SlideShare a Scribd company logo
DFT and FFT
• FFT is an algorithm to convert a time domain
signal to DFT efficiently.
• FFT is not unique. Many algorithms are
available.
• Each algorithm has merits and demerits.
• In each algorithm, depending on the sequence
needed at the output, the input is regrouped.
• The groups are decided by the number of
samples.
FFTs
• The number of points can be nine too.
• It can be 15 as well.
• Any number in multiples of two integers.
• It can not be any prime number.
• It can be in the multiples of two prime
numbers.
FFTs
• The purpose of this series of lectures is to
learn the basics of FFT algorithms.
• Algorithms having number of samples 2N,
where N is an integer is most preferred.
• 8 point radix-2 FFT by decimation is used
from learning point of view.
• Radix-x: here ‘x’ represents number of
samples in each group made at the first
stage. They are generally equal.
• We shall study radix-2 and radix-3.
Radix-2: DIT or, DIF
• Radix-2 is the first FFT algorithm. It was
proposed by Cooley and Tukey in 1965.
• Though it is not the efficient algorithm, it lays
foundation for time-efficient DFT calculations.
• The next slide shows the saving in time
required for calculations with radix-2.
• The algorithms appear either in
(a) Decimation In Time (DIT), or,
(b) Decimation In Frequency (DIF).
• DIT and DIF, both yield same complexity and
results. They are complementary.
• We shall stress on 8 to radix 2 DIT FFT.
Other popular Algorithms
Besides many, the popular algorithms are:
• Goertzel algorithm
• Chirp Z algorithm
• Index mapping algorithm
• Split radix in prime number algorithm.
have modified approach over radix-2.
Split radix in prime number does not use even the twiddles.
We now pay attention to 8/radix-2 butterfly FIT FFT algorithm.
Relationship between exponential forms
and twiddle factors (W) for Periodicity = N
Sr.
No.
Exponential form Symbolic form
01 e-j2n/N = e-j2(n+N)/N WN
n = WN
n+N
02 e-j2(n+N/2)/N = - e-j2n/N WN
n+N/2= - WN
n
03 e-j2k = e-j2Nk/N = 1 WN
N+K = 1
04 e-j2(2/N) = e-j2/(N/2) WN
2 = WN/2
Values of various twiddles WN
n for
length N=8
n WN
n = e(-j2)(n/N) Remarks
0 1 = 10 WN
0
1 (1-j)/√2 = 1 -45 WN
1
2 -j = 1 -90 WN
2
3 - (1+j)/√2 = 1-135 WN
3
4 -1 = 1 -180 WN
4 = -WN
0
5 - (1-j)/√2 = 1 -225 WN
5 = -WN
1
6 j = 1 90 WN
6 = -WN
2
7 (1+j)/√2 = 1 45 WN
7 = -WN
3
DFT calculations
• The forward DFT, frequency domain output in the
range 0kN-1 is given by:
• While the Inverse DFT, time domain output, again, in
the range 0kN-1 is denoted by
X k
( )
0
n 1

n
x n
( ) W
N
 nk







x n
( )
1
N
0
n 1

k
X k
( ) W
N
  nk
















Matrix Relations
• The DFT samples defined by
can be expressed in NxN matrix as
where
 T
N
X
X
X ]
[
.....
]
[
]
[ 1
1
0 

X
 T
N
x
x
x ]
[
.....
]
[
]
[ 1
1
0 

x
1
0
,
]
[
]
[
1
0







N
k
W
n
x
k
X
N
n
kn
N
   
x(n)
X(k)
1
0
n






 


N
nk
N
W
Matrix Relations
can be expanded as NXN DFT matrix

























2
)
1
(
)
1
(
2
)
1
(
)
1
(
2
4
2
)
1
(
2
1
1
0
1
1
1
1
1
1
1
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
k
nk
N
W
W
W
W
W
W
W
W
W
W












1
0
N
k
nk
N
W
DFT:
For N of length 4,range of n, k = [0 1 2 3] each.
Hence X(n) = x(0)WN
n.0+x(1)WN
n.1+x(2)WN
n.2 + x(3)WN
n.3
X k
( )
0
n 1

n
x n
( ) W
N
 nk






 x
x(0) x(1) x(2) x(3)
X(0) = W4
0x0 W4
0x1 W4
0x2 W4
0x3
X(1) = W4
1x0 W4
1x1 W4
1x2 W4
1x3
X(2) = W4
2x0 W4
2x1 W4
2x2 W4
2x3
X(3) = W4
3x0 W4
3x1 W4
3x2 W4
3x3
x(0) x(1) x(2) x(3)
X(0) = W4
0x0 W4
0x1 W4
0x2 W4
0x3
X(1) = W4
1x0 W4
1x1 W4
1x2 W4
1x3
X(2) = W4
2x0 W4
2x1 W4
2x2 W4
2x3
X(3) = W4
3x0 W4
3x1 W4
3x2 W4
3x3
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 W4
3
X(2) = W4
0 W4
2 W4
4 W4
6
X(3) = W4
0 W4
3 W4
6 W4
9
Can be rewritten as:
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 W4
3
X(2) = W4
0 W4
2 W4
4 W4
6
X(3) = W4
0 W4
3 W4
6 W4
9
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 -W4
1
X(2) = W4
0 W4
2 W4
0 W4
2
X(3) = W4
0 -W4
1 W4
2 W4
1
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 -W4
1
X(2) = W4
0 W4
2 W4
0 W4
2
X(3) = W4
0 -W4
1 W4
2 W4
1
x(0) x(1) x(2) x(3)
X(0) = 1 1 1 1
X(1) = 1 -j -1 j
X(2) = 1 -1 1 -1
X(3) = 1 j -1 -j
Matrix Relations
• Likewise, the IDFT is
can be expressed in NxN matrix form as
1
0
,
]
[
]
[
1
0








N
n
W
k
X
n
x
N
k
n
k
N
   
X(k)
1
0
n
x
1











N
n
nk
N
W
Matrix Relations
can also be expanded as NXN DFT matrix



































2
)
1
(
)
1
(
2
)
1
(
)
1
(
2
4
2
)
1
(
2
1
1
0
1
1
1
1
1
1
1
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
k
nk
N
W
W
W
W
W
W
W
W
W
W













1
0
N
k
nk
N
W
Observe:




1
0
N
k
nk
N
W














1
0
1
*
1
0
N
n
nk
N
W W
N
N
k
nk
N
The inversion can be had by Hermitian conjugating j by –j and dividing by N.
x(0) x(1) x(2) x(3)
X(0) = 1 1 1 1
X(1) = 1 -j -1 j
X(2) = 1 -1 1 -1
X(3) = 1 j -1 -j
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
j

1

j
1
1

1
1

1
j
1

j













x 0
( )
x 1
( )
x 2
( )
x 3
( )














Characterisitc or system matrix
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
j

1

j
1
1

1
1

1
j
1

j













x 0
( )
x 1
( )
x 2
( )
x 3
( )














x 0
( )
x 1
( )
x 2
( )
x 3
( )












1
4
1
1
1
1
1
j
1

j

1
1

1
1

1
j

1

j












X 0
( )
X 1
( )
X 2
( )
X 3
( )


























x
The effective determinant of above is 1/4.
Conversion in system matrices of DFT and IDFT obtained by replacing by j by –j.
Inversion of above matrix is:
x 0
( )
x 1
( )
x 2
( )
x 3
( )












1
4
1
1
1
1
1
j
1

j

1
1

1
1

1
j

1

j












X 0
( )
X 1
( )
X 2
( )
X 3
( )


























FOR 8 point DFT: N=8
• The system Matrix is:
W8
0x0 W8
0x1 W8
0x2 W8
0x3 W8
0x4 W8
0x5 W8
0x6 W8
0x7
W8
1x0 W8
1x1 W8
1x2 W8
1x3 W8
1x4 W8
1x5 W8
1x6 W8
1x7
W8
2x0 W8
2x1 W8
2x2 W8
2x3 W8
2x4 W8
2x5 W8
2x6 W8
2x7
W8
3x0 W8
3x1 W8
3x2 W8
3x3 W8
3x4 W8
3x5 W8
3x6 W8
3x7
W8
4x0 W8
4x1 W8
4x2 W8
4x3 W8
4x4 W8
4x5 W8
4x6 W8
4x7
W8
5x0 W8
5x1 W8
5x2 W8
5x3 W8
5x4 W8
5x5 W8
5x6 W8
5x7
W8
6x0 W8
6x1 W8
6x2 W8
6x3 W8
6x4 W8
6x5 W8
6x6 W8
6x7
W8
7x0 W8
7x1 W8
7x2 W8
7x0 W8
7x4 W8
7x5 W8
7x6 W8
7x7
The characteristic matrix of 8-point
DFT is:
1
1
1
1
1
1
1
1
1
1 j

2
j

1 j

( )

2
1

1 j

( )

2
j
1 j

2
1
j

1

j
1
j

1

j
1
1 j

( )

2
j
1 j

2
1

1 j

2
j

1 j

( )

2
1
1

1
1

1
1

1
1

1
1 j

( )

2
j

1 j

2
1

1 j

2
j
1 j

( )

2
1
j
1

j

1
j
1

j

1
1 j

2
j
1 j

( )

2
1

1 j

( )

2
j

1 j

( )
2


































DFT and its Inverse
Conversion in system matrices of DFT and IDFT obtained by
replacing by j by –j..
1
1
1
1
1
1
1
1
1
1 j

2
j

1 j

( )

2
1

1 j

( )

2
j
1 j

2
1
j

1

j
1
j

1

j
1
1 j

( )

2
j
1 j

2
1

1 j

2
j

1 j

( )

2
1
1

1
1

1
1

1
1

1
1 j

( )

2
j

1 j

2
1

1 j

2
j
1 j

( )

2
1
j
1

j

1
j
1

j

1
1 j

2
j
1 j

( )

2
1

1 j

( )

2
j

1 j

( )
2


































1
8
1
1
1
1
1
1
1
1
1
1 j

2
j
1 j

2

1

1 j

2

j

1 j

2
1
j
1

j

1
j
1

j

1
1 j

2

j

1 j

2
1

1 j

2
j
1 j

2

1
1

1
1

1
1

1
1

1
1 j

2

j
1 j

2
1

1 j

2
j

1 j

2

1
j

1

j
1
j

1

j
1
1 j

2
j

1 j

2

1

1 j

2

j
1 j

2





































































DFT IDFT
Effective
determinant
Calculation advantage in radix-2
algorithms for various values of N
Improvement
A/B
N N^2 N^2-N A (N/2)ln(N) Nln(N) B
8 64 56 120 8.32 16.64 24.95 4.81
16 256 240 496 22.18 44.36 66.54 7.45
32 1024 992 2016 55.45 110.90 166.36 12.12
64 4096 4032 8128 133.08 266.17 399.25 20.36
128 16384 16256 32640 310.53 621.06 931.59 35.04
256 65536 65280 130816 709.78 1419.57 2129.35 61.43
512 262144 261632 523776 1597.01 3194.02 4791.03 109.32
1024 1048576 1047552 2096128 3548.91 7097.83 10646.74 196.88
2048 4194304 4192256 8386560 7807.61 15615.22 23422.83 358.05
4096 16777216 16773120 33550336 17034.79 34069.57 51104.36 656.51
8192 67108864 67100672 134209536 36908.70 73817.40 110726.10 1212.09
16384 268435456 268419072 536854528 79495.66 158991.33 238486.99 2251.09
No. of
computation
points
DIRECT COMPUTATION FFT computaton
complex
multiplication
Complex
additions
complex
multiplication
Complex
additions
Total Total
The Process of Decimation
• First step of process of decimation is splitting a
sequence in smaller sequences.
• A sequence of 15 can be splitted in five
sequences of threes or three sequences of fives.
• A sequence of 16 numbers can be splitted in 2
sequences of 8. Further,
 each sequence of 8 can be be splitted in two
sequences of 4;
 Subsequently each sequence of 4 can be splitted in
two sequences of two;
 There can be various combinations and varied
complexities.
4-point DFT
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
j

1

j
1
1

1
1

1
j
1

j













x 0
( )
x 1
( )
x 2
( )
x 3
( )














Can be, by interchanging col. 2 and 3, seen as
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
1

1
1

1
j

1

j
1
j
1

j













x 0
( )
x 2
( )
x 1
( )
x 3
( )














4-point DFT
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
1

1
1

1
j

1

j
1
j
1

j













x 0
( )
x 2
( )
x 1
( )
x 3
( )














The system matrix is rewritten as
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
0
1
0
0
1
0
1
1
0
1

0
0
j

0
j












1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1














x 0
( )
x 2
( )
x 1
( )
x 3
( )














Matrix manipulation to get the desired
input sequence from the actual
x 0
( )
x 2
( )
x 1
( )
x 3
( )












1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1












x 0
( )
x 1
( )
x 2
( )
x 3
( )














Process of decimation: example
X[n]
-1
-2 1
2 3 4
5
6
7 n
X[1]
X[3]
X[5]
X[7]
X[n]
-1
-2 1
2 3 4
5
6
7 n
X[1]
X[2]
X[3] X[4]
X[5]
X[6]
X[7]
X[0]
X[n]
-1
-2 1
2 3 4
5
6
7 n
X[2]
X[4]
X[6]
X[0]
Separating the above sequence for +ve ‘n’ in even and odd sequence numbers .
Process of decimation: example
X[n]
-
- 1
2 3 4
5
6
7 n
X[1]
X[3]
X[5]
X[7]
2 3 4 6
X[n]
- 1 5 7 n
X[2]
X[4]
X[6]
X[0]
Compress the even sequence by two.
Shift the sequence to left by one and
compress by two
X[n]
-
1 2 3
n
X[2]
X[4]
X[6]
X[0]
X[n]
2
4 6 n
X[1]
X[3]
X[5]
X[7]
The compression is also called decimation
x 0
( ) x 2
( )

x 0
( ) x 2
( )

x 1
( ) x 3
( )

x 1
( ) x 3
( )













1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1













x 0
( )
x 2
( )
x 1
( )
x 3
( )














X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
0
1
0
0
1
0
1
1
0
1

0
0
j

0
j












x 0
( ) x 2
( )

x 0
( ) x 2
( )

x 1
( ) x 3
( )

x 1
( ) x 3
( )















X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
0
1
0
0
1
0
1
1
0
1

0
0
j

0
j












1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1














x 0
( )
x 2
( )
x 1
( )
x 3
( )













 First stage of
realization
Second
stage
Decimation of 4 point DFT into 2xradix-2
• The values of
W4
0= 1; W4
2 = -1; W4
1= -j; and W4
3 = j
X[0]
x0
x2
x1
x3
x0+x2
xo -x2
x1+x3
x1-x3
X[1]
X[2]
X[3]
Wo
w1
W2
W3
-1
-1
Decimation of 4 point DFT into 2xradix-2
• The values of
W4
0= 1; W4
2 = -1; W4
1= -j; and W4
3 = j
X[0]
N/4 point
DFT
even
N/4 point
DFT
odd
x0
x2
x1
x3
x0+x2
xo -x2
x1+x3
x1-x3
X[1]
X[2]
X[3]
Wo
w1
W2
W3
N=8-point radix-4 DIT-FFT:
N/2 point
DFT
[EVEN]
N/2 point
DFT
[ODD]
X(0)
X(4)
X(2)
X(6)
X(1)
X(3)
X(5)
X(7)
X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X0[0]
X1 [0]
X0[1]
X1 [1]
X0[2]
X1[2]
X0[3]
X1[3]
a
-j 
-b
-1
-a 
j
b
Note: -W4 = W0=1; -W5= W1 = a = (1-j)/2;
-W2 = W6=j and -W3 = W7 = b = (1+j)/2
1
The matrix equation of the slide is:
• Note the symmetry between 1st and 3rd partition
and 2nd and 4th partition of system matrix.
X 0
( )
X 1
( )
X 2
( )
X 3
( )
X 4
( )
X 5
( )
X 6
( )
X 7
( )























1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1

0
0
0
0
a
0
0
0
a

0
0
0
0
j

0
0
0
j
0
0
0
0
b

0
0
0
b






















X
0
0
( )
X
o
1
( )
X
o
2
( )
X
0
3
( )
X
1
0
( )
X
1
1
( )
X
1
2
( )
X
1
3
( )
































N=8-point radix-2 DIT-FFT:
N-point DFT
N/2 point DFT
N/4 point DFT
X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]
-1
-1
-1
-1
-1
-1
-1
-1
w2
w2
w2
w1
w3
-1
-1
-1
-1
System Matrix for N/2 point DFT
Block
Note that partitions 2 and 3 are null matrices while partitions 1 and 4 are identical.
Also note that subpartitions 1st and 3rd are I matrices and
2nd and 4th sub-partitions have sign difference.
Cross diagonals in either case are zero.
X
0
0
( )
X
o
1
( )
X
o
2
( )
X
0
3
( )
X
1
0
( )
X
1
1
( )
X
1
2
( )
X
1
3
( )






























1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1

0
0
0
0
0
0
j

0
j
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1

0
0
0
0
0
0
j

0
j






















x 0
( ) x 4
( )

x 0
( ) x 4
( )

x 2
( ) x 6
( )

x 2
( ) x 6
( )

x 1
( ) x 5
( )

x 1
( ) x 5
( )

x 3
( ) x 7
( )

x 3
( ) x 7
( )

























System Matrix for N/4 block
Again see the simile between 1and 4 partitions. Note that 2 and 3 s are null matrices.
Further note the sub-partition matrices. They also follow the same rule.
All the elements are real.
x 0
( ) x 4
( )

x 0
( ) x 4
( )

x 2
( ) x 6
( )

x 2
( ) x 6
( )

x 1
( ) x 5
( )

x 1
( ) x 5
( )

x 3
( ) x 7
( )

x 3
( ) x 7
( )























1
1
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1























x 1
( )
x 4
( )
x 2
( )
x 6
( )
x 1
( )
x 5
( )
x 3
( )
x 7
( )
























Signal flow graph for decimation of 8 point DFT
N-point DFT
N/2 point DFT
N/4 point DFT
X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]
-1
-1
-1
-1
-1
-1
-1
-1
w2
w2
w2
w1
w3
-1
-1
-1
-1

More Related Content

What's hot

Introduction to 3D Computer Vision and Differentiable Rendering
Introduction to 3D Computer Vision and Differentiable RenderingIntroduction to 3D Computer Vision and Differentiable Rendering
Introduction to 3D Computer Vision and Differentiable Rendering
Preferred Networks
 
Slide2_Segmentation
Slide2_SegmentationSlide2_Segmentation
Slide2_Segmentation
Mohamed Hachama
 
Convolution linear and circular using z transform day 5
Convolution   linear and circular using z transform day 5Convolution   linear and circular using z transform day 5
Convolution linear and circular using z transform day 5
vijayanand Kandaswamy
 
Eigenvalues in a Nutshell
Eigenvalues in a NutshellEigenvalues in a Nutshell
Eigenvalues in a Nutshell
guest9006ab
 
fourier transform of DT signals
fourier transform of DT signalsfourier transform of DT signals
fourier transform of DT signals
tejaspatel1998
 
Object Pose Estimation
Object Pose EstimationObject Pose Estimation
Object Pose Estimation
Arithmer Inc.
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier Domain
Ketan Solanki
 
Krishna
KrishnaKrishna
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha25
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errorsmaheej
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Simen Li
 
Interpolation
InterpolationInterpolation
Interpolation
Santhanam Krishnan
 
Properties of dft
Properties of dftProperties of dft
Properties of dft
tamil arasan
 
maths
maths maths
maths
sidpatel143
 
Note on fourier transform of unit step function
Note on fourier transform of unit step functionNote on fourier transform of unit step function
Note on fourier transform of unit step function
Anand Krishnamoorthy
 
Aitken's Method
Aitken's MethodAitken's Method
Aitken's Method
Isaac Yowetu
 
Dft
DftDft
Newton Raphson Method
Newton Raphson MethodNewton Raphson Method
Newton Raphson Method
Devanshu Taneja
 
Gauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan method
Naimesh Bhavsar
 

What's hot (20)

Introduction to 3D Computer Vision and Differentiable Rendering
Introduction to 3D Computer Vision and Differentiable RenderingIntroduction to 3D Computer Vision and Differentiable Rendering
Introduction to 3D Computer Vision and Differentiable Rendering
 
Slide2_Segmentation
Slide2_SegmentationSlide2_Segmentation
Slide2_Segmentation
 
Convolution linear and circular using z transform day 5
Convolution   linear and circular using z transform day 5Convolution   linear and circular using z transform day 5
Convolution linear and circular using z transform day 5
 
Eigenvalues in a Nutshell
Eigenvalues in a NutshellEigenvalues in a Nutshell
Eigenvalues in a Nutshell
 
fourier transform of DT signals
fourier transform of DT signalsfourier transform of DT signals
fourier transform of DT signals
 
Object Pose Estimation
Object Pose EstimationObject Pose Estimation
Object Pose Estimation
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier Domain
 
Krishna
KrishnaKrishna
Krishna
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errors
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Interpolation
InterpolationInterpolation
Interpolation
 
Properties of dft
Properties of dftProperties of dft
Properties of dft
 
maths
maths maths
maths
 
Note on fourier transform of unit step function
Note on fourier transform of unit step functionNote on fourier transform of unit step function
Note on fourier transform of unit step function
 
Aitken's Method
Aitken's MethodAitken's Method
Aitken's Method
 
Dft
DftDft
Dft
 
Newton Raphson Method
Newton Raphson MethodNewton Raphson Method
Newton Raphson Method
 
Gauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan method
 

Similar to 15Tarique_DSP_8ETC.PPT

Clase 16 dsp
Clase 16 dspClase 16 dsp
Clase 16 dsp
Marcelo Valdiviezo
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
neelamsanjeevkumar
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
Muthukumar P
 
Proyecto parcial 2
Proyecto parcial 2Proyecto parcial 2
Proyecto parcial 2
KevinGuerra26
 
M4L1.ppt
M4L1.pptM4L1.ppt
M4L1.ppt
dudoo1
 
Image compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its ModesImage compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its Modes
kanimozhirajasekaren
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
ssuser2797e4
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
University of Glasgow
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Alexander Litvinenko
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Simen Li
 
Logic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional LogicLogic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional LogicGouda Mando
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
HariPrasad314745
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
ShreeDevi42
 
Fourier slide
Fourier slideFourier slide
Fourier slide
ssuser65bfce
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
roykousik2020
 
Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2
MikeCrea
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
Dr. C.V. Suresh Babu
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
Raj Parekh
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
Alexander Litvinenko
 

Similar to 15Tarique_DSP_8ETC.PPT (20)

Clase 16 dsp
Clase 16 dspClase 16 dsp
Clase 16 dsp
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
Dif fft
Dif fftDif fft
Dif fft
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
Proyecto parcial 2
Proyecto parcial 2Proyecto parcial 2
Proyecto parcial 2
 
M4L1.ppt
M4L1.pptM4L1.ppt
M4L1.ppt
 
Image compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its ModesImage compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its Modes
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Logic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional LogicLogic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional Logic
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Fourier slide
Fourier slideFourier slide
Fourier slide
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
 
Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 

Recently uploaded

Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
AkolbilaEmmanuel1
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
top1002
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
itech2017
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 

Recently uploaded (20)

Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 

15Tarique_DSP_8ETC.PPT

  • 1. DFT and FFT • FFT is an algorithm to convert a time domain signal to DFT efficiently. • FFT is not unique. Many algorithms are available. • Each algorithm has merits and demerits. • In each algorithm, depending on the sequence needed at the output, the input is regrouped. • The groups are decided by the number of samples.
  • 2. FFTs • The number of points can be nine too. • It can be 15 as well. • Any number in multiples of two integers. • It can not be any prime number. • It can be in the multiples of two prime numbers.
  • 3. FFTs • The purpose of this series of lectures is to learn the basics of FFT algorithms. • Algorithms having number of samples 2N, where N is an integer is most preferred. • 8 point radix-2 FFT by decimation is used from learning point of view. • Radix-x: here ‘x’ represents number of samples in each group made at the first stage. They are generally equal. • We shall study radix-2 and radix-3.
  • 4. Radix-2: DIT or, DIF • Radix-2 is the first FFT algorithm. It was proposed by Cooley and Tukey in 1965. • Though it is not the efficient algorithm, it lays foundation for time-efficient DFT calculations. • The next slide shows the saving in time required for calculations with radix-2. • The algorithms appear either in (a) Decimation In Time (DIT), or, (b) Decimation In Frequency (DIF). • DIT and DIF, both yield same complexity and results. They are complementary. • We shall stress on 8 to radix 2 DIT FFT.
  • 5. Other popular Algorithms Besides many, the popular algorithms are: • Goertzel algorithm • Chirp Z algorithm • Index mapping algorithm • Split radix in prime number algorithm. have modified approach over radix-2. Split radix in prime number does not use even the twiddles. We now pay attention to 8/radix-2 butterfly FIT FFT algorithm.
  • 6. Relationship between exponential forms and twiddle factors (W) for Periodicity = N Sr. No. Exponential form Symbolic form 01 e-j2n/N = e-j2(n+N)/N WN n = WN n+N 02 e-j2(n+N/2)/N = - e-j2n/N WN n+N/2= - WN n 03 e-j2k = e-j2Nk/N = 1 WN N+K = 1 04 e-j2(2/N) = e-j2/(N/2) WN 2 = WN/2
  • 7. Values of various twiddles WN n for length N=8 n WN n = e(-j2)(n/N) Remarks 0 1 = 10 WN 0 1 (1-j)/√2 = 1 -45 WN 1 2 -j = 1 -90 WN 2 3 - (1+j)/√2 = 1-135 WN 3 4 -1 = 1 -180 WN 4 = -WN 0 5 - (1-j)/√2 = 1 -225 WN 5 = -WN 1 6 j = 1 90 WN 6 = -WN 2 7 (1+j)/√2 = 1 45 WN 7 = -WN 3
  • 8. DFT calculations • The forward DFT, frequency domain output in the range 0kN-1 is given by: • While the Inverse DFT, time domain output, again, in the range 0kN-1 is denoted by X k ( ) 0 n 1  n x n ( ) W N  nk        x n ( ) 1 N 0 n 1  k X k ( ) W N   nk                
  • 9. Matrix Relations • The DFT samples defined by can be expressed in NxN matrix as where  T N X X X ] [ ..... ] [ ] [ 1 1 0   X  T N x x x ] [ ..... ] [ ] [ 1 1 0   x 1 0 , ] [ ] [ 1 0        N k W n x k X N n kn N     x(n) X(k) 1 0 n           N nk N W
  • 10. Matrix Relations can be expanded as NXN DFT matrix                          2 ) 1 ( ) 1 ( 2 ) 1 ( ) 1 ( 2 4 2 ) 1 ( 2 1 1 0 1 1 1 1 1 1 1 N N N N N N N N N N N N N N N k nk N W W W W W W W W W W             1 0 N k nk N W
  • 11. DFT: For N of length 4,range of n, k = [0 1 2 3] each. Hence X(n) = x(0)WN n.0+x(1)WN n.1+x(2)WN n.2 + x(3)WN n.3 X k ( ) 0 n 1  n x n ( ) W N  nk        x x(0) x(1) x(2) x(3) X(0) = W4 0x0 W4 0x1 W4 0x2 W4 0x3 X(1) = W4 1x0 W4 1x1 W4 1x2 W4 1x3 X(2) = W4 2x0 W4 2x1 W4 2x2 W4 2x3 X(3) = W4 3x0 W4 3x1 W4 3x2 W4 3x3
  • 12. x(0) x(1) x(2) x(3) X(0) = W4 0x0 W4 0x1 W4 0x2 W4 0x3 X(1) = W4 1x0 W4 1x1 W4 1x2 W4 1x3 X(2) = W4 2x0 W4 2x1 W4 2x2 W4 2x3 X(3) = W4 3x0 W4 3x1 W4 3x2 W4 3x3 x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 W4 3 X(2) = W4 0 W4 2 W4 4 W4 6 X(3) = W4 0 W4 3 W4 6 W4 9 Can be rewritten as:
  • 13. x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 W4 3 X(2) = W4 0 W4 2 W4 4 W4 6 X(3) = W4 0 W4 3 W4 6 W4 9 x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 -W4 1 X(2) = W4 0 W4 2 W4 0 W4 2 X(3) = W4 0 -W4 1 W4 2 W4 1
  • 14. x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 -W4 1 X(2) = W4 0 W4 2 W4 0 W4 2 X(3) = W4 0 -W4 1 W4 2 W4 1 x(0) x(1) x(2) x(3) X(0) = 1 1 1 1 X(1) = 1 -j -1 j X(2) = 1 -1 1 -1 X(3) = 1 j -1 -j
  • 15. Matrix Relations • Likewise, the IDFT is can be expressed in NxN matrix form as 1 0 , ] [ ] [ 1 0         N n W k X n x N k n k N     X(k) 1 0 n x 1            N n nk N W
  • 16. Matrix Relations can also be expanded as NXN DFT matrix                                    2 ) 1 ( ) 1 ( 2 ) 1 ( ) 1 ( 2 4 2 ) 1 ( 2 1 1 0 1 1 1 1 1 1 1 N N N N N N N N N N N N N N N k nk N W W W W W W W W W W              1 0 N k nk N W Observe:     1 0 N k nk N W               1 0 1 * 1 0 N n nk N W W N N k nk N The inversion can be had by Hermitian conjugating j by –j and dividing by N.
  • 17. x(0) x(1) x(2) x(3) X(0) = 1 1 1 1 X(1) = 1 -j -1 j X(2) = 1 -1 1 -1 X(3) = 1 j -1 -j X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 j  1  j 1 1  1 1  1 j 1  j              x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )               Characterisitc or system matrix
  • 18. X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 j  1  j 1 1  1 1  1 j 1  j              x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )               x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )             1 4 1 1 1 1 1 j 1  j  1 1  1 1  1 j  1  j             X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )                           x The effective determinant of above is 1/4. Conversion in system matrices of DFT and IDFT obtained by replacing by j by –j. Inversion of above matrix is: x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )             1 4 1 1 1 1 1 j 1  j  1 1  1 1  1 j  1  j             X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )                          
  • 19. FOR 8 point DFT: N=8 • The system Matrix is: W8 0x0 W8 0x1 W8 0x2 W8 0x3 W8 0x4 W8 0x5 W8 0x6 W8 0x7 W8 1x0 W8 1x1 W8 1x2 W8 1x3 W8 1x4 W8 1x5 W8 1x6 W8 1x7 W8 2x0 W8 2x1 W8 2x2 W8 2x3 W8 2x4 W8 2x5 W8 2x6 W8 2x7 W8 3x0 W8 3x1 W8 3x2 W8 3x3 W8 3x4 W8 3x5 W8 3x6 W8 3x7 W8 4x0 W8 4x1 W8 4x2 W8 4x3 W8 4x4 W8 4x5 W8 4x6 W8 4x7 W8 5x0 W8 5x1 W8 5x2 W8 5x3 W8 5x4 W8 5x5 W8 5x6 W8 5x7 W8 6x0 W8 6x1 W8 6x2 W8 6x3 W8 6x4 W8 6x5 W8 6x6 W8 6x7 W8 7x0 W8 7x1 W8 7x2 W8 7x0 W8 7x4 W8 7x5 W8 7x6 W8 7x7
  • 20. The characteristic matrix of 8-point DFT is: 1 1 1 1 1 1 1 1 1 1 j  2 j  1 j  ( )  2 1  1 j  ( )  2 j 1 j  2 1 j  1  j 1 j  1  j 1 1 j  ( )  2 j 1 j  2 1  1 j  2 j  1 j  ( )  2 1 1  1 1  1 1  1 1  1 1 j  ( )  2 j  1 j  2 1  1 j  2 j 1 j  ( )  2 1 j 1  j  1 j 1  j  1 1 j  2 j 1 j  ( )  2 1  1 j  ( )  2 j  1 j  ( ) 2                                  
  • 21. DFT and its Inverse Conversion in system matrices of DFT and IDFT obtained by replacing by j by –j.. 1 1 1 1 1 1 1 1 1 1 j  2 j  1 j  ( )  2 1  1 j  ( )  2 j 1 j  2 1 j  1  j 1 j  1  j 1 1 j  ( )  2 j 1 j  2 1  1 j  2 j  1 j  ( )  2 1 1  1 1  1 1  1 1  1 1 j  ( )  2 j  1 j  2 1  1 j  2 j 1 j  ( )  2 1 j 1  j  1 j 1  j  1 1 j  2 j 1 j  ( )  2 1  1 j  ( )  2 j  1 j  ( ) 2                                   1 8 1 1 1 1 1 1 1 1 1 1 j  2 j 1 j  2  1  1 j  2  j  1 j  2 1 j 1  j  1 j 1  j  1 1 j  2  j  1 j  2 1  1 j  2 j 1 j  2  1 1  1 1  1 1  1 1  1 1 j  2  j 1 j  2 1  1 j  2 j  1 j  2  1 j  1  j 1 j  1  j 1 1 j  2 j  1 j  2  1  1 j  2  j 1 j  2                                                                      DFT IDFT Effective determinant
  • 22. Calculation advantage in radix-2 algorithms for various values of N Improvement A/B N N^2 N^2-N A (N/2)ln(N) Nln(N) B 8 64 56 120 8.32 16.64 24.95 4.81 16 256 240 496 22.18 44.36 66.54 7.45 32 1024 992 2016 55.45 110.90 166.36 12.12 64 4096 4032 8128 133.08 266.17 399.25 20.36 128 16384 16256 32640 310.53 621.06 931.59 35.04 256 65536 65280 130816 709.78 1419.57 2129.35 61.43 512 262144 261632 523776 1597.01 3194.02 4791.03 109.32 1024 1048576 1047552 2096128 3548.91 7097.83 10646.74 196.88 2048 4194304 4192256 8386560 7807.61 15615.22 23422.83 358.05 4096 16777216 16773120 33550336 17034.79 34069.57 51104.36 656.51 8192 67108864 67100672 134209536 36908.70 73817.40 110726.10 1212.09 16384 268435456 268419072 536854528 79495.66 158991.33 238486.99 2251.09 No. of computation points DIRECT COMPUTATION FFT computaton complex multiplication Complex additions complex multiplication Complex additions Total Total
  • 23. The Process of Decimation • First step of process of decimation is splitting a sequence in smaller sequences. • A sequence of 15 can be splitted in five sequences of threes or three sequences of fives. • A sequence of 16 numbers can be splitted in 2 sequences of 8. Further,  each sequence of 8 can be be splitted in two sequences of 4;  Subsequently each sequence of 4 can be splitted in two sequences of two;  There can be various combinations and varied complexities.
  • 24. 4-point DFT X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 j  1  j 1 1  1 1  1 j 1  j              x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )               Can be, by interchanging col. 2 and 3, seen as X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 1  1 1  1 j  1  j 1 j 1  j              x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )              
  • 25. 4-point DFT X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 1  1 1  1 j  1  j 1 j 1  j              x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )               The system matrix is rewritten as X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 0 1 0 0 1 0 1 1 0 1  0 0 j  0 j             1 1 0 0 1 1  0 0 0 0 1 1 0 0 1 1               x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )              
  • 26. Matrix manipulation to get the desired input sequence from the actual x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )             1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1             x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )              
  • 27. Process of decimation: example X[n] -1 -2 1 2 3 4 5 6 7 n X[1] X[3] X[5] X[7] X[n] -1 -2 1 2 3 4 5 6 7 n X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[0] X[n] -1 -2 1 2 3 4 5 6 7 n X[2] X[4] X[6] X[0] Separating the above sequence for +ve ‘n’ in even and odd sequence numbers .
  • 28. Process of decimation: example X[n] - - 1 2 3 4 5 6 7 n X[1] X[3] X[5] X[7] 2 3 4 6 X[n] - 1 5 7 n X[2] X[4] X[6] X[0] Compress the even sequence by two. Shift the sequence to left by one and compress by two X[n] - 1 2 3 n X[2] X[4] X[6] X[0] X[n] 2 4 6 n X[1] X[3] X[5] X[7] The compression is also called decimation
  • 29. x 0 ( ) x 2 ( )  x 0 ( ) x 2 ( )  x 1 ( ) x 3 ( )  x 1 ( ) x 3 ( )              1 1 0 0 1 1  0 0 0 0 1 1 0 0 1 1              x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )               X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 0 1 0 0 1 0 1 1 0 1  0 0 j  0 j             x 0 ( ) x 2 ( )  x 0 ( ) x 2 ( )  x 1 ( ) x 3 ( )  x 1 ( ) x 3 ( )                X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 0 1 0 0 1 0 1 1 0 1  0 0 j  0 j             1 1 0 0 1 1  0 0 0 0 1 1 0 0 1 1               x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )               First stage of realization Second stage
  • 30. Decimation of 4 point DFT into 2xradix-2 • The values of W4 0= 1; W4 2 = -1; W4 1= -j; and W4 3 = j X[0] x0 x2 x1 x3 x0+x2 xo -x2 x1+x3 x1-x3 X[1] X[2] X[3] Wo w1 W2 W3 -1 -1
  • 31. Decimation of 4 point DFT into 2xradix-2 • The values of W4 0= 1; W4 2 = -1; W4 1= -j; and W4 3 = j X[0] N/4 point DFT even N/4 point DFT odd x0 x2 x1 x3 x0+x2 xo -x2 x1+x3 x1-x3 X[1] X[2] X[3] Wo w1 W2 W3
  • 32. N=8-point radix-4 DIT-FFT: N/2 point DFT [EVEN] N/2 point DFT [ODD] X(0) X(4) X(2) X(6) X(1) X(3) X(5) X(7) X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X0[0] X1 [0] X0[1] X1 [1] X0[2] X1[2] X0[3] X1[3] a -j  -b -1 -a  j b Note: -W4 = W0=1; -W5= W1 = a = (1-j)/2; -W2 = W6=j and -W3 = W7 = b = (1+j)/2 1
  • 33. The matrix equation of the slide is: • Note the symmetry between 1st and 3rd partition and 2nd and 4th partition of system matrix. X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( ) X 4 ( ) X 5 ( ) X 6 ( ) X 7 ( )                        1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1  0 0 0 0 a 0 0 0 a  0 0 0 0 j  0 0 0 j 0 0 0 0 b  0 0 0 b                       X 0 0 ( ) X o 1 ( ) X o 2 ( ) X 0 3 ( ) X 1 0 ( ) X 1 1 ( ) X 1 2 ( ) X 1 3 ( )                                
  • 34. N=8-point radix-2 DIT-FFT: N-point DFT N/2 point DFT N/4 point DFT X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] x[0] x[4] x[2] x[6] x[1] x[5] x[3] x[7] -1 -1 -1 -1 -1 -1 -1 -1 w2 w2 w2 w1 w3 -1 -1 -1 -1
  • 35. System Matrix for N/2 point DFT Block Note that partitions 2 and 3 are null matrices while partitions 1 and 4 are identical. Also note that subpartitions 1st and 3rd are I matrices and 2nd and 4th sub-partitions have sign difference. Cross diagonals in either case are zero. X 0 0 ( ) X o 1 ( ) X o 2 ( ) X 0 3 ( ) X 1 0 ( ) X 1 1 ( ) X 1 2 ( ) X 1 3 ( )                               1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1  0 0 0 0 0 0 j  0 j 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1  0 0 0 0 0 0 j  0 j                       x 0 ( ) x 4 ( )  x 0 ( ) x 4 ( )  x 2 ( ) x 6 ( )  x 2 ( ) x 6 ( )  x 1 ( ) x 5 ( )  x 1 ( ) x 5 ( )  x 3 ( ) x 7 ( )  x 3 ( ) x 7 ( )                         
  • 36. System Matrix for N/4 block Again see the simile between 1and 4 partitions. Note that 2 and 3 s are null matrices. Further note the sub-partition matrices. They also follow the same rule. All the elements are real. x 0 ( ) x 4 ( )  x 0 ( ) x 4 ( )  x 2 ( ) x 6 ( )  x 2 ( ) x 6 ( )  x 1 ( ) x 5 ( )  x 1 ( ) x 5 ( )  x 3 ( ) x 7 ( )  x 3 ( ) x 7 ( )                        1 1 0 0 0 0 0 0 1 1  0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1  0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1  0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1                        x 1 ( ) x 4 ( ) x 2 ( ) x 6 ( ) x 1 ( ) x 5 ( ) x 3 ( ) x 7 ( )                        
  • 37. Signal flow graph for decimation of 8 point DFT N-point DFT N/2 point DFT N/4 point DFT X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] x[0] x[4] x[2] x[6] x[1] x[5] x[3] x[7] -1 -1 -1 -1 -1 -1 -1 -1 w2 w2 w2 w1 w3 -1 -1 -1 -1