA	
  
hfp://www-­‐istp.gsfc.nasa.gov/istp/outreach/workshop/img/nicky/slide14.jpg	
  
hfp://spears.lancs.ac.uk/data/summary/interpret/	
  
To	
  understand	
  riometers,	
  one	
  must	
  understand	
  the	
  physics	
  they	
  purport	
  to	
  study!	
  
	
  
	
  
	
  
	
  
	
  
Radio	
  Wave	
  PropagaAon	
  in	
  the	
  Ionosphere	
  
Higher	
  ioniza:on	
  rate	
  in	
  atmosphere	
  à	
  higher	
  electron	
  density	
  à	
  more	
  electrons	
  to	
  
steal	
  energy	
  from	
  radio	
  waves	
  	
  à	
  less	
  radio	
  wave	
  energy	
  at	
  riometer	
  site	
  
30	
  MHz	
  
Radio	
  Wave	
  PropagaAon:	
  	
  	
  
Appleton-­‐Hartree	
  Quasi-­‐Longitudinal	
  ApproximaAon	
  
Radio	
  Wave	
  PropagaAon:	
  	
  	
  
Appleton-­‐Hartree	
  Quasi-­‐
Longitudinal	
  ApproximaAon	
  
Np	
  =	
  Neper	
  
Radio	
  Wave	
  PropagaAon:	
  	
  	
  
Appleton-­‐Hartree	
  Quasi-­‐Longitudinal	
  ApproximaAon	
  
If	
  one	
  sets	
  µ=1	
  for	
  the	
  lower	
  ionosphere,	
  one	
  can	
  
compute	
  the	
  "total	
  absorp:on"	
  over	
  a	
  path	
  for	
  
both	
  E-­‐mode	
  (-­‐)	
  and	
  O-­‐mode	
  radio	
  waves	
  (+):	
  
IntuiAve.	
  Easily	
  interpreted.	
  For	
  the	
  general	
  case:	
  Overly	
  simplisAc!	
  
Radio	
  Wave	
  PropagaAon:	
  	
  	
  Sen-­‐Wyller	
  FormulaAon	
  
At	
  low	
  al:tudes,	
  where	
  ν≫ω,	
  the	
  generalized	
  
Sen-­‐Wyller	
  formula	
  recovers	
  the	
  Appleton-­‐
Hartree	
  approxima:on	
  by	
  sesng	
  
At	
  high	
  al:tudes,	
  where	
  ν≪ω,	
  the	
  Appleton-­‐
Hartree	
  formula	
  is	
  recovered	
  from	
  the	
  
generalized	
  (Sen-­‐Wyller)	
  formula	
  by	
  sesng	
  
Finally …
WHAT IS A
RIOMETER?
What	
  advantage	
  did	
  the	
  riometer	
  have	
  over	
  other	
  
popular	
  techniques	
  at	
  the	
  Ame?	
  
Riometer	
  
•  Before	
  the	
  riometer,	
  auroral	
  absorp:on	
  was	
  studied	
  mainly	
  by	
  radio	
  reflec:on	
  methods:	
  
(i)	
  pulse-­‐amplitude	
  methods	
  
(ii)	
  polar	
  communica:on	
  circuit	
  monitoring	
  
(iii)	
  “blackout”	
  records	
  from	
  ionosondes	
  
•  These	
  methods	
  were	
  too	
  sensi:ve:	
  the	
  amount	
  of	
  absorp:on	
  at	
  high	
  la:tudes	
  leads	
  to	
  
“blackouts”	
  all	
  too	
  readily	
  -­‐-­‐-­‐	
  blackouts	
  are	
  essen:ally	
  instrument	
  satura:on,	
  so	
  
measurements	
  ceased	
  to	
  be	
  quan:ta:ve	
  
	
  
More	
  popular	
  circa	
  1969	
  for	
  absorp:on	
  studies	
  were:	
  
(i)	
  the	
  cosmic-­‐noise	
  method	
  
(ii)	
  the	
  riometer	
  technique	
  (a	
  type	
  of	
  cosmic-­‐noise	
  method)	
  
1.	
  The	
  apparent	
  intensity	
  of	
  the	
  cosmic	
  radio	
  emission	
  is	
  monitored	
  con:nuously	
  
on	
  a	
  stable	
  receiver.	
  
2.	
  The	
  gala:c	
  radio	
  flux	
  is	
  contant	
  over	
  long	
  periods	
  of	
  :me,	
  so	
  presumably	
  any	
  
changes	
  in	
  the	
  apparent	
  intensity	
  from	
  one	
  day	
  to	
  the	
  next	
  at	
  the	
  same	
  sidereal	
  
:me	
  represent	
  corresponding	
  varia:ons	
  of	
  ionospheric	
  absorp:on.	
  
3.	
  Since	
  this	
  method	
  depends	
  on	
  wave	
  propaga:on	
  through	
  the	
  ionosphere,	
  the	
  
frequency	
   must	
   be	
   comfortably	
   above	
   f0F2.	
   In	
   the	
   mid-­‐la:tudes,	
   the	
   amount	
   of	
  
absorp:on	
  at	
  these	
  frequencies	
  is	
  small	
  and	
  varies	
  slowly	
  throughout	
  the	
  day	
  (it	
  is	
  
"solar	
  controlled");	
  given	
  that	
  there	
  ojen	
  exists	
  ``receiver	
  drij,''	
  it	
  is	
  fairly	
  tough	
  to	
  
parse	
  out	
  what	
  the	
  cosmic-­‐noise	
  intensity	
  is,	
  versus	
  the	
  drij,	
  versus	
  ionospheric	
  
absorp:on.	
  At	
  high	
  la:tudes,	
  however,	
  this	
  is	
  not	
  the	
  case:	
  the	
  absorp:on	
  is	
  strong	
  
and	
  structured.	
  This	
  allows	
  one	
  to	
  determine	
  the	
  background	
  level	
  (ojen	
  called	
  the	
  
"quiet-­‐day	
  curve").	
  	
  
Using	
  a	
  regular	
  receiver	
  and	
  frequent	
  
calibra:ons,	
  researchers	
  were	
  able	
  to	
  use	
  this	
  
technique…however,	
  this	
  technique	
  became	
  
extremely	
  powerful	
  when	
  the	
  riometer	
  was	
  
developed.	
  
Pre-­‐Cursor	
  to	
  the	
  Riometer:	
  	
  the	
  Cosmic	
  Noise	
  Method	
  
What	
  is	
  a	
  Riometer?	
  
Rela:ve	
  Ionospheric	
  Opac:city	
  Meter	
  
	
  
1.  The	
  riometer	
  achieves	
  high	
  gain	
  stability	
  by	
  
switching	
  rapidly	
  between	
  the	
  antenna	
  and	
  
a	
  local	
  noise	
  source.	
  
2.  The	
   local	
   noise	
   source	
   is	
   con:nuously	
  
adjusted	
   so	
   that	
   its	
   power	
   output	
   equals	
  
that	
  received	
  by	
  the	
  antenna.	
  
3.  Thus	
   the	
   receiver	
   acts	
   as	
   a	
   sensi:ve	
   null	
  
indicator,	
   in	
   which	
   gain	
   varia:ons	
   are	
  
unimportant.	
  
4.  Ul:mately,	
   a	
   recording	
   is	
   made	
   of	
   the	
  
current	
   through	
   the	
   noise	
   source,	
   the	
  
current	
  being	
  linearly	
  related	
  to	
  the	
  power	
  
output.	
  
See:	
  Block	
  Diagram	
  (Fig.1)	
  
Yagi	
  Antennas	
  
Yagis	
  are	
  those	
  antennas	
  you	
  see	
  on	
  roojops	
  that	
  get	
  
people	
  their	
  TV	
  channels…	
  The	
  crazier	
  ones	
  on	
  roojops	
  are	
  
log-­‐periodic	
  antennas…	
  
	
  
Never	
  seen	
  an	
  antenna	
  on	
  a	
  roojop,	
  you	
  say?	
  	
  
You	
  callin’	
  me	
  old?!	
  
Riometer	
  antennas	
  were	
  ojen	
  of	
  simple	
  design,	
  e.g.,	
  a	
  Yagi	
  or	
  a	
  simple	
  broadside	
  array	
  over	
  a	
  
ground	
  plane.	
  	
  
PRO:	
  At	
  typical	
  frequencies	
  of	
  ~30MHz,	
  these	
  antennas	
  are	
  conveniently	
  small	
  
CON:	
  they	
  have	
  rather	
  broad	
  beamwidths	
  (~	
  +/-­‐	
  30*	
  between	
  half-­‐power	
  points)	
  
3-­‐element	
  Yagi	
  
4-­‐element	
  	
  
Yagi	
  
Riometer	
  Design	
  Circa	
  1969	
  
Log-­‐Periodic	
  Antenna	
  
Broadside	
  Array	
  Antenna	
  
Improvements	
  upon	
  the	
  classical	
  riometer	
  technique	
  circa	
  1969	
  
1.	
  Narrow	
  beam	
  antenna	
  systems	
  vs	
  broadbeam	
  
	
  
When	
  a	
  broadbeam	
  antenna	
  is	
  used,	
  the	
  noise	
  power	
  is	
  from	
  a	
  large	
  area	
  of	
  the	
  sky,	
  
and	
  so	
  if	
  an	
  absorp:on	
  event	
  occurs,	
  one	
  can	
  only	
  say	
  “it	
  happened	
  somewhere	
  in	
  
this	
  huge	
  region	
  of	
  the	
  sky.”	
  So	
  Just	
  around	
  this	
  :me,	
  some	
  larger	
  antenna	
  arrays	
  
were	
  being	
  used	
  to	
  try	
  to	
  study	
  the	
  finer	
  structure	
  in	
  absorp:on:	
  
	
  
For	
  example:	
  
Ansari	
  [1965]	
  used	
  a	
  36MHz,	
  	
  narrow-­‐beam	
  	
  (7*	
  beamwidth,	
  symmetrical)	
  antenna	
  
system	
  comprised	
  of	
  a	
  6x8	
  (Mag	
  EW	
  x	
  Mag	
  NS)	
  array	
  of	
  	
  3-­‐element	
  Yagi	
  antennas	
  to	
  
study	
  absorp:on	
  in	
  two	
  direc:ons	
  (6*MS	
  and	
  6*MN	
  from	
  the	
  site	
  zenith).	
  Such	
  a	
  
system	
  allowed	
  them	
  to	
  make	
  ini:al	
  es:mates	
  of	
  the	
  absorp:on	
  distribu:on	
  across	
  
the	
  sky.	
  Prior	
  to,	
  most	
  narrow-­‐beam	
  antennas	
  were	
  narrow	
  only	
  in	
  the	
  magne:c	
  NS	
  
plane,	
  and	
  fairly	
  broad	
  in	
  the	
  magne:c	
  EW	
  plane.	
  To	
  measure	
  auroral-­‐ionospheric	
  
absorp:on	
  in	
  the	
  two	
  chosen	
  direc:ons,	
  they	
  swung	
  the	
  main	
  beam	
  of	
  the	
  array	
  
every	
  10	
  seconds.	
  Their	
  primary	
  goal	
  was	
  to	
  study	
  thin	
  auroral	
  arcs.	
  
Ansari,	
  1965:	
  A	
  Narrow-­‐Beam	
  Antenna	
  Array	
  for	
  Radio	
  Wave	
  Absorp:on	
  Studies	
  in	
  the	
  Auroral	
  Zone	
  
Riometer	
  Design	
  Circa	
  1969:	
  	
  Room	
  for	
  Improvement	
  
Why	
  narrow	
  beams	
  are	
  becer	
  
*	
  For	
  an	
  antenna	
  w/	
  finite	
  beamwidth,	
  i.e.	
  for	
  any	
  antenna	
  
whose	
   beamwidth	
   is	
   not	
   a	
   3D	
   dirac	
   impulse,	
   i.e.,	
   for	
   any	
  
antenna	
  in	
  real	
  life,	
  the	
  measured	
  absorp:on	
  is	
  called	
  the	
  
“apparent	
  absorpAon”	
  
*	
  Due	
  to	
  oblique	
  waves,	
  the	
  apparent	
  absorp:on	
  is	
  greater	
  
than	
   the	
   value	
   that	
   we	
   actually	
   want,	
   which	
   is	
   called	
   the	
  
“zenithal	
  absorpAon”	
  
-­‐-­‐	
   that	
   is,	
   we	
   want	
   to	
   determine	
   the	
   absorp:on	
   of	
   a	
  
plane	
   wave	
   passing	
   ver:cally	
   through	
   a	
   horizontally-­‐
stra:fied	
  absorp:on	
  region	
  
*	
   To	
   compute	
   the	
   zenithal	
  
absorp:on,	
   some	
   assump:ons	
  
must	
   be	
   made,	
   and	
   a	
   correc:on	
  
must	
   be	
   computed	
   and	
   applied	
   to	
  
t h e	
   m e a s u r e d	
   ( a p p a r e n t )	
  
absorp:on	
  
*	
  The	
  typical	
  assump:ons	
  (at	
  least	
  
circa	
  1969)	
  are:	
  
	
   	
   (i)	
   if	
   spa:ally-­‐distributed	
  
observa:ons	
   are	
   NOT	
   available,	
  
then	
   the	
   absorp:on	
   layer	
   is	
  
assumed	
  horizontally	
  uniform	
  
	
   	
   (ii)	
   if	
   spa:ally-­‐distributed	
  
observa:ons	
   are	
   available,	
   then	
   it	
  
possible	
   to	
   take	
   large-­‐scale	
  
horizontal	
  gradients	
  into	
  account	
  
Fig.	
  3:	
  	
  	
  NORMALIZATION	
  FACTORS:	
  	
  ZENITHAL	
  ANTENNA	
  
Curves	
  for	
  correc:ng	
  apparent	
  absorp:on	
  to	
  zenithal	
  absorp:on.	
  These	
  were	
  computed	
  for	
  an	
  
antenna	
  pointed	
  ver:cally	
  and	
  having	
  beamwidth	
  +/-­‐	
  32	
  to	
  half-­‐power	
  points	
  in	
  both	
  planes.	
  
CompuAng	
  the	
  Zenithal	
  AbsorpAon	
  
Why	
  narrow	
  beams	
  are	
  becer:	
  Conclusion	
  
Why	
  narrow	
  beams	
  are	
  worse	
  
A	
  broad-­‐beam	
  zenithal	
  absorp:on	
  :me	
  series	
  represents	
  the	
  actual	
  
zenithal	
  absorp:on	
  very	
  poorly	
  in	
  that	
  the	
  broadbeam	
  includes	
  events	
  
from	
  a	
  wide	
  patch	
  of	
  the	
  sky!	
  
A	
  narrow-­‐beam	
  zenithal	
  absorp:on	
  :me	
  
series	
  represents	
  the	
  actual	
  zenithal	
  
absorp:on	
  much	
  befer,	
  however	
  you	
  only	
  
know	
  about	
  a	
  fairly	
  small	
  patch	
  of	
  the	
  sky!	
  
AddiAonal	
  improvements	
  upon	
  the	
  classical	
  riometer	
  technique	
  (e.g.,	
  that	
  used	
  in	
  
late	
  1950s,	
  early	
  1960s)	
  circa	
  1969:	
  
1.  Groups	
  of	
  closely-­‐spaced	
  	
  riometer	
  sites	
  
2.  Groups	
  of	
  closely-­‐spaced	
  riometers	
  at	
  one	
  site	
  
3.  Use	
  of	
  mulAple	
  frequencies	
  
Closely-­‐spaced	
  riometers	
  at	
  one	
  site	
  greatly	
  eases	
  
logis:cs.	
  The	
  small	
  setback	
  is	
  one	
  needs	
  to	
  know	
  
the	
  height	
  of	
  the	
  absorp:on	
  before	
  horizontal	
  
separa:on	
  can	
  be	
  es:mated.	
  	
  	
  
	
  
When	
  absorp:on	
  is	
  to	
  be	
  measured	
  on	
  mul:ple	
  
frequencies,	
  Hargreaves	
  recommends	
  allosng	
  one	
  
riometer	
  per	
  frequency,	
  making	
  sure	
  to	
  scale	
  the	
  
antennas	
  so	
  that	
  each	
  one	
  has	
  the	
  same	
  beam	
  
pafern.	
  (Swept-­‐frequency	
  and	
  stepped-­‐frequency	
  
riometers	
  proved	
  to	
  not	
  be	
  very	
  successful	
  
riometer	
  designs.)	
  
Riometer	
  Design	
  Circa	
  1969:	
  	
  Room	
  for	
  Improvement	
  
SPA	
  
MCM	
  
(1) 	
  Automated,	
  unmanned	
  riometer	
  staAons:	
  	
  	
  
“Riometers	
  which	
  can	
  operate	
  una2ended	
  for	
  long	
  periods	
  of	
  7me	
  at	
  deserted	
  sites	
  without	
  
mains	
  power	
  are	
  needed	
  but	
  have	
  not	
  yet	
  been	
  developed	
  as	
  far	
  as	
  the	
  author	
  is	
  aware.”	
  
Riometers	
  Circa	
  1969:	
  Further	
  Goals	
  
38.2	
  MHz	
  imaging	
  riometers	
  are	
  housed	
  at	
  
several	
  Automated	
  Geophysical	
  
Observatories	
  [AGOs]	
  and	
  at	
  SPA	
  and	
  MCM.	
  
	
  
For	
  more	
  info:	
  	
  
(1)  hfp://www.sienageospace.dreamhosters.com/	
  
(2)  hfp://www.polar.umd.edu/instruments.html)	
  
Mission	
  
Complete!	
  
SPA	
  
MCM	
  
(2)	
  Becer	
  data	
  products:	
  
There	
  existed	
  a	
  need	
  to	
  “simplify	
  the	
  data	
  processing	
  by	
  which	
  the	
  nega:ve	
  deflec:on	
  on	
  a	
  
chart	
  that	
  is	
  nonlinear	
  in	
  decibels	
  (see	
  Fig.	
  2)	
  is	
  converted	
  to	
  a	
  linear	
  scale	
  of	
  decibels…a	
  
means	
  of	
  removing	
  the	
  quiet-­‐day	
  curve	
  at	
  the	
  instrument	
  and	
  of	
  producing	
  on	
  the	
  spot	
  a	
  
record	
  [that	
  is]	
  linear	
  in	
  absorp:on	
  against	
  :me	
  	
  would	
  be	
  [AWESOME!]”	
  
Riometers	
  Circa	
  1969:	
  Goals	
  
	
  
Two	
  methods	
  had	
  already	
  been	
  put	
  forward	
  circa	
  1969:	
  
(i)	
  Con:nuous	
  es:mates	
  of	
  quiet-­‐day	
  curve	
  given	
  la:tude	
  and	
  eleva:on	
  of	
  the	
  antenna	
  beam	
  
(ii)	
  Es:mates	
  of	
  the	
  quiet-­‐day	
  curve	
  	
  by	
  comparing	
  O-­‐	
  and	
  E-­‐modes	
  of	
  the	
  received	
  signal	
  [2]	
  
[1]	
  Chivers	
  and	
  Prescof,	
  1967:	
  Applica:ons	
  of	
  a	
  new	
  technique	
  for	
  the	
  detec:on	
  of	
  absorp:on	
  events	
  using	
  a	
  riometer	
  
[2]	
  Benediktov,	
  1959:	
  On	
  a	
  radioastronomical	
  method	
  for	
  determina:on	
  of	
  the	
  absorp:on	
  of	
  radio	
  waves	
  in	
  the	
  ionosphere	
  
In	
  the	
  future:	
  
Forget	
  single-­‐beam	
  or	
  single-­‐
frequency	
  riometers.	
  Check	
  out	
  
this	
  sweet	
  riometer	
  (a	
  la	
  Detrick,	
  
Rosenberg,	
  Weatherwax,	
  Lutz)	
  
hfp://www.polar.umd.edu/haarp/riometer_paper/haarp.html	
  
The	
  IRIS	
  Riometer!	
  

More Related Content

What's hot

Srikarsh Awp
Srikarsh AwpSrikarsh Awp
Srikarsh Awp
Kolanu Reddy
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
Yahya Alzidi
 
Field Ion - Infrared- Raman Spectroscopy
Field Ion - Infrared- Raman SpectroscopyField Ion - Infrared- Raman Spectroscopy
Field Ion - Infrared- Raman Spectroscopy
SAMEER VISHWAKARMA
 
Radio waves and propagation and astronomy
Radio waves and propagation and astronomyRadio waves and propagation and astronomy
Radio waves and propagation and astronomy
Nayem Uddin
 
wave propagationn
wave propagationnwave propagationn
wave propagationn
ATTO RATHORE
 
Radio propagation
Radio propagationRadio propagation
Radio propagation
Muhammad Aslam
 
Line of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshiLine of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshi
NajmulHoqueMunshi
 
Chapter#5
Chapter#5Chapter#5
Communication System Theory for JEE Main 2015
Communication System Theory for JEE Main 2015 Communication System Theory for JEE Main 2015
Communication System Theory for JEE Main 2015
Ednexa
 
Surveying ii ajith sir class5
Surveying ii ajith sir class5Surveying ii ajith sir class5
Surveying ii ajith sir class5
SHAMJITH KM
 
CRWriteup
CRWriteupCRWriteup
CRWriteup
Scott McIntosh
 
radio-wave-propagation-presentations
radio-wave-propagation-presentationsradio-wave-propagation-presentations
radio-wave-propagation-presentations
ATTO RATHORE
 
radio propagation
radio propagationradio propagation
radio propagation
ATTO RATHORE
 
Space wave propagation ppt
Space wave propagation pptSpace wave propagation ppt
Space wave propagation ppt
dhanesh1994
 
NMR SPECTROSCOPY 17.03.17
NMR SPECTROSCOPY 17.03.17NMR SPECTROSCOPY 17.03.17
NMR SPECTROSCOPY 17.03.17
IBRAHIM Aminu Shehu
 
Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5
Self-employed
 
wave propagation
wave propagationwave propagation
wave propagation
ATTO RATHORE
 
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPYINTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
Junaid Khan
 
Critical frequency
Critical frequencyCritical frequency
Critical frequency
Gautam Saxena
 
Prabhakar singh ii sem-paper v-nmr and epr spectroscopy
Prabhakar singh  ii sem-paper v-nmr and epr spectroscopyPrabhakar singh  ii sem-paper v-nmr and epr spectroscopy
Prabhakar singh ii sem-paper v-nmr and epr spectroscopy
Department of Biochemistry, Veer Bahadur Singh Purvanchal Univarsity, Jaunpur
 

What's hot (20)

Srikarsh Awp
Srikarsh AwpSrikarsh Awp
Srikarsh Awp
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
 
Field Ion - Infrared- Raman Spectroscopy
Field Ion - Infrared- Raman SpectroscopyField Ion - Infrared- Raman Spectroscopy
Field Ion - Infrared- Raman Spectroscopy
 
Radio waves and propagation and astronomy
Radio waves and propagation and astronomyRadio waves and propagation and astronomy
Radio waves and propagation and astronomy
 
wave propagationn
wave propagationnwave propagationn
wave propagationn
 
Radio propagation
Radio propagationRadio propagation
Radio propagation
 
Line of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshiLine of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshi
 
Chapter#5
Chapter#5Chapter#5
Chapter#5
 
Communication System Theory for JEE Main 2015
Communication System Theory for JEE Main 2015 Communication System Theory for JEE Main 2015
Communication System Theory for JEE Main 2015
 
Surveying ii ajith sir class5
Surveying ii ajith sir class5Surveying ii ajith sir class5
Surveying ii ajith sir class5
 
CRWriteup
CRWriteupCRWriteup
CRWriteup
 
radio-wave-propagation-presentations
radio-wave-propagation-presentationsradio-wave-propagation-presentations
radio-wave-propagation-presentations
 
radio propagation
radio propagationradio propagation
radio propagation
 
Space wave propagation ppt
Space wave propagation pptSpace wave propagation ppt
Space wave propagation ppt
 
NMR SPECTROSCOPY 17.03.17
NMR SPECTROSCOPY 17.03.17NMR SPECTROSCOPY 17.03.17
NMR SPECTROSCOPY 17.03.17
 
Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5
 
wave propagation
wave propagationwave propagation
wave propagation
 
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPYINTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
 
Critical frequency
Critical frequencyCritical frequency
Critical frequency
 
Prabhakar singh ii sem-paper v-nmr and epr spectroscopy
Prabhakar singh  ii sem-paper v-nmr and epr spectroscopyPrabhakar singh  ii sem-paper v-nmr and epr spectroscopy
Prabhakar singh ii sem-paper v-nmr and epr spectroscopy
 

Similar to 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

radar-principles
radar-principlesradar-principles
radar-principles
jhcid
 
Basic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric CouplingBasic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric Coupling
davohawrami
 
Uv raman handbook
Uv raman handbookUv raman handbook
Uv raman handbook
Alvaro Coelho
 
RWP TOTAL.pptx
RWP TOTAL.pptxRWP TOTAL.pptx
RWP TOTAL.pptx
babu493477
 
gpr_saqsaywaman.pdf
gpr_saqsaywaman.pdfgpr_saqsaywaman.pdf
gpr_saqsaywaman.pdf
manuelabarca9
 
The electromagnetic spectrum a critical natural resource
The electromagnetic spectrum a critical natural resourceThe electromagnetic spectrum a critical natural resource
The electromagnetic spectrum a critical natural resource
Luis Cuma
 
Photonics Term Paper
Photonics Term PaperPhotonics Term Paper
Photonics Term Paper
Emeka Ikpeazu
 
Lesson 7 propagation
Lesson 7 propagationLesson 7 propagation
Lesson 7 propagation
Moises Ngomane
 
مهم جدا هوائيات.pptx
مهم جدا هوائيات.pptxمهم جدا هوائيات.pptx
مهم جدا هوائيات.pptx
tahaniali27
 
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Sérgio Sacani
 
Introduction of radio astronomy
Introduction of radio astronomyIntroduction of radio astronomy
Introduction of radio astronomy
fiyghar.com
 
microwave-fundamentals
microwave-fundamentalsmicrowave-fundamentals
microwave-fundamentals
ATTO RATHORE
 
Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...
ashrafrateb1985
 
ultrasonics
ultrasonicsultrasonics
ultrasonics
Adotbdotz Sokawati
 
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
Usama Khalil
 
Radio Astronomy and radio telescopes
Radio Astronomy and radio telescopesRadio Astronomy and radio telescopes
Radio Astronomy and radio telescopes
Flavio Falcinelli
 
Haris Haralambous
Haris HaralambousHaris Haralambous
Haris Haralambous
European University Cyprus
 
Adhoc module 1 Introduction
Adhoc module 1  IntroductionAdhoc module 1  Introduction
Adhoc module 1 Introduction
Sitamarhi Institute of Technology
 
Some basic concepts
Some basic conceptsSome basic concepts
Some basic concepts
Jamal Ahmad
 
Microwave_Fundamentals_ppt.ppt
Microwave_Fundamentals_ppt.pptMicrowave_Fundamentals_ppt.ppt
Microwave_Fundamentals_ppt.ppt
YasiruWanniarachchi
 

Similar to 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere (20)

radar-principles
radar-principlesradar-principles
radar-principles
 
Basic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric CouplingBasic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric Coupling
 
Uv raman handbook
Uv raman handbookUv raman handbook
Uv raman handbook
 
RWP TOTAL.pptx
RWP TOTAL.pptxRWP TOTAL.pptx
RWP TOTAL.pptx
 
gpr_saqsaywaman.pdf
gpr_saqsaywaman.pdfgpr_saqsaywaman.pdf
gpr_saqsaywaman.pdf
 
The electromagnetic spectrum a critical natural resource
The electromagnetic spectrum a critical natural resourceThe electromagnetic spectrum a critical natural resource
The electromagnetic spectrum a critical natural resource
 
Photonics Term Paper
Photonics Term PaperPhotonics Term Paper
Photonics Term Paper
 
Lesson 7 propagation
Lesson 7 propagationLesson 7 propagation
Lesson 7 propagation
 
مهم جدا هوائيات.pptx
مهم جدا هوائيات.pptxمهم جدا هوائيات.pptx
مهم جدا هوائيات.pptx
 
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
 
Introduction of radio astronomy
Introduction of radio astronomyIntroduction of radio astronomy
Introduction of radio astronomy
 
microwave-fundamentals
microwave-fundamentalsmicrowave-fundamentals
microwave-fundamentals
 
Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...
 
ultrasonics
ultrasonicsultrasonics
ultrasonics
 
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
 
Radio Astronomy and radio telescopes
Radio Astronomy and radio telescopesRadio Astronomy and radio telescopes
Radio Astronomy and radio telescopes
 
Haris Haralambous
Haris HaralambousHaris Haralambous
Haris Haralambous
 
Adhoc module 1 Introduction
Adhoc module 1  IntroductionAdhoc module 1  Introduction
Adhoc module 1 Introduction
 
Some basic concepts
Some basic conceptsSome basic concepts
Some basic concepts
 
Microwave_Fundamentals_ppt.ppt
Microwave_Fundamentals_ppt.pptMicrowave_Fundamentals_ppt.ppt
Microwave_Fundamentals_ppt.ppt
 

Recently uploaded

快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
Carl Bergstrom
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
RDhivya6
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
frank0071
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
Sérgio Sacani
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
RitabrataSarkar3
 
Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
Frédéric Baudron
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
İsa Badur
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
Advanced-Concepts-Team
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
Vandana Devesh Sharma
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 

Recently uploaded (20)

快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
 
Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 

2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

  • 1. Hargreeves [1969]: Part 1 A Review of Results from the First Decade of Riometry Auroral Absorption of HF Radio Waves in the Ionosphere: Kevin  Urban,  NJIT,  2015-­‐Feb-­‐20   Riometer  Paper  Reviews,  Spring  2015  
  • 2. MoAvaAon:  What  is  a  Riometer  used  to  study?   Riometer_RF  =  20-­‐50  MHz                                                                      à  Riometer_λ  =  6  –  15  m     Directly:            Short-­‐:me  varia:ons  in  cosmic  radio  noise  intensity   Indirectly:      Ionospheric  electron  density,  conduc:vity     Indirectly:      Par:cle  precipita:on     Causes  of  this  cosmic  noise  varia:on  differ  at  equatorial   (diurnal  solar-­‐control)  and  polar  la:tudes  (geomagne:c  and   solar  events)   *  With  a  riometer,  we   measure  the  absorp:on  of   cosmic  radio  waves,  but  we   do  so  as  a  means  to  infer   ionospheric  parameters,  such   as  electron  density     *  In  other  words:    absorp:on   is  a  quan:ta:ve  observable   (it  can  be  measured!)  that   can  then  be  used  to  deduce   informa:on  about  other   physical  parameters  of   interest  that  might  not  be   directly  or  easily  measurable,   at  least  from  the  ground    
  • 3. Riometers  at  High  LaAtudes   Picture  it:    You’re  on  a  navy  vessel  in  the  1930s,  rounding  the  :p  of  Antarc:ca;  you’re  closing  in   on  the  enemy  and  -­‐-­‐-­‐  suddenly,  your  communica:ons  are  wiped  out.     Two  major  types  of  ionospheric  radio  wave   absorp:on  events:   1.  Auroral  Absorp:on  [AA]   2.  Polar  Cap  Absorp:on  [PCA]     Both  can  produce  over  10  dB  of  absorp:on   on  a  30MHz  riometer,  so  before  satellite  era   the  categories  were  dis:nguished  by  :me   and  geographic  signatures.         *  Time:  PCAs  lasted  several  days  while   AA  was  reserved  for  rela:vely  frequent,   shorter-­‐lived  and  irregular  absorp:on   events.   *  Geography:  PCA  covers  the  en:re   polar  cap,  while  AA  is  limited  to  auroral   zone.   A  recommended  3rd  category  by  Hargreaves  and  others  circa  1969:   3.  Sudden  Commencement  Absorp:on  [SCA]  
  • 4. Auroral  AbsorpAon   *  Most  frequent  and  most  complex  high-­‐la:tude  type  of   absorp:on  event   Sporadic  and  non-­‐obvious:    grows  and  decays  with   auroral  and  magne:c  ac:vity,  yet  does  so  without   any  exact  correspondence     *  First  iden:fied  in  Appleton  et  al  [1933]:  “Ionospheric   inves:ga:ons  in  high  la:tudes”    They  no:ced  that  reflected  radio  waves  were   weakened  or  wiped  out  during  periods  of  auroral   and  magne:c  ac:vity     *  Produced  by  the  entry  of  auroral  electrons       Appleton  [1933]  inferred  the  cause  to  be  "ionizing   charged  par:cles  [which]  produce  electrifica:on   below  the  normal  lower  region  [i.e.,  the  E  region].”       hfp://spears.lancs.ac.uk/data/summary/interpret/  
  • 5. Polar  Cap  AbsorpAon   *  Due  to  abnormal  ioniza:on  produced   by  the  incidence  of  solar  protons  ajer   an  intense  solar  flare.               *  Hargreeves  [1969]  says  PCA  was   prefy  well  understood  (solar  energe:c   protons  from  solar  flares),  unlike  AA   hfp://www-­‐istp.gsfc.nasa.gov/istp/outreach/workshop/img/nicky/slide14.jpg   hfp://spears.lancs.ac.uk/data/summary/interpret/  
  • 6. To  understand  riometers,  one  must  understand  the  physics  they  purport  to  study!             Radio  Wave  PropagaAon  in  the  Ionosphere   Higher  ioniza:on  rate  in  atmosphere  à  higher  electron  density  à  more  electrons  to   steal  energy  from  radio  waves    à  less  radio  wave  energy  at  riometer  site   30  MHz  
  • 7. Radio  Wave  PropagaAon:       Appleton-­‐Hartree  Quasi-­‐Longitudinal  ApproximaAon  
  • 8. Radio  Wave  PropagaAon:       Appleton-­‐Hartree  Quasi-­‐ Longitudinal  ApproximaAon   Np  =  Neper  
  • 9. Radio  Wave  PropagaAon:       Appleton-­‐Hartree  Quasi-­‐Longitudinal  ApproximaAon   If  one  sets  µ=1  for  the  lower  ionosphere,  one  can   compute  the  "total  absorp:on"  over  a  path  for   both  E-­‐mode  (-­‐)  and  O-­‐mode  radio  waves  (+):   IntuiAve.  Easily  interpreted.  For  the  general  case:  Overly  simplisAc!  
  • 10. Radio  Wave  PropagaAon:      Sen-­‐Wyller  FormulaAon   At  low  al:tudes,  where  ν≫ω,  the  generalized   Sen-­‐Wyller  formula  recovers  the  Appleton-­‐ Hartree  approxima:on  by  sesng   At  high  al:tudes,  where  ν≪ω,  the  Appleton-­‐ Hartree  formula  is  recovered  from  the   generalized  (Sen-­‐Wyller)  formula  by  sesng  
  • 11. Finally … WHAT IS A RIOMETER?
  • 12. What  advantage  did  the  riometer  have  over  other   popular  techniques  at  the  Ame?   Riometer   •  Before  the  riometer,  auroral  absorp:on  was  studied  mainly  by  radio  reflec:on  methods:   (i)  pulse-­‐amplitude  methods   (ii)  polar  communica:on  circuit  monitoring   (iii)  “blackout”  records  from  ionosondes   •  These  methods  were  too  sensi:ve:  the  amount  of  absorp:on  at  high  la:tudes  leads  to   “blackouts”  all  too  readily  -­‐-­‐-­‐  blackouts  are  essen:ally  instrument  satura:on,  so   measurements  ceased  to  be  quan:ta:ve     More  popular  circa  1969  for  absorp:on  studies  were:   (i)  the  cosmic-­‐noise  method   (ii)  the  riometer  technique  (a  type  of  cosmic-­‐noise  method)  
  • 13. 1.  The  apparent  intensity  of  the  cosmic  radio  emission  is  monitored  con:nuously   on  a  stable  receiver.   2.  The  gala:c  radio  flux  is  contant  over  long  periods  of  :me,  so  presumably  any   changes  in  the  apparent  intensity  from  one  day  to  the  next  at  the  same  sidereal   :me  represent  corresponding  varia:ons  of  ionospheric  absorp:on.   3.  Since  this  method  depends  on  wave  propaga:on  through  the  ionosphere,  the   frequency   must   be   comfortably   above   f0F2.   In   the   mid-­‐la:tudes,   the   amount   of   absorp:on  at  these  frequencies  is  small  and  varies  slowly  throughout  the  day  (it  is   "solar  controlled");  given  that  there  ojen  exists  ``receiver  drij,''  it  is  fairly  tough  to   parse  out  what  the  cosmic-­‐noise  intensity  is,  versus  the  drij,  versus  ionospheric   absorp:on.  At  high  la:tudes,  however,  this  is  not  the  case:  the  absorp:on  is  strong   and  structured.  This  allows  one  to  determine  the  background  level  (ojen  called  the   "quiet-­‐day  curve").     Using  a  regular  receiver  and  frequent   calibra:ons,  researchers  were  able  to  use  this   technique…however,  this  technique  became   extremely  powerful  when  the  riometer  was   developed.   Pre-­‐Cursor  to  the  Riometer:    the  Cosmic  Noise  Method  
  • 14. What  is  a  Riometer?   Rela:ve  Ionospheric  Opac:city  Meter     1.  The  riometer  achieves  high  gain  stability  by   switching  rapidly  between  the  antenna  and   a  local  noise  source.   2.  The   local   noise   source   is   con:nuously   adjusted   so   that   its   power   output   equals   that  received  by  the  antenna.   3.  Thus   the   receiver   acts   as   a   sensi:ve   null   indicator,   in   which   gain   varia:ons   are   unimportant.   4.  Ul:mately,   a   recording   is   made   of   the   current   through   the   noise   source,   the   current  being  linearly  related  to  the  power   output.   See:  Block  Diagram  (Fig.1)  
  • 15. Yagi  Antennas   Yagis  are  those  antennas  you  see  on  roojops  that  get   people  their  TV  channels…  The  crazier  ones  on  roojops  are   log-­‐periodic  antennas…     Never  seen  an  antenna  on  a  roojop,  you  say?     You  callin’  me  old?!   Riometer  antennas  were  ojen  of  simple  design,  e.g.,  a  Yagi  or  a  simple  broadside  array  over  a   ground  plane.     PRO:  At  typical  frequencies  of  ~30MHz,  these  antennas  are  conveniently  small   CON:  they  have  rather  broad  beamwidths  (~  +/-­‐  30*  between  half-­‐power  points)   3-­‐element  Yagi   4-­‐element     Yagi   Riometer  Design  Circa  1969   Log-­‐Periodic  Antenna   Broadside  Array  Antenna  
  • 16. Improvements  upon  the  classical  riometer  technique  circa  1969   1.  Narrow  beam  antenna  systems  vs  broadbeam     When  a  broadbeam  antenna  is  used,  the  noise  power  is  from  a  large  area  of  the  sky,   and  so  if  an  absorp:on  event  occurs,  one  can  only  say  “it  happened  somewhere  in   this  huge  region  of  the  sky.”  So  Just  around  this  :me,  some  larger  antenna  arrays   were  being  used  to  try  to  study  the  finer  structure  in  absorp:on:     For  example:   Ansari  [1965]  used  a  36MHz,    narrow-­‐beam    (7*  beamwidth,  symmetrical)  antenna   system  comprised  of  a  6x8  (Mag  EW  x  Mag  NS)  array  of    3-­‐element  Yagi  antennas  to   study  absorp:on  in  two  direc:ons  (6*MS  and  6*MN  from  the  site  zenith).  Such  a   system  allowed  them  to  make  ini:al  es:mates  of  the  absorp:on  distribu:on  across   the  sky.  Prior  to,  most  narrow-­‐beam  antennas  were  narrow  only  in  the  magne:c  NS   plane,  and  fairly  broad  in  the  magne:c  EW  plane.  To  measure  auroral-­‐ionospheric   absorp:on  in  the  two  chosen  direc:ons,  they  swung  the  main  beam  of  the  array   every  10  seconds.  Their  primary  goal  was  to  study  thin  auroral  arcs.   Ansari,  1965:  A  Narrow-­‐Beam  Antenna  Array  for  Radio  Wave  Absorp:on  Studies  in  the  Auroral  Zone   Riometer  Design  Circa  1969:    Room  for  Improvement  
  • 17. Why  narrow  beams  are  becer   *  For  an  antenna  w/  finite  beamwidth,  i.e.  for  any  antenna   whose   beamwidth   is   not   a   3D   dirac   impulse,   i.e.,   for   any   antenna  in  real  life,  the  measured  absorp:on  is  called  the   “apparent  absorpAon”   *  Due  to  oblique  waves,  the  apparent  absorp:on  is  greater   than   the   value   that   we   actually   want,   which   is   called   the   “zenithal  absorpAon”   -­‐-­‐   that   is,   we   want   to   determine   the   absorp:on   of   a   plane   wave   passing   ver:cally   through   a   horizontally-­‐ stra:fied  absorp:on  region  
  • 18. *   To   compute   the   zenithal   absorp:on,   some   assump:ons   must   be   made,   and   a   correc:on   must   be   computed   and   applied   to   t h e   m e a s u r e d   ( a p p a r e n t )   absorp:on   *  The  typical  assump:ons  (at  least   circa  1969)  are:       (i)   if   spa:ally-­‐distributed   observa:ons   are   NOT   available,   then   the   absorp:on   layer   is   assumed  horizontally  uniform       (ii)   if   spa:ally-­‐distributed   observa:ons   are   available,   then   it   possible   to   take   large-­‐scale   horizontal  gradients  into  account   Fig.  3:      NORMALIZATION  FACTORS:    ZENITHAL  ANTENNA   Curves  for  correc:ng  apparent  absorp:on  to  zenithal  absorp:on.  These  were  computed  for  an   antenna  pointed  ver:cally  and  having  beamwidth  +/-­‐  32  to  half-­‐power  points  in  both  planes.   CompuAng  the  Zenithal  AbsorpAon  
  • 19. Why  narrow  beams  are  becer:  Conclusion   Why  narrow  beams  are  worse   A  broad-­‐beam  zenithal  absorp:on  :me  series  represents  the  actual   zenithal  absorp:on  very  poorly  in  that  the  broadbeam  includes  events   from  a  wide  patch  of  the  sky!   A  narrow-­‐beam  zenithal  absorp:on  :me   series  represents  the  actual  zenithal   absorp:on  much  befer,  however  you  only   know  about  a  fairly  small  patch  of  the  sky!  
  • 20. AddiAonal  improvements  upon  the  classical  riometer  technique  (e.g.,  that  used  in   late  1950s,  early  1960s)  circa  1969:   1.  Groups  of  closely-­‐spaced    riometer  sites   2.  Groups  of  closely-­‐spaced  riometers  at  one  site   3.  Use  of  mulAple  frequencies   Closely-­‐spaced  riometers  at  one  site  greatly  eases   logis:cs.  The  small  setback  is  one  needs  to  know   the  height  of  the  absorp:on  before  horizontal   separa:on  can  be  es:mated.         When  absorp:on  is  to  be  measured  on  mul:ple   frequencies,  Hargreaves  recommends  allosng  one   riometer  per  frequency,  making  sure  to  scale  the   antennas  so  that  each  one  has  the  same  beam   pafern.  (Swept-­‐frequency  and  stepped-­‐frequency   riometers  proved  to  not  be  very  successful   riometer  designs.)   Riometer  Design  Circa  1969:    Room  for  Improvement   SPA   MCM  
  • 21. (1)   Automated,  unmanned  riometer  staAons:       “Riometers  which  can  operate  una2ended  for  long  periods  of  7me  at  deserted  sites  without   mains  power  are  needed  but  have  not  yet  been  developed  as  far  as  the  author  is  aware.”   Riometers  Circa  1969:  Further  Goals   38.2  MHz  imaging  riometers  are  housed  at   several  Automated  Geophysical   Observatories  [AGOs]  and  at  SPA  and  MCM.     For  more  info:     (1)  hfp://www.sienageospace.dreamhosters.com/   (2)  hfp://www.polar.umd.edu/instruments.html)   Mission   Complete!   SPA   MCM  
  • 22. (2)  Becer  data  products:   There  existed  a  need  to  “simplify  the  data  processing  by  which  the  nega:ve  deflec:on  on  a   chart  that  is  nonlinear  in  decibels  (see  Fig.  2)  is  converted  to  a  linear  scale  of  decibels…a   means  of  removing  the  quiet-­‐day  curve  at  the  instrument  and  of  producing  on  the  spot  a   record  [that  is]  linear  in  absorp:on  against  :me    would  be  [AWESOME!]”   Riometers  Circa  1969:  Goals     Two  methods  had  already  been  put  forward  circa  1969:   (i)  Con:nuous  es:mates  of  quiet-­‐day  curve  given  la:tude  and  eleva:on  of  the  antenna  beam   (ii)  Es:mates  of  the  quiet-­‐day  curve    by  comparing  O-­‐  and  E-­‐modes  of  the  received  signal  [2]   [1]  Chivers  and  Prescof,  1967:  Applica:ons  of  a  new  technique  for  the  detec:on  of  absorp:on  events  using  a  riometer   [2]  Benediktov,  1959:  On  a  radioastronomical  method  for  determina:on  of  the  absorp:on  of  radio  waves  in  the  ionosphere  
  • 23. In  the  future:   Forget  single-­‐beam  or  single-­‐ frequency  riometers.  Check  out   this  sweet  riometer  (a  la  Detrick,   Rosenberg,  Weatherwax,  Lutz)   hfp://www.polar.umd.edu/haarp/riometer_paper/haarp.html   The  IRIS  Riometer!