SlideShare a Scribd company logo
Shell Momentum Balances
Outline
1.Flow Through a Vertical Tube
2.Flow Through an Annulus
3.Exercises
Flow Through a Vertical Tube
The tube is oriented
vertically.
What will be the
velocity profile of a
fluid whose direction
of flow is in the +z-
direction
(downwards)?
Flow Through a Vertical Tube
Same system, but
this time gravity will
also cause
momentum flux.
Flow Through a Vertical Tube
rate of momentum rate of momentum
force of gravity
in by molecular out by molecular 0
acting on system
transport transport
   
    
      
    
   
0
1 2
:
:
: + (whypositive?)
z z L
rz rzr r r
pressure PA PA
net momentum flux A A
gravity gV
 

 



       0
Adding all terms together:
2 2 2 2
(2 ) 0
rz rzz z L r r r
P r r P r r rL rL
g r rL
     
 
  
    
  
Flow Through a Vertical Tube
 
0
0
Dividing by 2 :
0
Let 0 :
0
rz rzz z L r r r
L
rz
L r
r rP P
r gr
L r
r
P P d
r r gr
L dr

 

 
  

 
   
 
 
     
 
       0
2 2 2 2 (2 ) 0rz rzz z L r r r
P r r P r r rL rL g r rL         
       
Flow Through a Vertical Tube
 0
0L
rz
P P d
r r gr
L dr
 
 
   
 
  0 0
Rewriting:
(0)L L
rz
d P P P P g gL
r g r r
dr L L L
 
 
     
      
   
We let: z zP gz     0 L
rz
d
r r
dr L

  
  
 
  0 (0) L
rz
d P g P gL
r r
dr L L
 

  
  
 
Flow Through a Vertical Tube
  0 L
rz
d
r r
dr L

  
  
 
  0 L
rz
d P P
r r
dr L

 
  
 
Flow through a
circular tube
Flow through a
vertical tube
Flow Through a Vertical Tube
 2 20
4
L
zv R r
L
  
  
 
20
32
L
avev D
L
  
  
 
Hagen-Poiseuille
Equation
Outline
1.Flow Through a Vertical Tube
2.Flow Through an Annulus
3.Exercises
Flow Through an Annulus
Liquid is flowing upward
through an annulus (space
between two concentric
cylinders)
Important quantities:
R : radius of outer cylinder
κR : radius of inner
cylinder
Flow Through an Annulus
Assumptions:
1. Steady-state flow
2. Incompressible fluid
3. Only Vz component is
significant
4. At the solid-liquid interface,
no-slip condition
5. Significant gravity effects
6. Vmax is attained at a
distance λR from the
center of the inner cylinder
(not necessarily the center)
Flow Through an Annulus
rate of momentum rate of momentum
force of gravity
in by molecular out by molecular 0
acting on system
transport transport
   
    
      
    
   
0
1 2
:
:
: (whynegative?)
z z L
rz rzr r r
pressure PA PA
net momentum flux A A
gravity gV
 

 




       0
Adding all terms together:
2 2 2 2
(2 ) 0
rz rzz z L r r r
P r r P r r rL rL
g r rL
     
 
  
    
  
Flow Through an Annulus
 0
0L
rz
P P d
r r gr
L dr
 
 
   
 
  0 0
Rewriting:
(0)L L
rz
d P P P P g gL
r g r r
dr L L L
 
 
     
      
   
We let: z zP gz     0 L
rz
d
r r
dr L

  
  
 
  0 (0) L
rz
d P g P gL
r r
dr L L
 

  
  
 
Flow Through an Annulus
  0 L
rz
d
r r
dr L

  
  
 
  0
20
1
0 1
Solving:
2
2
L
rz
L
rz
L
rz
d
r r
dr L
r r C
L
C
r
L r



  
  
 
  
  
 
  
  
 
BOUNDARY CONDITION!
At a distance λR from the center of
the inner cylinder, Vmax is attained in
the annulus, or zero momentum flux.
0 1
0
2
L C
R
L R


  
  
 
 
20
1
2
L
C R
L

  
   
 
Flow Through an Annulus
 0 2
Rewriting:
2
L
rz
R r R
L R r
 
      
     
    
 
2
0 0
2 2
L L
rz
R
r
L L r


      
    
   
From the definition of flux:
z
rz
dv
dr
  
 0 2
2
Lz
Rdv r R
dr L R r


      
      
    
Flow Through an Annulus
 0 2
2
Lz
Rdv r R
dr L R r


      
      
    
 
 
2
0 2
2
Solving:
1
ln
2 2
L
z
R r
v R r C
L R


    
     
  
Flow Through an Annulus
 
 
2
0 2
2
1
ln
2 2
L
z
R r
v R r C
L R


    
     
  
  22
0 2
2
Rewriting:
2 ln
4
L
z
R r R
v r C
L R R


      
        
     
Take out R/2
Multiply r in log term
by R/R (or 1)
Expand log term
Lump all constants
into C2
  22
0 2
22 ln ln( )
4
L
z
R r r
v R C
L R R


       
         
      
  22
0 2
22 ln
4
L
z
R r r
v C
L R R


      
       
     
Flow Through an Annulus
  22
0 2
22 ln
4
L
z
R r r
v C
L R R


      
       
     
We have two unknown constants: C2 and λ
We can use two boundary conditions:
No-slip Conditions
At r = κR, vz = 0
At r = R, vz = 0
Flow Through an Annulus
  22
0 2
22 ln
4
L
z
R r r
v C
L R R


      
       
     
 
 
 
2
0 2 2
2
2 2
2
Using B.C. #1:
0 2 ln
4
0 2 ln
L R
C
L
C
  

  
 
     
  
 
2
2
2
1
1
2
ln
C



  

  
 
2
0
2
2
Using B.C. #2:
0 1
4
0 1
L R
C
L
C

 
  
 
Flow Through an Annulus
  22
0 2
22 ln
4
L
z
R r r
v C
L R R


      
       
       
2
2
2
1
1
2
ln
C



  

 
  22 2
0 1
ln 1
4 ln
L
z
R r r
v
L R R

 
       
        
      
Shell Balances
1. Identify all the forces that influence the flow
(pressure, gravity, momentum flux) and their
directions. Set the positive directions of your axes.
2. Create a shell with a differential thickness across the
direction of the flux that will represent the flow
system.
3. Identify the areas (cross-sectional and surface areas)
and volumes for which the flow occurs.
4. Formulate the shell balance equation and the
corresponding differential equation for the
momentum flux.
Shell Balances
5. Identify all boundary conditions (solid-liquid, liquid-
liquid, liquid-free surface, momentum flux values at
boundaries, symmetry for zero flux).
6. Integrate the DE for your momentum flux and
determine the values of the constants using the BCs.
7. Insert Newton’s law (momentum flux definition) to
get the differential equation for velocity.
8. Integrate the DE for velocity and determine values of
constants using the BCs.
9. Characterize the flow using this velocity profile.
Shell Balances
Important Assumptions*
1. The flow is always assumed to be at steady-
state.
2. Neglect entrance and exit effects. The flow is
always assumed to be fully-developed.
3. The fluid is always assumed to be
incompressible.
4. Consider the flow to be unidirectional.
*unless otherwise stated
Design Equations for Laminar
and Turbulent Flow in Pipes
Outline
1.Velocity Profiles in Pipes
2.Pressure Drop and Friction Loss (Laminar
Flow)
3.Friction Loss (Turbulent Flow)
4.Frictional Losses in Piping Systems
Velocity Profiles in Pipes
Recall velocity profile in a circular tube:
1. What is the shape of this profile?
2. The maximum occurs at which region?
3. What is the average velocity of the fluid
flowing through this pipe?
 2 20
4
L
z
P P
v R r
L
 
  
 
Velocity Profiles in Pipes
Velocity Profiles in Pipes
Velocity Profile in a Pipe:
Average Velocity of a Fluid in a Pipe:
 2 20
4
L
z
P P
v R r
L
 
  
 
20
32
L
ave
P P
v D
L
 
  
 
Maximum vs. Average Velocity
Outline
1.Velocity Profiles in Pipes
2.Pressure Drop and Friction Loss (Laminar
Flow)
3.Friction Loss (Turbulent Flow)
4.Frictional Losses in Piping Systems
Recall: Hagen-Poiseuille
Equation
20
32
L
ave
P P
v D
L
 
  
 
Describes the pressure drop and flow of
fluid (in the laminar regime) across a
conduit with length L and diameter D
Hagen-Poiseuille Equation
0 2
32 ave
L
Lv
P P
D

 
Pressure drop / Pressure loss (P0 – PL):
Pressure lost due to skin friction
Friction Loss
0 2
32 ave
L
Lv
P P
D

 
In terms of energy
lost per unit mass: 2
32O L ave
f
P P Lv
F
D

 

 
Mechanical energy lost due to friction in
pipe (because of what?)
Friction Factor
Definition: Drag force per wetted surface
unit area (or shear stress at the surface)
divided by the product of density times
velocity head
 
 
 
0
2 2
2 2
L C SS
P P A A
f
v v

 
   
Friction Factor
2
4
2
f
F
c c
F L v
f
g D g

Frictional force/loss head is proportional
to the velocity head of the flow and to
the ratio of the length to the diameter of
the flow stream
Friction Factor for Laminar Flow
Consider the Hagen-Poiseuille equation
(describes laminar flow) and the
definition of the friction factor:
Prove:
20
32
L
ave
P P
v D
L
 
  
 
2
4
2
f O L
F
c c
F P P L v
f
g g D g

 
Re
16
Ff
N
 Valid only for laminar flow
Outline
1.Velocity Profiles in Pipes
2.Pressure Drop and Friction Loss (Laminar
Flow)
3.Friction Loss (Turbulent Flow)
4.Frictional Losses in Piping Systems
Friction Factor for Turbulent
Flow
1. Friction factor is dependent on NRe and
the relative roughness of the pipe.
2. The value of fF is determined
empirically.
2
4
2
f
F
c c
F L v
f
g D g

Friction Factor for Turbulent
Flow
How to compute/find the value of the friction factor for
turbulent flow:
1. Use Moody diagrams.
- Friction factor vs. Reynolds number with a series of
parametric curves related to the relative roughness
2. Use correlations that involve the friction factor f.
- Blasius equation, Colebrook formula, Churchill
equation (Perry 8th Edition)
Moody Diagrams
Important notes:
1. Both fF and NRe are plotted in logarithmic scales.
Some Moody diagrams show fD (Darcy friction
factor). Make the necessary conversions.
2. No curves are shown for the transition region.
3. Lowest possible friction factor for a given NRe in
turbulent flow is shown by the smooth pipe line.
1. Blasius equation for turbulent flow in smooth
tubes:
2. Colebrook formula
0.25
Re
0.079
Ff
N
 5
Re4000 10N 
10
Re
1 2.51
2log
3.7D D
Df N f
 
   
 
 
Friction Factor Correlations
3. Churchill equation (Colebrook formula explicit in fD)
4. Swamee-Jain correlation
0.9
10
Re
1 0.27 7
2log
D
D Nf
  
         
10 0.9
Re
0.25
5.74
2log
3.7
Df
D N


 
 
 
Friction Factor Correlations
Materials of Construction Equivalent Roughness (m)
Copper, brass, lead (tubing) 1.5 E-06
Commercial or welded steel 4.6 E-05
Wrought iron 4.6 E-05
Ductile iron – coated 1.2 E-04
Ductile iron – uncoated 2.4 E-04
Concrete 1.2 E-04
Riveted Steel 1.8 E-03
Equivalent Roughness, ε
Instead of deriving new correlations for f, an approximation
is developed for an equivalent diameter, Deq, which may be
used to calculate NRe and f.
where RH = hydraulic radius
S = cross-sectional area
Pw = wetted perimeter: sum of the length
of the boundaries of the cross-section
actually in contact with the fluid
4 4eq H
w
S
D R
P
 
Frictional Losses for Non-Circular
Conduits
Determine the equivalent diameter of the
following conduit types:
1. Annular space with outside diameter Do and
inside diameter Di
2. Rectangular duct with sides a and b
3. Open channels with liquid depth y and liquid
width b
4 4eq H
w
S
D R
P
 
Equivalent Diameter (Deq)

More Related Content

What's hot

BOILER MOUNTINGS & ACCESSORIES
BOILER MOUNTINGS & ACCESSORIESBOILER MOUNTINGS & ACCESSORIES
BOILER MOUNTINGS & ACCESSORIES
Smit Shah
 
Valves
Valves Valves
First law of thermodynamic
First law of thermodynamicFirst law of thermodynamic
First law of thermodynamic
Pavan Patel
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
Mohsin Siddique
 
Chapter 3 static forces on surfaces [compatibility mode]
Chapter 3  static forces on surfaces [compatibility mode]Chapter 3  static forces on surfaces [compatibility mode]
Chapter 3 static forces on surfaces [compatibility mode]
imshahbaz
 
flow through pipe
flow through pipeflow through pipe
flow through pipe
NIT MANIPUR
 
(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2
Vinod Kumar Turki
 
Fundamentals -valves
Fundamentals  -valvesFundamentals  -valves
Fundamentals -valves
gobindkhiani
 
3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab
Anjalai Ammal Mahalingam Engineering College
 
compressor
compressorcompressor
compressor
naphis ahamad
 
Fluid flow and measurement
Fluid flow and measurementFluid flow and measurement
Fluid flow and measurement
Adeyinka Samuel
 
Losses in Pipe
Losses in PipeLosses in Pipe
Losses in Pipe
Vikramsinh Tiware
 
Pressure measurement
Pressure measurement Pressure measurement
Pressure measurement
Uttam Trasadiya
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
abrish shewa
 
Applications of bernoulli equation.
Applications of bernoulli equation.Applications of bernoulli equation.
Applications of bernoulli equation.
Iqbal Gem
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
secrurie2
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Tony Yen
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
prakash0712
 
Babatunde Mobisola - Accumulator Systems
Babatunde Mobisola - Accumulator  SystemsBabatunde Mobisola - Accumulator  Systems
Babatunde Mobisola - Accumulator Systems
Mobisola Babatunde
 
Fuels and combustion (2014)
Fuels and combustion (2014)Fuels and combustion (2014)
Fuels and combustion (2014)
Yuri Melliza
 

What's hot (20)

BOILER MOUNTINGS & ACCESSORIES
BOILER MOUNTINGS & ACCESSORIESBOILER MOUNTINGS & ACCESSORIES
BOILER MOUNTINGS & ACCESSORIES
 
Valves
Valves Valves
Valves
 
First law of thermodynamic
First law of thermodynamicFirst law of thermodynamic
First law of thermodynamic
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
 
Chapter 3 static forces on surfaces [compatibility mode]
Chapter 3  static forces on surfaces [compatibility mode]Chapter 3  static forces on surfaces [compatibility mode]
Chapter 3 static forces on surfaces [compatibility mode]
 
flow through pipe
flow through pipeflow through pipe
flow through pipe
 
(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2
 
Fundamentals -valves
Fundamentals  -valvesFundamentals  -valves
Fundamentals -valves
 
3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab
 
compressor
compressorcompressor
compressor
 
Fluid flow and measurement
Fluid flow and measurementFluid flow and measurement
Fluid flow and measurement
 
Losses in Pipe
Losses in PipeLosses in Pipe
Losses in Pipe
 
Pressure measurement
Pressure measurement Pressure measurement
Pressure measurement
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 
Applications of bernoulli equation.
Applications of bernoulli equation.Applications of bernoulli equation.
Applications of bernoulli equation.
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
 
Babatunde Mobisola - Accumulator Systems
Babatunde Mobisola - Accumulator  SystemsBabatunde Mobisola - Accumulator  Systems
Babatunde Mobisola - Accumulator Systems
 
Fuels and combustion (2014)
Fuels and combustion (2014)Fuels and combustion (2014)
Fuels and combustion (2014)
 

Similar to 07

2. Fluid Flow in Pipes_Modified.pptx
2. Fluid Flow in Pipes_Modified.pptx2. Fluid Flow in Pipes_Modified.pptx
2. Fluid Flow in Pipes_Modified.pptx
sarmedwahab
 
Basic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptxBasic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptx
AjithPArun1
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
Adnan Aslam
 
Flowinpipe.ppt
Flowinpipe.pptFlowinpipe.ppt
Flowinpipe.ppt
zaid519176
 
Brinually sketches
Brinually sketchesBrinually sketches
Brinually sketches
Dr. Ezzat Elsayed Gomaa
 
Open Channel Flow of irrigation and Drainage Department .ppt
Open Channel Flow of irrigation and Drainage Department .pptOpen Channel Flow of irrigation and Drainage Department .ppt
Open Channel Flow of irrigation and Drainage Department .ppt
iphone4s4
 
Steady Flow through Pipes
Steady Flow through PipesSteady Flow through Pipes
Steady Flow through Pipes
Dr. Ezzat Elsayed Gomaa
 
update__lecture_3.ppt
update__lecture_3.pptupdate__lecture_3.ppt
update__lecture_3.ppt
bharatsingh300
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flows
Mohsin Siddique
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
Anurak Atthasit
 
Holweck pump
Holweck pumpHolweck pump
Holweck pump
irinikou
 
mel242-24.ppt
mel242-24.pptmel242-24.ppt
mel242-24.ppt
AvadheshSharma32
 
hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami
Louy Alhamy
 
FlowTypesRE.pdf
FlowTypesRE.pdfFlowTypesRE.pdf
FlowTypesRE.pdf
moinkhan21028
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
Mercyjiren
 
unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
dhanamalathieee
 
Qb103353
Qb103353Qb103353
Qb103353
manojg1990
 
Exact Solutions for MHD Flow of a Viscoelastic Fluid with the Fractional Bur...
Exact Solutions for MHD Flow of a Viscoelastic Fluid with the  Fractional Bur...Exact Solutions for MHD Flow of a Viscoelastic Fluid with the  Fractional Bur...
Exact Solutions for MHD Flow of a Viscoelastic Fluid with the Fractional Bur...
IJMER
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
nimcan1
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
KOSIREDDYASHOKDEVAKU
 

Similar to 07 (20)

2. Fluid Flow in Pipes_Modified.pptx
2. Fluid Flow in Pipes_Modified.pptx2. Fluid Flow in Pipes_Modified.pptx
2. Fluid Flow in Pipes_Modified.pptx
 
Basic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptxBasic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptx
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Flowinpipe.ppt
Flowinpipe.pptFlowinpipe.ppt
Flowinpipe.ppt
 
Brinually sketches
Brinually sketchesBrinually sketches
Brinually sketches
 
Open Channel Flow of irrigation and Drainage Department .ppt
Open Channel Flow of irrigation and Drainage Department .pptOpen Channel Flow of irrigation and Drainage Department .ppt
Open Channel Flow of irrigation and Drainage Department .ppt
 
Steady Flow through Pipes
Steady Flow through PipesSteady Flow through Pipes
Steady Flow through Pipes
 
update__lecture_3.ppt
update__lecture_3.pptupdate__lecture_3.ppt
update__lecture_3.ppt
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flows
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
 
Holweck pump
Holweck pumpHolweck pump
Holweck pump
 
mel242-24.ppt
mel242-24.pptmel242-24.ppt
mel242-24.ppt
 
hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami
 
FlowTypesRE.pdf
FlowTypesRE.pdfFlowTypesRE.pdf
FlowTypesRE.pdf
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
 
unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
 
Qb103353
Qb103353Qb103353
Qb103353
 
Exact Solutions for MHD Flow of a Viscoelastic Fluid with the Fractional Bur...
Exact Solutions for MHD Flow of a Viscoelastic Fluid with the  Fractional Bur...Exact Solutions for MHD Flow of a Viscoelastic Fluid with the  Fractional Bur...
Exact Solutions for MHD Flow of a Viscoelastic Fluid with the Fractional Bur...
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
 

Recently uploaded

Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...
Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...
Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...
Niswey
 
Pro Tips for Effortless Contract Management
Pro Tips for Effortless Contract ManagementPro Tips for Effortless Contract Management
Pro Tips for Effortless Contract Management
Eternity Paralegal Services
 
AI Transformation Playbook: Thinking AI-First for Your Business
AI Transformation Playbook: Thinking AI-First for Your BusinessAI Transformation Playbook: Thinking AI-First for Your Business
AI Transformation Playbook: Thinking AI-First for Your Business
Arijit Dutta
 
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
ISONIKELtd
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results
 
Profiles of Iconic Fashion Personalities.pdf
Profiles of Iconic Fashion Personalities.pdfProfiles of Iconic Fashion Personalities.pdf
Profiles of Iconic Fashion Personalities.pdf
TTop Threads
 
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
dpbossdpboss69
 
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Stone Art Hub
 
Lukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptxLukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptx
pavelborek
 
Digital Transformation Frameworks: Driving Digital Excellence
Digital Transformation Frameworks: Driving Digital ExcellenceDigital Transformation Frameworks: Driving Digital Excellence
Digital Transformation Frameworks: Driving Digital Excellence
Operational Excellence Consulting
 
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Kalyan Satta Matka Guessing Matka Result Main Bazar chart
 
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
concepsionchomo153
 
Kirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper PresentationKirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip
 
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women MagazineEllen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
CIOWomenMagazine
 
The latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from NewentideThe latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from Newentide
JoeYangGreatMachiner
 
Virtual Leadership and the managing work
Virtual Leadership and the managing workVirtual Leadership and the managing work
Virtual Leadership and the managing work
IruniUshara1
 
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
BBPMedia1
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results
 
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
valvereliz227
 
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
IPLTech Electric
 

Recently uploaded (20)

Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...
Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...
Unlocking WhatsApp Marketing with HubSpot: Integrating Messaging into Your Ma...
 
Pro Tips for Effortless Contract Management
Pro Tips for Effortless Contract ManagementPro Tips for Effortless Contract Management
Pro Tips for Effortless Contract Management
 
AI Transformation Playbook: Thinking AI-First for Your Business
AI Transformation Playbook: Thinking AI-First for Your BusinessAI Transformation Playbook: Thinking AI-First for Your Business
AI Transformation Playbook: Thinking AI-First for Your Business
 
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 
Profiles of Iconic Fashion Personalities.pdf
Profiles of Iconic Fashion Personalities.pdfProfiles of Iconic Fashion Personalities.pdf
Profiles of Iconic Fashion Personalities.pdf
 
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
 
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
 
Lukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptxLukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptx
 
Digital Transformation Frameworks: Driving Digital Excellence
Digital Transformation Frameworks: Driving Digital ExcellenceDigital Transformation Frameworks: Driving Digital Excellence
Digital Transformation Frameworks: Driving Digital Excellence
 
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
 
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
 
Kirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper PresentationKirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper Presentation
 
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women MagazineEllen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
 
The latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from NewentideThe latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from Newentide
 
Virtual Leadership and the managing work
Virtual Leadership and the managing workVirtual Leadership and the managing work
Virtual Leadership and the managing work
 
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
 
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
 

07

  • 2. Outline 1.Flow Through a Vertical Tube 2.Flow Through an Annulus 3.Exercises
  • 3. Flow Through a Vertical Tube The tube is oriented vertically. What will be the velocity profile of a fluid whose direction of flow is in the +z- direction (downwards)?
  • 4. Flow Through a Vertical Tube Same system, but this time gravity will also cause momentum flux.
  • 5. Flow Through a Vertical Tube rate of momentum rate of momentum force of gravity in by molecular out by molecular 0 acting on system transport transport                          0 1 2 : : : + (whypositive?) z z L rz rzr r r pressure PA PA net momentum flux A A gravity gV                0 Adding all terms together: 2 2 2 2 (2 ) 0 rz rzz z L r r r P r r P r r rL rL g r rL                   
  • 6. Flow Through a Vertical Tube   0 0 Dividing by 2 : 0 Let 0 : 0 rz rzz z L r r r L rz L r r rP P r gr L r r P P d r r gr L dr                                    0 2 2 2 2 (2 ) 0rz rzz z L r r r P r r P r r rL rL g r rL                 
  • 7. Flow Through a Vertical Tube  0 0L rz P P d r r gr L dr             0 0 Rewriting: (0)L L rz d P P P P g gL r g r r dr L L L                      We let: z zP gz     0 L rz d r r dr L            0 (0) L rz d P g P gL r r dr L L           
  • 8. Flow Through a Vertical Tube   0 L rz d r r dr L            0 L rz d P P r r dr L         Flow through a circular tube Flow through a vertical tube
  • 9. Flow Through a Vertical Tube  2 20 4 L zv R r L         20 32 L avev D L         Hagen-Poiseuille Equation
  • 10. Outline 1.Flow Through a Vertical Tube 2.Flow Through an Annulus 3.Exercises
  • 11. Flow Through an Annulus Liquid is flowing upward through an annulus (space between two concentric cylinders) Important quantities: R : radius of outer cylinder κR : radius of inner cylinder
  • 12. Flow Through an Annulus Assumptions: 1. Steady-state flow 2. Incompressible fluid 3. Only Vz component is significant 4. At the solid-liquid interface, no-slip condition 5. Significant gravity effects 6. Vmax is attained at a distance λR from the center of the inner cylinder (not necessarily the center)
  • 13. Flow Through an Annulus rate of momentum rate of momentum force of gravity in by molecular out by molecular 0 acting on system transport transport                          0 1 2 : : : (whynegative?) z z L rz rzr r r pressure PA PA net momentum flux A A gravity gV                 0 Adding all terms together: 2 2 2 2 (2 ) 0 rz rzz z L r r r P r r P r r rL rL g r rL                   
  • 14. Flow Through an Annulus  0 0L rz P P d r r gr L dr             0 0 Rewriting: (0)L L rz d P P P P g gL r g r r dr L L L                      We let: z zP gz     0 L rz d r r dr L            0 (0) L rz d P g P gL r r dr L L           
  • 15. Flow Through an Annulus   0 L rz d r r dr L            0 20 1 0 1 Solving: 2 2 L rz L rz L rz d r r dr L r r C L C r L r                            BOUNDARY CONDITION! At a distance λR from the center of the inner cylinder, Vmax is attained in the annulus, or zero momentum flux. 0 1 0 2 L C R L R             20 1 2 L C R L          
  • 16. Flow Through an Annulus  0 2 Rewriting: 2 L rz R r R L R r                       2 0 0 2 2 L L rz R r L L r                   From the definition of flux: z rz dv dr     0 2 2 Lz Rdv r R dr L R r                     
  • 17. Flow Through an Annulus  0 2 2 Lz Rdv r R dr L R r                          2 0 2 2 Solving: 1 ln 2 2 L z R r v R r C L R                
  • 18. Flow Through an Annulus     2 0 2 2 1 ln 2 2 L z R r v R r C L R                   22 0 2 2 Rewriting: 2 ln 4 L z R r R v r C L R R                         Take out R/2 Multiply r in log term by R/R (or 1) Expand log term Lump all constants into C2   22 0 2 22 ln ln( ) 4 L z R r r v R C L R R                              22 0 2 22 ln 4 L z R r r v C L R R                       
  • 19. Flow Through an Annulus   22 0 2 22 ln 4 L z R r r v C L R R                        We have two unknown constants: C2 and λ We can use two boundary conditions: No-slip Conditions At r = κR, vz = 0 At r = R, vz = 0
  • 20. Flow Through an Annulus   22 0 2 22 ln 4 L z R r r v C L R R                              2 0 2 2 2 2 2 2 Using B.C. #1: 0 2 ln 4 0 2 ln L R C L C                     2 2 2 1 1 2 ln C             2 0 2 2 Using B.C. #2: 0 1 4 0 1 L R C L C        
  • 21. Flow Through an Annulus   22 0 2 22 ln 4 L z R r r v C L R R                          2 2 2 1 1 2 ln C            22 2 0 1 ln 1 4 ln L z R r r v L R R                           
  • 22. Shell Balances 1. Identify all the forces that influence the flow (pressure, gravity, momentum flux) and their directions. Set the positive directions of your axes. 2. Create a shell with a differential thickness across the direction of the flux that will represent the flow system. 3. Identify the areas (cross-sectional and surface areas) and volumes for which the flow occurs. 4. Formulate the shell balance equation and the corresponding differential equation for the momentum flux.
  • 23. Shell Balances 5. Identify all boundary conditions (solid-liquid, liquid- liquid, liquid-free surface, momentum flux values at boundaries, symmetry for zero flux). 6. Integrate the DE for your momentum flux and determine the values of the constants using the BCs. 7. Insert Newton’s law (momentum flux definition) to get the differential equation for velocity. 8. Integrate the DE for velocity and determine values of constants using the BCs. 9. Characterize the flow using this velocity profile.
  • 24. Shell Balances Important Assumptions* 1. The flow is always assumed to be at steady- state. 2. Neglect entrance and exit effects. The flow is always assumed to be fully-developed. 3. The fluid is always assumed to be incompressible. 4. Consider the flow to be unidirectional. *unless otherwise stated
  • 25. Design Equations for Laminar and Turbulent Flow in Pipes
  • 26. Outline 1.Velocity Profiles in Pipes 2.Pressure Drop and Friction Loss (Laminar Flow) 3.Friction Loss (Turbulent Flow) 4.Frictional Losses in Piping Systems
  • 27. Velocity Profiles in Pipes Recall velocity profile in a circular tube: 1. What is the shape of this profile? 2. The maximum occurs at which region? 3. What is the average velocity of the fluid flowing through this pipe?  2 20 4 L z P P v R r L       
  • 29. Velocity Profiles in Pipes Velocity Profile in a Pipe: Average Velocity of a Fluid in a Pipe:  2 20 4 L z P P v R r L        20 32 L ave P P v D L       
  • 31. Outline 1.Velocity Profiles in Pipes 2.Pressure Drop and Friction Loss (Laminar Flow) 3.Friction Loss (Turbulent Flow) 4.Frictional Losses in Piping Systems
  • 32. Recall: Hagen-Poiseuille Equation 20 32 L ave P P v D L        Describes the pressure drop and flow of fluid (in the laminar regime) across a conduit with length L and diameter D
  • 33. Hagen-Poiseuille Equation 0 2 32 ave L Lv P P D    Pressure drop / Pressure loss (P0 – PL): Pressure lost due to skin friction
  • 34. Friction Loss 0 2 32 ave L Lv P P D    In terms of energy lost per unit mass: 2 32O L ave f P P Lv F D       Mechanical energy lost due to friction in pipe (because of what?)
  • 35. Friction Factor Definition: Drag force per wetted surface unit area (or shear stress at the surface) divided by the product of density times velocity head       0 2 2 2 2 L C SS P P A A f v v       
  • 36. Friction Factor 2 4 2 f F c c F L v f g D g  Frictional force/loss head is proportional to the velocity head of the flow and to the ratio of the length to the diameter of the flow stream
  • 37. Friction Factor for Laminar Flow Consider the Hagen-Poiseuille equation (describes laminar flow) and the definition of the friction factor: Prove: 20 32 L ave P P v D L        2 4 2 f O L F c c F P P L v f g g D g    Re 16 Ff N  Valid only for laminar flow
  • 38. Outline 1.Velocity Profiles in Pipes 2.Pressure Drop and Friction Loss (Laminar Flow) 3.Friction Loss (Turbulent Flow) 4.Frictional Losses in Piping Systems
  • 39. Friction Factor for Turbulent Flow 1. Friction factor is dependent on NRe and the relative roughness of the pipe. 2. The value of fF is determined empirically. 2 4 2 f F c c F L v f g D g 
  • 40. Friction Factor for Turbulent Flow How to compute/find the value of the friction factor for turbulent flow: 1. Use Moody diagrams. - Friction factor vs. Reynolds number with a series of parametric curves related to the relative roughness 2. Use correlations that involve the friction factor f. - Blasius equation, Colebrook formula, Churchill equation (Perry 8th Edition)
  • 41. Moody Diagrams Important notes: 1. Both fF and NRe are plotted in logarithmic scales. Some Moody diagrams show fD (Darcy friction factor). Make the necessary conversions. 2. No curves are shown for the transition region. 3. Lowest possible friction factor for a given NRe in turbulent flow is shown by the smooth pipe line.
  • 42.
  • 43.
  • 44. 1. Blasius equation for turbulent flow in smooth tubes: 2. Colebrook formula 0.25 Re 0.079 Ff N  5 Re4000 10N  10 Re 1 2.51 2log 3.7D D Df N f           Friction Factor Correlations
  • 45. 3. Churchill equation (Colebrook formula explicit in fD) 4. Swamee-Jain correlation 0.9 10 Re 1 0.27 7 2log D D Nf              10 0.9 Re 0.25 5.74 2log 3.7 Df D N         Friction Factor Correlations
  • 46. Materials of Construction Equivalent Roughness (m) Copper, brass, lead (tubing) 1.5 E-06 Commercial or welded steel 4.6 E-05 Wrought iron 4.6 E-05 Ductile iron – coated 1.2 E-04 Ductile iron – uncoated 2.4 E-04 Concrete 1.2 E-04 Riveted Steel 1.8 E-03 Equivalent Roughness, ε
  • 47. Instead of deriving new correlations for f, an approximation is developed for an equivalent diameter, Deq, which may be used to calculate NRe and f. where RH = hydraulic radius S = cross-sectional area Pw = wetted perimeter: sum of the length of the boundaries of the cross-section actually in contact with the fluid 4 4eq H w S D R P   Frictional Losses for Non-Circular Conduits
  • 48. Determine the equivalent diameter of the following conduit types: 1. Annular space with outside diameter Do and inside diameter Di 2. Rectangular duct with sides a and b 3. Open channels with liquid depth y and liquid width b 4 4eq H w S D R P   Equivalent Diameter (Deq)