SlideShare a Scribd company logo
SISTEM PERSAMAAN
LINIER
OUTLINE
Pendahuluan
Eliminasi Gauss - Jordan
SPL Homogen
Penyelesaian SPL dengan
Inverse Matriks
SISTEM PERSAMAAN LINIER (SPL)
Bentuk umum :
dimana x1, x2, . . . , xn variabel tak diketahui, aij , bi,
i = 1, 2, . . . , m; j = 1, 2, . . . , n bil. diketahui.
Ini adalah SPL dengan m persamaan dan n variabel.
SPL
Mempunyai penyelesaian
disebut KONSISTEN
Tidak mempunyai penyelesaian
disebut TIDAK KONSISTEN
TUNGGAL
BANYAK
ILUSTRASI GRAFIK
• SPL 2 persamaan 2 variabel:
• Masing-masing pers berupa garis lurus. Penyelesaiannya
adalah titik potong kedua garis ini.
kedua garis sejajar kedua garis berpotongan kedua garis berhimpitan
PENYAJIAN SPL DALAM MATRIKS
SPL BENTUK MATRIKS
STRATEGI MENYELESAIKAN SPL:
mengganti SPL lama menjadi SPL baru yang mempunyai
penyelesaian sama (ekuivalen) tetapi dalam bentuk yang
lebih sederhana.
TIGA OPERASI YANG MEMPERTAHANKAN
PENYELESAIAN SPL
SPL
1. Mengalikan suatu persamaan
dengan konstanta tak nol.
2. Menukar posisi dua
persamaan sebarang.
3. Menambahkan kelipatan suatu
persamaan ke persamaan
lainnya.
MATRIKS
1. Mengalikan suatu baris
dengan konstanta tak nol.
2. Menukar posisi dua baris
sebarang.
3. Menambahkan kelipatan suatu
baris ke baris lainnya.
Ketiga operasi ini disebut OPERASI BARIS ELEMENTER (OBE)
SPL atau bentuk matriksnya diolah menjadi bentuk seder-
hana sehingga tercapai 1 elemen tak nol pada suatu baris
CONTOH
DIKETAHUI
kalikan pers (i)
dengan (-2), kemu-
dian tambahkan ke
pers (ii).
kalikan baris (i)
dengan (-2), lalu
tambahkan ke
baris (ii).
…………(i)
…………(ii)
…………(iii)
kalikan pers (i)
dengan (-3), kemu-
dian tambahkan ke
pers (iii).
kalikan baris (i)
dengan (-3), lalu
tambahkan ke
baris (iii).
kalikan pers (ii)
dengan (1/2).
kalikan baris (ii)
dengan (1/2).
kalikan pers (iii)
dengan (-2).
kalikan brs (iii)
dengan (-2).
LANJUTAN CONTOH
kalikan pers (ii)
dengan (1/2).
kalikan baris (ii)
dengan (1/2).
kalikan pers (ii)
dengan (-3), lalu
tambahkan ke pers
(iii).
kalikan brs (ii)
dengan (-3),
lalu tambahkan
ke brs (iii).
kalikan pers (ii)
dengan (-1), lalu
tambahkan ke pers
(i).
kalikan brs (ii)
dengan (-1), lalu
tambahkan ke brs
(i).
Lanjutan CONTOH
kalikan pers (ii)
dengan (-1), lalu
tambahkan ke pers
(i).
kalikan brs (ii)
dengan (-1), lalu
tambahkan ke brs
(i).
kalikan pers (iii)
dengan (-11/2), lalu
tambahkan ke pers (i)
dan kalikan pers (ii) dg
(7/2), lalu tambahkan
ke pers (ii)
kalikan brs (iii)
dengan (-11/2), lalu
tambahkan ke brs (i)
dan kalikan brs (ii) dg
(7/2), lalu tambahkan
ke brs (ii)
Diperoleh penyelesaian x = 1, y = 2, z = 3. Terdapat
kaitan menarik antara bentuk SPL dan representasi
matriksnya. Metoda ini berikutnya disebut dengan
METODA ELIMINASI GAUSS.
BENTUK ECHELON-BARIS
Misalkan SPL disajikan dalam bentuk matriks berikut:
maka SPL ini mempunyai penyelesaian x = 1, y = 2, z = 3.
Matriks ini disebut bentuk echelon-baris tereduksi.
Untuk dapat mencapai bentuk ini maka syaratnya adalah sbb:
1. Jika suatu brs matriks tidak nol semua maka elemen
tak nol pertama adalah 1. Brs ini disebut mempunyai leading 1.
2. Semua brs yg terdiri dari nol semua dikumpulkan di bagian bawah.
3. Leading 1 pada baris lebih atas posisinya lebih kiri daripada leading
1 baris berikut.
4. Setiap kolom yang memuat leading 1, elemen lain semuanya 0.
Bentuk echelon-baris dan echelon-baris tereduksi
Matriks yang memenuhi kondisi (1), (2), (3) disebut
bentuk echelon-baris.
CONTOH bentuk echelon-baris tereduksi:
CONTOH bentuk echelon-baris:
Bentuk umum echelon-baris
dimana lambang ∗ dapat diisi bilangan real sebarang.
Bentuk umum echelon-baris tereduksi
dimana lambang ∗ dapat diisi bilangan real sebarang.
Penyelesaian SPL melalui bentuk echelon-baris
Misal diberikan bentuk matriks SPL sbb:
Tentukan penyelesaian masing-masing SPL di atas.
METODA GAUSS-JORDAN
Ide pada metoda eliminasi Gauss adalah mengubah
matriks ke dalam bentuk echelon-baris tereduksi.
CONTOH: Diberikan SPL berikut.
Bentuk matriks SPL ini adalah:
-2B1 + B2B2
5B2+B3  B3












6
18
0
8
4
0
0
0
0
0
0
0
0
0
1
-
3
-
0
2
-
1
-
0
0
0
0
2
0
2
-
3
1
B4 B4+4B2
B3 ⇄ B4 B3 B3/3
-3B3+B2B2
2B2+B1B1
Akhirnya diperoleh:
Akhirnya, dengan mengambil x2:= r, x4:= s dan x5:= t maka diperoleh
penyelesaian:
dimana r, s dan t bilangan real sebarang. Jadi SPL ini mempunyai tak
berhingga banyak penyelesaian.
METODA SUBSTITUSI MUNDUR
Misalkan kita mempunyai SPL dalam matriks berikut:
Bentuk ini ekuivalen dengan:
LANGKAH 1: selesaikan variabel leading, yaitu x6. Diperoleh:
LANGKAH 2: mulai dari baris paling bawah subtitusi ke atas, diperoleh
LANJUTAN SUBSTITUSI MUNDUR
LANGKAH 3: subtitusi baris 2 ke dalam baris 1, diperoleh:
LANGKAH 4: Karena semua persamaan sudah tersubstitusi maka peker-
jaan substitusi selesai. Akhirnya dengan mengikuti langkah pada
metoda Gauss-Jordan sebelumnya diperoleh:
Eliminasi Gaussian
Mengubah menjadi bentuk echelon-baris (tidak perlu direduksi), kemudian
menggunakan substitusi mundur.
CONTOH: Selesaikan dengan metoda eliminasi Gaussian
PENYELESAIAN: Diperhatikan bentuk matriks SPL berikut:
Dengan menggunakan OBE diperoleh bentuk echelon-baris berikut:
SPL HOMOGEN
• Bentuk umum:
• Penyelesaian trivial (sederhana):
• Bila ada penyelesaian lain yang tidak
semuanya nol maka disebut penyelesaian
taktrivial.
SPL HOMOGEN
pasti ada penyelesaian trivial
penyelesaian trivial +
takberhingga banyak
penyelesaian taktrivial
atau
ILUSTRASI:
SPL dengan Matriks
a11x1 + a12x2 + ….+ a1nxn = b1
a21x1 + a22x2 + ….+ a2nxn = b1
…………………………………
…………………………………
am1x1 + am2x2 + ….+ amnxn = bm





































m
2
1
n
2
1
mn
m2
m1
2n
22
12
1n
12
11
b
....
b
b
x
....
x
x
a
.....
a
a
......
.....
.....
.....
a
.....
a
a
a
.....
a
a
atau AX = B dengan A=(aij) matriks koefisien,
X=(x1,x2,…..,xn)* dan B=(b1,b2,…,bn)*.
Matriks lengkap sistem tersebut adalah :













m
m2
m1
2
2n
22
21
1
1n
12
11
b
....
.....
a
a
....
....
.....
....
....
b
a
.....
a
a
b
a
.....
a
a
(AB)
Pembagian SPL
1. SPL homogen
a11x1 + a12x2 + …….. + a1nxn = 0
a21x1 + a22x2 + …….. + a2nxn = 0
…………………………………….
…………………………………….
am1x1 + am2x2 + …….. + amnxn = 0
Contoh :
x1 – 2x2 + 3x3 = 0
x1 + x2 + 2x3 = 0
2. SPL non homogen
a11x1 + a12x2 + ….+ a1nxn = b1
a21x1 + a22x2 + ….+ a2nxn = b2
…………………………………
…………………………………
am1x1 + am2x2 + ….+ amnxn = bm
CONTOH
x1 – 2x2 + 3x3 = 4
X1 + x2 + 2x3 = 5
E. Penyelesaian SPL Non Homogin
Khusus untuk m=n SPL yg non homogin,
penyelesaian tunggal bila Det (A) ≠ 0 dapat
menggunakan :
1. Aturan Cramer
Pandang sistem n persamaan linear dalam n
bilangan tak diketahui :
a11x11 + a12x12 + ……..+ a1nx1n = b1
a11x11 + a12x12 + ……..+ a1nx1n = b2
………………………………………..
an1x11 + an2x12 + ……..+ annxnn = bn
Determinan matriks koefisien adalah :
Bila de(Ak) adalah determinan yang didapat
dari det (A) dengan mengganti kolom ke k
dengan suku tetap (b1 b2 ……bn), maka
aturan Cramer mengatakan :
k = 1,2,3,……,n
mn
m2
mn
2n
22
21
1n
12
11
a
....
a
a
....
....
....
....
a
....
a
a
a
....
a
a
Det(A) 
Det(A)
)
Det(A
x k
k 
Contoh : Selesaikan SPL berikut !
2x1 + 8x2 + 6x3 = 20
4x1 + 2x2 – 2x3 = -2
3x1 - x2 + x3 = 11
Penyelesaian : determinan matriks koefisien
140
4
32
36
24
48
4
1
1
3
2
2
4
6
8
2
Det(A) 










280
40
16
132
12
176
40
1
1
11
2
2
2
6
8
20
)
Det(A1 











Sedangkan :
560
4
352
120
80
48
44
11
1
3
2
2
4
20
8
2
)
Det(A3 










140
44
80
36
264
120
4
1
11
3
2
2
4
6
20
2
)
Det(A2 










2
140
280
Det(A)
)
Det(A
x 1
1 



 1
140
140
Det(A)
)
Det(A
x 2
2 




4
140
560
Det(A)
)
Det(A
x 3
3 




(2). Menggunakan invers matriks
Bila Det(A)≠ 0, maka A-1 ada
AX = B
A-1.AX = A-1.B
Jadi : X = A-1 penyelesaian sistem ini.
Catatan :
Bila m=n dan Det(A) = 0, maka sistemnya mempu-
nyai tak berhingga banyak penyelesaian.
Contoh : selesaikan SPL berikut dengan mengguna
kan invers matriks !
2x1 + 3x2 + x3 = 9
x1 + 2x2 + 3x3 = 6
3x1 + x2 + 2x3 = 8
Penyelesaian : determinan matriks koefisien
adalah :
11
6
6
4
1
18
8
2
1
2
3
2
1
1
3
2
Det(A) 




















1
7
5
1
1
7
7
5
1
11
1
A 1
-














































11
/
5
11
/
29
11
/
35
8
6
9
11
1
8
6
9
1
7
5
1
1
7
7
5
1
11
1
H
.
A
X 1
-
11
5
x
;
11
29
x
;
11
35
x 3
2
1 


Latihan

More Related Content

Similar to 2. Sistem Persamaan Linier.ppt

Sistem persamaan linier
Sistem persamaan linierSistem persamaan linier
Sistem persamaan linier
Bisma Kemal
 
Bab 3(3) spl
Bab 3(3) splBab 3(3) spl
Bab 3(3) spl
Cliquerz Javaneze
 
Slide 1-aljabar-linear
Slide 1-aljabar-linearSlide 1-aljabar-linear
Slide 1-aljabar-linear
Taufiq Topik
 
Metode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier SimultanMetode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier Simultan
Aururia Begi Wiwiet Rambang
 
Sistem persamaan linear
Sistem persamaan linearSistem persamaan linear
Sistem persamaan linear
Khotibul Umam
 
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.pptBab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
ssuserb7d229
 
Topik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linearTopik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linear
Kanages Rethnam
 
21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear
Ricardio Napoleao De Jesus Bento
 
Bab 3 sistem persamaan linear
Bab 3 sistem persamaan linearBab 3 sistem persamaan linear
Bab 3 sistem persamaan linear
maya1585
 
Pertemuan v sistem persamaan linier
Pertemuan v sistem persamaan linierPertemuan v sistem persamaan linier
Pertemuan v sistem persamaan linier
UNIVERSITAS MUHAMMADIYAH BERAU
 
eliminasi-gauss materi lengkap dan terpecaya
eliminasi-gauss materi lengkap dan terpecayaeliminasi-gauss materi lengkap dan terpecaya
eliminasi-gauss materi lengkap dan terpecaya
MuhammadIlham661118
 
Bab v spldv
Bab v spldvBab v spldv
Bab v spldv
MUKHAMMAD TA'IBIN
 
Sistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variableSistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variableMawar Defi Anggraini
 
Power point spl
Power point splPower point spl
Power point spl
harry indrah
 
Pertemuan3&4
Pertemuan3&4Pertemuan3&4
Pertemuan3&4
Amri Sandy
 
Bab5KELAS 8.ppt
Bab5KELAS 8.pptBab5KELAS 8.ppt
Bab5KELAS 8.ppt
abdulkarim464121
 
Persamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.pptPersamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.ppt
MuhamadGhofar2
 
matematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokokmatematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokok
Cloudys04
 

Similar to 2. Sistem Persamaan Linier.ppt (20)

Sistem persamaan linier
Sistem persamaan linierSistem persamaan linier
Sistem persamaan linier
 
Bab 3(3) spl
Bab 3(3) splBab 3(3) spl
Bab 3(3) spl
 
Slide 1-aljabar-linear
Slide 1-aljabar-linearSlide 1-aljabar-linear
Slide 1-aljabar-linear
 
Metode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier SimultanMetode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier Simultan
 
Draft 2
Draft 2Draft 2
Draft 2
 
Sistem persamaan linear
Sistem persamaan linearSistem persamaan linear
Sistem persamaan linear
 
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.pptBab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
 
Topik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linearTopik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linear
 
21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear
 
Bab 3 sistem persamaan linear
Bab 3 sistem persamaan linearBab 3 sistem persamaan linear
Bab 3 sistem persamaan linear
 
Pertemuan v sistem persamaan linier
Pertemuan v sistem persamaan linierPertemuan v sistem persamaan linier
Pertemuan v sistem persamaan linier
 
eliminasi-gauss materi lengkap dan terpecaya
eliminasi-gauss materi lengkap dan terpecayaeliminasi-gauss materi lengkap dan terpecaya
eliminasi-gauss materi lengkap dan terpecaya
 
Bab v spldv
Bab v spldvBab v spldv
Bab v spldv
 
Sistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variableSistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variable
 
Power point spl
Power point splPower point spl
Power point spl
 
Pertemuan3&4
Pertemuan3&4Pertemuan3&4
Pertemuan3&4
 
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan KuadratSistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan Kuadrat
 
Bab5KELAS 8.ppt
Bab5KELAS 8.pptBab5KELAS 8.ppt
Bab5KELAS 8.ppt
 
Persamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.pptPersamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.ppt
 
matematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokokmatematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokok
 

Recently uploaded

Pemutakhiran Data dosen pada sister.pptx
Pemutakhiran Data dosen pada sister.pptxPemutakhiran Data dosen pada sister.pptx
Pemutakhiran Data dosen pada sister.pptx
ssuser4dafea
 
Modul Ajar Statistika Data Fase F kelas
Modul Ajar Statistika Data Fase F  kelasModul Ajar Statistika Data Fase F  kelas
Modul Ajar Statistika Data Fase F kelas
ananda238570
 
peluang kejadian total dan kaidah nbayes
peluang kejadian total dan kaidah nbayespeluang kejadian total dan kaidah nbayes
peluang kejadian total dan kaidah nbayes
ayyurah2004
 
Projek Penguatan Profil Pelajar Pancasila SD.pdf.pdf
Projek Penguatan Profil Pelajar Pancasila SD.pdf.pdfProjek Penguatan Profil Pelajar Pancasila SD.pdf.pdf
Projek Penguatan Profil Pelajar Pancasila SD.pdf.pdf
anikdwihariyanti
 
92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf
92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf
92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf
tsuroyya38
 
Pembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptx
Pembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptxPembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptx
Pembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptx
Sosdiklihparmassdm
 
Tugas CGP Mulai dari diri - Modul 2.1.pdf
Tugas CGP Mulai dari diri - Modul 2.1.pdfTugas CGP Mulai dari diri - Modul 2.1.pdf
Tugas CGP Mulai dari diri - Modul 2.1.pdf
Thahir9
 
Materi Feedback (umpan balik) kelas Psikologi Komunikasi
Materi Feedback (umpan balik) kelas Psikologi KomunikasiMateri Feedback (umpan balik) kelas Psikologi Komunikasi
Materi Feedback (umpan balik) kelas Psikologi Komunikasi
AdePutraTunggali
 
Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...
Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...
Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...
Sathya Risma
 
JURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdf
JURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdfJURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdf
JURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdf
HERIHERI52
 
LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG MENGUKUR KEANEKARAGAMAN JENIS FLORA D...
LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG  MENGUKUR KEANEKARAGAMAN JENIS FLORA D...LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG  MENGUKUR KEANEKARAGAMAN JENIS FLORA D...
LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG MENGUKUR KEANEKARAGAMAN JENIS FLORA D...
HengkiRisman
 
Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?
Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?
Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?
SABDA
 
Pelatihan AI GKA abdi Sabda - Apa itu AI?
Pelatihan AI GKA abdi Sabda - Apa itu AI?Pelatihan AI GKA abdi Sabda - Apa itu AI?
Pelatihan AI GKA abdi Sabda - Apa itu AI?
SABDA
 
Defenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada Anak
Defenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada AnakDefenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada Anak
Defenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada Anak
Yayasan Pusat Kajian dan Perlindungan Anak
 
LAPORAN WALI KELAS Wahyu Widayati, S.Pd.docx
LAPORAN WALI KELAS Wahyu Widayati, S.Pd.docxLAPORAN WALI KELAS Wahyu Widayati, S.Pd.docx
LAPORAN WALI KELAS Wahyu Widayati, S.Pd.docx
moh3315
 
Modul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum MerdekaModul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum Merdeka
Fathan Emran
 
Kisi-kisi PAT IPS Kelas 8 semester 2.pdf
Kisi-kisi PAT IPS Kelas 8 semester 2.pdfKisi-kisi PAT IPS Kelas 8 semester 2.pdf
Kisi-kisi PAT IPS Kelas 8 semester 2.pdf
indraayurestuw
 
Tugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdf
Tugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdfTugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdf
Tugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdf
nurfaridah271
 
Modul Ajar Kimia Kelas 10 Fase E Kurikulum Merdeka
Modul Ajar Kimia Kelas 10 Fase E Kurikulum MerdekaModul Ajar Kimia Kelas 10 Fase E Kurikulum Merdeka
Modul Ajar Kimia Kelas 10 Fase E Kurikulum Merdeka
Fathan Emran
 
Modul Ajar Matematika Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Matematika Kelas 11 Fase F Kurikulum MerdekaModul Ajar Matematika Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Matematika Kelas 11 Fase F Kurikulum Merdeka
Fathan Emran
 

Recently uploaded (20)

Pemutakhiran Data dosen pada sister.pptx
Pemutakhiran Data dosen pada sister.pptxPemutakhiran Data dosen pada sister.pptx
Pemutakhiran Data dosen pada sister.pptx
 
Modul Ajar Statistika Data Fase F kelas
Modul Ajar Statistika Data Fase F  kelasModul Ajar Statistika Data Fase F  kelas
Modul Ajar Statistika Data Fase F kelas
 
peluang kejadian total dan kaidah nbayes
peluang kejadian total dan kaidah nbayespeluang kejadian total dan kaidah nbayes
peluang kejadian total dan kaidah nbayes
 
Projek Penguatan Profil Pelajar Pancasila SD.pdf.pdf
Projek Penguatan Profil Pelajar Pancasila SD.pdf.pdfProjek Penguatan Profil Pelajar Pancasila SD.pdf.pdf
Projek Penguatan Profil Pelajar Pancasila SD.pdf.pdf
 
92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf
92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf
92836246-Soap-Pada-Pasien-Dengan-as-Primer.pdf
 
Pembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptx
Pembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptxPembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptx
Pembentukan-Pantarlih-Pilkada-Kabupaten-Tapin.pptx
 
Tugas CGP Mulai dari diri - Modul 2.1.pdf
Tugas CGP Mulai dari diri - Modul 2.1.pdfTugas CGP Mulai dari diri - Modul 2.1.pdf
Tugas CGP Mulai dari diri - Modul 2.1.pdf
 
Materi Feedback (umpan balik) kelas Psikologi Komunikasi
Materi Feedback (umpan balik) kelas Psikologi KomunikasiMateri Feedback (umpan balik) kelas Psikologi Komunikasi
Materi Feedback (umpan balik) kelas Psikologi Komunikasi
 
Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...
Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...
Laporan bulanan Dosen Pembimbing lapangan dalam pelaksanaan kampus mengajar a...
 
JURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdf
JURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdfJURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdf
JURNAL REFLEKSI DWI MINGGUAN MODUL 1.4 BUDAYA POSITIF.pdf
 
LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG MENGUKUR KEANEKARAGAMAN JENIS FLORA D...
LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG  MENGUKUR KEANEKARAGAMAN JENIS FLORA D...LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG  MENGUKUR KEANEKARAGAMAN JENIS FLORA D...
LAPORAN PRAKTIKUM EKOLOGI UMUM TENTANG MENGUKUR KEANEKARAGAMAN JENIS FLORA D...
 
Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?
Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?
Pelatihan AI GKA abdi Sabda - Bagaimana memakai AI?
 
Pelatihan AI GKA abdi Sabda - Apa itu AI?
Pelatihan AI GKA abdi Sabda - Apa itu AI?Pelatihan AI GKA abdi Sabda - Apa itu AI?
Pelatihan AI GKA abdi Sabda - Apa itu AI?
 
Defenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada Anak
Defenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada AnakDefenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada Anak
Defenisi Anak serta Usia Anak dan Kekerasan yang mungki terjadi pada Anak
 
LAPORAN WALI KELAS Wahyu Widayati, S.Pd.docx
LAPORAN WALI KELAS Wahyu Widayati, S.Pd.docxLAPORAN WALI KELAS Wahyu Widayati, S.Pd.docx
LAPORAN WALI KELAS Wahyu Widayati, S.Pd.docx
 
Modul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum MerdekaModul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Bahasa Inggris Kelas 11 Fase F Kurikulum Merdeka
 
Kisi-kisi PAT IPS Kelas 8 semester 2.pdf
Kisi-kisi PAT IPS Kelas 8 semester 2.pdfKisi-kisi PAT IPS Kelas 8 semester 2.pdf
Kisi-kisi PAT IPS Kelas 8 semester 2.pdf
 
Tugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdf
Tugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdfTugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdf
Tugas_Rasianto-Refleksi - Pembelajaran Diferensiasi dalam PJOK.pdf
 
Modul Ajar Kimia Kelas 10 Fase E Kurikulum Merdeka
Modul Ajar Kimia Kelas 10 Fase E Kurikulum MerdekaModul Ajar Kimia Kelas 10 Fase E Kurikulum Merdeka
Modul Ajar Kimia Kelas 10 Fase E Kurikulum Merdeka
 
Modul Ajar Matematika Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Matematika Kelas 11 Fase F Kurikulum MerdekaModul Ajar Matematika Kelas 11 Fase F Kurikulum Merdeka
Modul Ajar Matematika Kelas 11 Fase F Kurikulum Merdeka
 

2. Sistem Persamaan Linier.ppt

  • 2. OUTLINE Pendahuluan Eliminasi Gauss - Jordan SPL Homogen Penyelesaian SPL dengan Inverse Matriks
  • 3. SISTEM PERSAMAAN LINIER (SPL) Bentuk umum : dimana x1, x2, . . . , xn variabel tak diketahui, aij , bi, i = 1, 2, . . . , m; j = 1, 2, . . . , n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK
  • 4. ILUSTRASI GRAFIK • SPL 2 persamaan 2 variabel: • Masing-masing pers berupa garis lurus. Penyelesaiannya adalah titik potong kedua garis ini. kedua garis sejajar kedua garis berpotongan kedua garis berhimpitan
  • 5. PENYAJIAN SPL DALAM MATRIKS SPL BENTUK MATRIKS STRATEGI MENYELESAIKAN SPL: mengganti SPL lama menjadi SPL baru yang mempunyai penyelesaian sama (ekuivalen) tetapi dalam bentuk yang lebih sederhana.
  • 6. TIGA OPERASI YANG MEMPERTAHANKAN PENYELESAIAN SPL SPL 1. Mengalikan suatu persamaan dengan konstanta tak nol. 2. Menukar posisi dua persamaan sebarang. 3. Menambahkan kelipatan suatu persamaan ke persamaan lainnya. MATRIKS 1. Mengalikan suatu baris dengan konstanta tak nol. 2. Menukar posisi dua baris sebarang. 3. Menambahkan kelipatan suatu baris ke baris lainnya. Ketiga operasi ini disebut OPERASI BARIS ELEMENTER (OBE) SPL atau bentuk matriksnya diolah menjadi bentuk seder- hana sehingga tercapai 1 elemen tak nol pada suatu baris
  • 7.
  • 8.
  • 9. CONTOH DIKETAHUI kalikan pers (i) dengan (-2), kemu- dian tambahkan ke pers (ii). kalikan baris (i) dengan (-2), lalu tambahkan ke baris (ii). …………(i) …………(ii) …………(iii) kalikan pers (i) dengan (-3), kemu- dian tambahkan ke pers (iii). kalikan baris (i) dengan (-3), lalu tambahkan ke baris (iii). kalikan pers (ii) dengan (1/2). kalikan baris (ii) dengan (1/2).
  • 10. kalikan pers (iii) dengan (-2). kalikan brs (iii) dengan (-2). LANJUTAN CONTOH kalikan pers (ii) dengan (1/2). kalikan baris (ii) dengan (1/2). kalikan pers (ii) dengan (-3), lalu tambahkan ke pers (iii). kalikan brs (ii) dengan (-3), lalu tambahkan ke brs (iii). kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i). kalikan brs (ii) dengan (-1), lalu tambahkan ke brs (i).
  • 11. Lanjutan CONTOH kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i). kalikan brs (ii) dengan (-1), lalu tambahkan ke brs (i). kalikan pers (iii) dengan (-11/2), lalu tambahkan ke pers (i) dan kalikan pers (ii) dg (7/2), lalu tambahkan ke pers (ii) kalikan brs (iii) dengan (-11/2), lalu tambahkan ke brs (i) dan kalikan brs (ii) dg (7/2), lalu tambahkan ke brs (ii) Diperoleh penyelesaian x = 1, y = 2, z = 3. Terdapat kaitan menarik antara bentuk SPL dan representasi matriksnya. Metoda ini berikutnya disebut dengan METODA ELIMINASI GAUSS.
  • 12. BENTUK ECHELON-BARIS Misalkan SPL disajikan dalam bentuk matriks berikut: maka SPL ini mempunyai penyelesaian x = 1, y = 2, z = 3. Matriks ini disebut bentuk echelon-baris tereduksi. Untuk dapat mencapai bentuk ini maka syaratnya adalah sbb: 1. Jika suatu brs matriks tidak nol semua maka elemen tak nol pertama adalah 1. Brs ini disebut mempunyai leading 1. 2. Semua brs yg terdiri dari nol semua dikumpulkan di bagian bawah. 3. Leading 1 pada baris lebih atas posisinya lebih kiri daripada leading 1 baris berikut. 4. Setiap kolom yang memuat leading 1, elemen lain semuanya 0.
  • 13. Bentuk echelon-baris dan echelon-baris tereduksi Matriks yang memenuhi kondisi (1), (2), (3) disebut bentuk echelon-baris. CONTOH bentuk echelon-baris tereduksi: CONTOH bentuk echelon-baris:
  • 14. Bentuk umum echelon-baris dimana lambang ∗ dapat diisi bilangan real sebarang.
  • 15. Bentuk umum echelon-baris tereduksi dimana lambang ∗ dapat diisi bilangan real sebarang.
  • 16. Penyelesaian SPL melalui bentuk echelon-baris Misal diberikan bentuk matriks SPL sbb: Tentukan penyelesaian masing-masing SPL di atas.
  • 17. METODA GAUSS-JORDAN Ide pada metoda eliminasi Gauss adalah mengubah matriks ke dalam bentuk echelon-baris tereduksi. CONTOH: Diberikan SPL berikut. Bentuk matriks SPL ini adalah:
  • 18. -2B1 + B2B2 5B2+B3  B3             6 18 0 8 4 0 0 0 0 0 0 0 0 0 1 - 3 - 0 2 - 1 - 0 0 0 0 2 0 2 - 3 1 B4 B4+4B2 B3 ⇄ B4 B3 B3/3 -3B3+B2B2 2B2+B1B1
  • 19. Akhirnya diperoleh: Akhirnya, dengan mengambil x2:= r, x4:= s dan x5:= t maka diperoleh penyelesaian: dimana r, s dan t bilangan real sebarang. Jadi SPL ini mempunyai tak berhingga banyak penyelesaian.
  • 20. METODA SUBSTITUSI MUNDUR Misalkan kita mempunyai SPL dalam matriks berikut: Bentuk ini ekuivalen dengan: LANGKAH 1: selesaikan variabel leading, yaitu x6. Diperoleh: LANGKAH 2: mulai dari baris paling bawah subtitusi ke atas, diperoleh
  • 21. LANJUTAN SUBSTITUSI MUNDUR LANGKAH 3: subtitusi baris 2 ke dalam baris 1, diperoleh: LANGKAH 4: Karena semua persamaan sudah tersubstitusi maka peker- jaan substitusi selesai. Akhirnya dengan mengikuti langkah pada metoda Gauss-Jordan sebelumnya diperoleh:
  • 22. Eliminasi Gaussian Mengubah menjadi bentuk echelon-baris (tidak perlu direduksi), kemudian menggunakan substitusi mundur. CONTOH: Selesaikan dengan metoda eliminasi Gaussian PENYELESAIAN: Diperhatikan bentuk matriks SPL berikut: Dengan menggunakan OBE diperoleh bentuk echelon-baris berikut:
  • 23. SPL HOMOGEN • Bentuk umum: • Penyelesaian trivial (sederhana): • Bila ada penyelesaian lain yang tidak semuanya nol maka disebut penyelesaian taktrivial.
  • 24. SPL HOMOGEN pasti ada penyelesaian trivial penyelesaian trivial + takberhingga banyak penyelesaian taktrivial atau ILUSTRASI:
  • 25. SPL dengan Matriks a11x1 + a12x2 + ….+ a1nxn = b1 a21x1 + a22x2 + ….+ a2nxn = b1 ………………………………… ………………………………… am1x1 + am2x2 + ….+ amnxn = bm                                      m 2 1 n 2 1 mn m2 m1 2n 22 12 1n 12 11 b .... b b x .... x x a ..... a a ...... ..... ..... ..... a ..... a a a ..... a a
  • 26. atau AX = B dengan A=(aij) matriks koefisien, X=(x1,x2,…..,xn)* dan B=(b1,b2,…,bn)*. Matriks lengkap sistem tersebut adalah :              m m2 m1 2 2n 22 21 1 1n 12 11 b .... ..... a a .... .... ..... .... .... b a ..... a a b a ..... a a (AB)
  • 27. Pembagian SPL 1. SPL homogen a11x1 + a12x2 + …….. + a1nxn = 0 a21x1 + a22x2 + …….. + a2nxn = 0 ……………………………………. ……………………………………. am1x1 + am2x2 + …….. + amnxn = 0 Contoh : x1 – 2x2 + 3x3 = 0 x1 + x2 + 2x3 = 0
  • 28. 2. SPL non homogen a11x1 + a12x2 + ….+ a1nxn = b1 a21x1 + a22x2 + ….+ a2nxn = b2 ………………………………… ………………………………… am1x1 + am2x2 + ….+ amnxn = bm CONTOH x1 – 2x2 + 3x3 = 4 X1 + x2 + 2x3 = 5
  • 29. E. Penyelesaian SPL Non Homogin Khusus untuk m=n SPL yg non homogin, penyelesaian tunggal bila Det (A) ≠ 0 dapat menggunakan : 1. Aturan Cramer Pandang sistem n persamaan linear dalam n bilangan tak diketahui : a11x11 + a12x12 + ……..+ a1nx1n = b1 a11x11 + a12x12 + ……..+ a1nx1n = b2 ……………………………………….. an1x11 + an2x12 + ……..+ annxnn = bn
  • 30. Determinan matriks koefisien adalah : Bila de(Ak) adalah determinan yang didapat dari det (A) dengan mengganti kolom ke k dengan suku tetap (b1 b2 ……bn), maka aturan Cramer mengatakan : k = 1,2,3,……,n mn m2 mn 2n 22 21 1n 12 11 a .... a a .... .... .... .... a .... a a a .... a a Det(A)  Det(A) ) Det(A x k k 
  • 31. Contoh : Selesaikan SPL berikut ! 2x1 + 8x2 + 6x3 = 20 4x1 + 2x2 – 2x3 = -2 3x1 - x2 + x3 = 11 Penyelesaian : determinan matriks koefisien 140 4 32 36 24 48 4 1 1 3 2 2 4 6 8 2 Det(A)            280 40 16 132 12 176 40 1 1 11 2 2 2 6 8 20 ) Det(A1            
  • 32. Sedangkan : 560 4 352 120 80 48 44 11 1 3 2 2 4 20 8 2 ) Det(A3            140 44 80 36 264 120 4 1 11 3 2 2 4 6 20 2 ) Det(A2            2 140 280 Det(A) ) Det(A x 1 1      1 140 140 Det(A) ) Det(A x 2 2      4 140 560 Det(A) ) Det(A x 3 3     
  • 33. (2). Menggunakan invers matriks Bila Det(A)≠ 0, maka A-1 ada AX = B A-1.AX = A-1.B Jadi : X = A-1 penyelesaian sistem ini. Catatan : Bila m=n dan Det(A) = 0, maka sistemnya mempu- nyai tak berhingga banyak penyelesaian. Contoh : selesaikan SPL berikut dengan mengguna kan invers matriks ! 2x1 + 3x2 + x3 = 9 x1 + 2x2 + 3x3 = 6 3x1 + x2 + 2x3 = 8
  • 34. Penyelesaian : determinan matriks koefisien adalah : 11 6 6 4 1 18 8 2 1 2 3 2 1 1 3 2 Det(A)                      1 7 5 1 1 7 7 5 1 11 1 A 1 -                                               11 / 5 11 / 29 11 / 35 8 6 9 11 1 8 6 9 1 7 5 1 1 7 7 5 1 11 1 H . A X 1 - 11 5 x ; 11 29 x ; 11 35 x 3 2 1   