SlideShare a Scribd company logo
1 of 32
INTERNAL COMBUTION ENGINE
Made by:
Assistant Professor : NAPHIS AHAMAD
MECHANICAL ENGINEERING
6/10/2017 Naphis Ahamad (ME) JIT 1
6/10/2017 Naphis Ahamad (ME) JIT 2
UNIT V
COMPRESSOR – A device which takes a definite quantity of fluid ( usually gas, and
most often air ) and deliver it at a required pressure.
Air Compressor – 1) Takes in atmospheric air,
2) Compresses it, and
3) Delivers it to a storage vessel ( i.e. Reservoir ).
Compression requires Work to be done on the gas,
Compressor must be driven by some sort of Prime Mover ( i.e. Engine )
Air Compressors
6/10/2017 NAPHIS AHAMAD(ME)JIT 3
Reciprocating Rotary
Single – acting
Double - Acting
No. of Sides of Piston
in operation
No. of Stages
for Compression
Centrifugal
Single – stage
Multi - stage
Classification
Air Compressors
6/10/2017 NAPHIS AHAMAD(ME)JIT 4
Reciprocating Compressor - Working
2. Principle of Operation
 Fig. shows single-acting piston actions in
the cylinder of a reciprocating compressor.
 The piston is driven by a crank shaft via a
connecting rod.
 At the top of the cylinder are a suction
valve and a discharge valve.
 A reciprocating compressor usually has
two, three, four, or six cylinders in it.
6/10/2017 NAPHIS AHAMAD(ME)JIT 5
Reciprocating Compressor - Working
6/10/2017 NAPHIS AHAMAD(ME)JIT 6
Reciprocating Compressor – Equation for Work
Volume
Pressure
P1
P2
V1V2
3 2 2”2’
4 1 (Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
Operations : 4 – 1 : Volume V1 of air aspirated into Compressor, at P1 and T1.
1 – 2 : Air compressed according to PVn = Const. from P1 to P2.
→ Temp increase from T1 to T2.
2 – 3 : Compressed air at P2 and V2 with temperature T2 is delivered.
Reciprocating Compressor – Equation for Work
During Compression, due to the excess temperature above surrounding, the air will
exchange the heat to the surrounding.
 Compression Index, n is always less than γ, the adiabatic index.
As Compressor is a work consuming device, every effort is desired to reduce the work.
Work done = Area under P-V curve
 1 – 2” : Adiabatic Compression = Max. Work.
 1 – 2 : Polytropic Compression
 1 – 2’ : Isothermal Compression = Min. Work.
Reciprocating Compressor – Equation for Work
Thus, comparison between the Isothermal Work and the Actual Work is important.
Isothermal Efficiency, ηiso =
Isothermal Work
Actual Work
Thus, more the Isothermal Efficiency, more the actual compression approaches to the
Isothermal Compression.
P1
P2
V1V2
3 2 2”2’
4 1(Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
Actual Work = Wact = Area 4-1-2-3-4
Wact = Area (4-1) – Area (1-2) – Area (2-3)
 
  





















1
1
1
2211
2211
1122
2211
22
1122
11
n
VPVP
VPVP
n
VPVP
VPVP
VP
n
VPVP
VP
6/10/2017 NAPHIS AHAMAD(ME)JIT 9
 
 






























11
22
11
2211
2211
1
1
1
1
1
1
VP
VP
VP
n
n
VPVP
n
n
VPVP
n
Wiso
Reciprocating Compressor – Equation for Work
P1
P2
V1V2
3 2 2”2’
4 1(Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
Now,
n
nn
P
P
V
V
VPVP
/1
2
1
1
2
2211






























n
iso
P
P
P
P
VP
n
n
W
/1
2
1
1
2
11 1
1












































 n
n
iso
P
P
P
P
VP
n
n
P
P
P
P
VP
n
n
W
/1
1
2
1
2
11
/1
2
1
1
2
11
1
1
1
1
Reciprocating Compressor – Equation for Work
P1
P2
V1V2
3 2 2”2’
4 1(Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
The solution of this equation is always negative.
This shows that Work is done ON the Compressor.

























n
n
iso
P
P
mRT
n
n
W
1
1
2
1 1
1Delivery Temperature,
n
n
P
P
TT
1
1
2
12

































n
n
iso
P
P
VP
n
n
W
1
1
2
11 1
1
Reciprocating Compressor – Equation for Work
P1
P2
V1V4
6 2
5 1
CVP n

3
4
V3
Effective Swept Volume, V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Clearance Volume :
Volume that remains inside the cylinder
after the piston reaches the end of its
inward stroke.
Thus, Effective Stroke Volume = V1 – V4
Actual Work = Wact = Area 1-2-3-4
Wact = Area (5-1-2-6) – Area (5-4-3-6)
6/10/2017 NAPHIS AHAMAD(ME)JIT 12
Reciprocating Compressor – Equation for Work








































n
m
n
m
act
P
P
VP
n
n
P
P
VP
n
n
W
1
1
2
41
1
1
2
11
1
1
1
1
 






















n
act
P
P
P
P
VVP
n
n
W
/1
2
1
1
2
411 1
1







































n
m
n
m
act
P
P
VP
n
n
P
P
VP
n
n
W
1
4
3
44
1
1
2
11 1
1
1
1
P1
P2
V1V4
6 2
5 1
CVP n

3
4
V3
Effective Swept Volume, V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
But, P4 = P1 and P3 = P2
Reciprocating Compressor – Volumetric Efficiency
Volumetric Efficiency :
Ratio of free air delivered to the displacement of the compressor.
Ratio of Effective Swept Volume to Swept Volume.
Volumetric Efficiency =
Effective Swept Volume
Swept Volume
V1 – V4
V1 – V3
=
Vc
Vs
= = γ
Clearance Volume
Swept Volume
Clearance Ratio =
Presence of Clearance Volume
Volumetric Efficiency less than 1. ( 60 – 85 % )
P1
P2
V1V4
6 2
5 1
CVP n

3
4
V3
Effective Swept Volume, V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
( 4 – 10 % )
6/10/2017 NAPHIS AHAMAD(ME)JIT 14
Reciprocating Compressor – Volumetric Efficiency
↑ Pr. Ratio ↑ Effect of Clearance Volume
….Clearance air expansion through greater volume before intake


Cylinder bore and stroke is fixed.
Effective Swept Volume (V1 – V4) ↓ with ↑ Pr. Ratio
↓ Volumetric Efficiency

   
     
   
    3
4
31
3
31
3
3
3
31
4
31
3
31
4
31
3
31
4331
31
41
1
1
1
V
V
VV
V
VV
V
V
V
VV
V
VV
V
VV
V
VV
V
VV
VVVV
VV
VV
vol




















P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-
V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Volumetric Efficiency

















































11
11
11
11
/1
4
3
/1
4
3
31
3
4
3
31
3
4
3
31
3
n
vol
n
vol
vol
vol
P
P
P
P
VV
V
V
V
VV
V
V
V
VV
V




P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Multistage
High Pressure required by Single – Stage :
 1. Requires heavy working parts.
2. Has to accommodate high pressure ratios.
3. Increased balancing problems.
4. High Torque fluctuations.
5. Requires heavy Flywheel installations.
This demands for MULTI – STAGING…!!
Reciprocating Compressor – Multistage
Series arrangement of cylinders, in which the compressed air from earlier cylinder (i.e.
discharge) becomes the intake air for the next cylinder (i.e. inlet).
Intercooler :
Compressed air is cooled
between cylinders.
L.P. = Low Pressure
I.P. = Intermediate
Pressure
H.P. = High Pressure
L.P.
Cylinder
I.P.
Cylinder
H.P.
Cylinder
Intercooler
Intercooler
Air Intake
Air Delivery
6/10/2017 NAPHIS AHAMAD(ME)JIT 18
Reciprocating Compressor – Multistage
Intake Pr.
P1 or Ps
Delivery Pr.
P3 or Pd
3
2
9 5
4
1
CVP n

8
7
6
Intermediate Pr.
P2 CVP 
Without Intercooling
Perfect Intercooling
L.P.
H.P.
Volume
Overall Pr. Range : P1 – P3
Single – stage cycle : 8-1-5-6
Without Intercooling :
L.P. : 8-1-4-7
H.P. : 7-4-5-6
With Intercooling :
L.P. : 8-1-4-7
H.P. : 7-2-3-6
Perfect Intercooling : After initial compression in L.P. cylinder, air is cooled in the
Intercooler to its original temperature, before entering H.P. cylinder
i.e. T2 = T1 OR
Points 1 and 2 are on SAME Isothermal line.
6/10/2017 NAPHIS AHAMAD(ME)JIT 19
Reciprocating Compressor – Multistage
Ideal Conditions for Multi – Stage Compressors :
A. Single – Stage Compressor :
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
Single – stage cycle : 8-1-5-6



















1
1
5
11 1
1
n
n
P
P
VP
n
n
W
Delivery Temperature,
n
n
P
P
TT
1
1
5
15








6/10/2017 NAPHIS AHAMAD(ME)JIT 20
Reciprocating Compressor – Multistage
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
B. Two – Stage Compressor (Without Intercooling) :
Without Intercooling :
L.P. : 8-1-4-7
H.P. : 7-4-5-6








































n
n
n
n
P
P
VP
n
n
P
P
VP
n
n
W
1
4
5
44
1
1
4
11
1
1
1
1
This is SAME as that of Work done in Single – Stage.
Delivery Temperature also remains SAME.
Without Intercooling 
6/10/2017 NAPHIS AHAMAD(ME)JIT 21
Reciprocating Compressor – Multistage
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
C. Two – Stage Compressor (With Perfect Intercooling) :
With Intercooling :
L.P. : 8-1-4-7-8
H.P. : 7-2-3-6-7








































n
n
n
n
P
P
VP
n
n
P
P
VP
n
n
W
1
2
3
22
1
1
4
11
1
1
1
1
Delivery Temperature,
12
1
2
3
1
1
2
3
23 , TTas
P
P
T
P
P
TT
n
n
n
n














6/10/2017 NAPHIS AHAMAD(ME)JIT 22
Reciprocating Compressor – Multistage
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
C. Two – Stage Compressor (With Perfect Intercooling) :
With Intercooling :
L.P. : 8-1-4-7-8
H.P. : 7-2-3-6-7


























n
n
n
n
P
P
P
P
VP
n
n
W
1
2
3
1
1
2
11 2
1
Now, T2 = T1
P2V2 = P1V1
Also P4 = P2
Shaded Area 2-4-5-3-2 : Work Saving due to Intercooler…!!
Reciprocating Compressor – Multistage
Condition for Min. Work :
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
Intermediate Pr. P2 → P1 : Area 2-4-5-3-2 → 0
Intermediate Pr. P2 → P3 : Area 2-4-5-3-2 → 0
 There is an Optimum P2 for which Area 2-4-5-3-2 is
maximum,
i.e. Work is minimum…!!


























n
n
n
n
P
P
P
P
VP
n
n
W
1
2
3
1
1
2
11 2
1
0
2
1
2
3
1
1
2
2

























dP
P
P
P
P
d
dP
dW
n
n
n
n
For min. Work,
6/10/2017 NAPHIS AHAMAD(ME)JIT 24
Reciprocating Compressor – Multistage
Condition for Min. Work :
 
      0
111 1
1
2
1
3
1
1
21
1











 





 






 





 





 

n
n
n
n
n
n
n
n
P
n
n
PP
n
n
P
0
2
1
2
3
1
1
2
2

























dP
P
P
P
P
d
dP
dW
n
n
n
n
 
 
  




 





 

 n
n
n
n
n
PP
P
P 1
3112
2
/1
2
   31
2
2 PPP 
2
3
1
2
312
P
P
P
P
ORPPP 
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
Reciprocating Compressor – Multistage
P2 obtained with this condition (Pr. Ratio per stage is equal) is the Ideal Intermediate Pr.
Which, with Perfect Intercooling, gives Minimum Work, Wmin.
 






















n
n
P
PP
VP
n
n
W
1
1
2/1
31
11 1
1
2




















n
n
P
P
VP
n
n
W
1
1
2
11 1
1
2





















n
n
P
P
VP
n
n
W
2
1
1
3
11 1
1
2
Equal Work per cylinder…!!
Reciprocating Compressor – Efficiency
How to Increase Isothermal Efficiency ?
A. Spray Injection : Assimilation of water into the compressor cylinder towards the
compression stroke.
Object is to cool the air for next operation.
Demerits : 1. Requires special gear for injection.
2. Injected water interferes with the cylinder lubrication.
3. Damage to cylinder walls and valves.
ater must be separated before delivery of air.
B. Water Jacketing : Circulating water around the cylinder to help for cooling the
air during compression.
6/10/2017 NAPHIS AHAMAD(ME)JIT 27
Reciprocating Compressor – Efficiency
How to Increase Isothermal Efficiency ?
C. Inter – Cooling : For high speed and high Pr. Ratio compressors.
Compressed air from earlier stage is cooled to its original
temperature before passing it to the next stage.
D. External Fins : For small capacity compressors, fins on external surfaces are useful.
E. Cylinder Proportions : Short stroke and large bore provides much greater surface
for cooling.
Cylinder head surface is far more effective than barrel surface.
6/10/2017 NAPHIS AHAMAD(ME)JIT 28
Reciprocating Compressor – Efficiency
Clearance Volume : Consists of two spaces.
1. Space between cylinder end & the piston to allow for wear.
2. Space for reception of valves.
High – class H.P. compressors : Clearance Vol. = 3 % of Swept Vol.
: Lead (Pb) fuse wire used to measure the gap between
cylinder end and piston.
Low – grade L.P. compressors : Clearance Vol. = 6 % of Swept Vol.
: Flattened ball of putty used to measure the gap
between cylinder end and piston.
Effect of Clearance Vol. :
Vol. taken in per stroke < Swept Vol. ↑ Size of compressor
↑ Power to drive compressor.

6/10/2017 NAPHIS AHAMAD(ME)JIT 29
P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-V4=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Work Done







































n
n
n
n
P
P
VP
n
n
P
P
VP
n
n
W
1
4
3
44
1
1
2
11 1
1
1
1
Assumption : Compression and Expansion follow same Law.
Work / cycle = Area 1-2-3-4-1
P3 = P2 and P4 = P1








































n
n
a
n
n
P
P
VP
n
n
P
P
VVP
n
n
W
1
1
2
1
1
1
2
411
1
1
1)(
1
6/10/2017 NAPHIS AHAMAD(ME)JIT 30
P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-V4=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Work Done




















n
n
P
P
TRm
n
n
W
1
1
2
11 1
1
m1 is the actual mass of air delivered.
Work done / kg of air delivered :




















n
n
P
P
TR
n
n
W
1
1
2
1 1
1
6/10/2017 NAPHIS AHAMAD(ME)JIT 31
Rotary compressors
These compressors use rotors in place of pistons, giving a pulsating free
discharge air. These rotors are power driven. They have the following
advantages over reciprocating compressors:
oThey require a lower starting torque
oThey give a continuous, pulsation free discharge air
oThey generally provide higher output
oThey require smaller foundations, vibrate less, and have lesser
parts, which means less failure rate
6/10/2017 NAPHIS AHAMAD(ME)JIT 32

More Related Content

What's hot

Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...Waqas Manzoor
 
Screw Air Compressors
Screw Air CompressorsScrew Air Compressors
Screw Air Compressorsksatm
 
Nozzles - Lecture A
Nozzles - Lecture ANozzles - Lecture A
Nozzles - Lecture AAhmed Rezk
 
Ideal Models of Engine Cycles
Ideal Models of Engine CyclesIdeal Models of Engine Cycles
Ideal Models of Engine CyclesHassan Raza
 
01 regenerative feed heating
01 regenerative feed heating01 regenerative feed heating
01 regenerative feed heatingAnil Palamwar
 
Actual vapour compression cycle
Actual vapour compression cycleActual vapour compression cycle
Actual vapour compression cyclevipul kumar sharma
 
Psychrometry and Air conditioning load estimation
Psychrometry and Air conditioning load estimationPsychrometry and Air conditioning load estimation
Psychrometry and Air conditioning load estimationNITIN AHER
 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycleSoumith V
 
Introduction to refrigeration systems
Introduction to refrigeration systemsIntroduction to refrigeration systems
Introduction to refrigeration systemsVishu Sharma
 
Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of CompressorSLA1987
 
Reciprocating Compressor
Reciprocating CompressorReciprocating Compressor
Reciprocating CompressorAditya Sharma
 
Rankine cycle
Rankine cycleRankine cycle
Rankine cycleAslam K
 

What's hot (20)

Steam condensors
Steam condensorsSteam condensors
Steam condensors
 
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
 
Air compressors
Air compressorsAir compressors
Air compressors
 
Screw Air Compressors
Screw Air CompressorsScrew Air Compressors
Screw Air Compressors
 
Air compressor
Air compressorAir compressor
Air compressor
 
Nozzles - Lecture A
Nozzles - Lecture ANozzles - Lecture A
Nozzles - Lecture A
 
Ideal Models of Engine Cycles
Ideal Models of Engine CyclesIdeal Models of Engine Cycles
Ideal Models of Engine Cycles
 
01 regenerative feed heating
01 regenerative feed heating01 regenerative feed heating
01 regenerative feed heating
 
Actual vapour compression cycle
Actual vapour compression cycleActual vapour compression cycle
Actual vapour compression cycle
 
Psychrometry and Air conditioning load estimation
Psychrometry and Air conditioning load estimationPsychrometry and Air conditioning load estimation
Psychrometry and Air conditioning load estimation
 
Air Compressor
Air CompressorAir Compressor
Air Compressor
 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
 
Air standard cycle
Air standard cycleAir standard cycle
Air standard cycle
 
Compressor final
Compressor finalCompressor final
Compressor final
 
Introduction to refrigeration systems
Introduction to refrigeration systemsIntroduction to refrigeration systems
Introduction to refrigeration systems
 
Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of Compressor
 
Steam Condensers
Steam CondensersSteam Condensers
Steam Condensers
 
Reciprocating Compressor
Reciprocating CompressorReciprocating Compressor
Reciprocating Compressor
 
Rankine cycle
Rankine cycleRankine cycle
Rankine cycle
 
Compressor
CompressorCompressor
Compressor
 

Similar to compressor

Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
Air Compressors Operation.ppt
Air Compressors Operation.pptAir Compressors Operation.ppt
Air Compressors Operation.pptDPSharma12
 
07-EC-II-Nafees P- Khan.ppt
07-EC-II-Nafees P- Khan.ppt07-EC-II-Nafees P- Khan.ppt
07-EC-II-Nafees P- Khan.pptDramilThakkar2
 
ProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfpk500138
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxEVABUENAFE
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxEVABUENAFE
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAlagarSamy63
 
Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressorsandeshkrasal
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorVJTI Production
 
RECIPROCATING_COMPRESSOR.pptx
RECIPROCATING_COMPRESSOR.pptxRECIPROCATING_COMPRESSOR.pptx
RECIPROCATING_COMPRESSOR.pptxPrabhaChand2
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressorYuri Melliza
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdfNilesh839639
 

Similar to compressor (20)

Aircompressor unit 5
Aircompressor unit 5Aircompressor unit 5
Aircompressor unit 5
 
Compressor
CompressorCompressor
Compressor
 
Air compressor
Air compressorAir compressor
Air compressor
 
Air compressor
Air compressorAir compressor
Air compressor
 
Air Compressors Operation.ppt
Air Compressors Operation.pptAir Compressors Operation.ppt
Air Compressors Operation.ppt
 
Air Compressor
Air CompressorAir Compressor
Air Compressor
 
07-EC-II-Nafees P- Khan.ppt
07-EC-II-Nafees P- Khan.ppt07-EC-II-Nafees P- Khan.ppt
07-EC-II-Nafees P- Khan.ppt
 
ProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdf
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.ppt
 
Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressor
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
 
Compressor
CompressorCompressor
Compressor
 
Compressor
CompressorCompressor
Compressor
 
RECIPROCATING_COMPRESSOR.pptx
RECIPROCATING_COMPRESSOR.pptxRECIPROCATING_COMPRESSOR.pptx
RECIPROCATING_COMPRESSOR.pptx
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressor
 
Kompresor.pptx
Kompresor.pptxKompresor.pptx
Kompresor.pptx
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf
 
010
010010
010
 

More from naphis ahamad

Si engines.ppt naphis converted
Si engines.ppt naphis convertedSi engines.ppt naphis converted
Si engines.ppt naphis convertednaphis ahamad
 
Si engines.ppt naphis
Si engines.ppt naphisSi engines.ppt naphis
Si engines.ppt naphisnaphis ahamad
 
cooling and lubrication system
cooling and lubrication systemcooling and lubrication system
cooling and lubrication systemnaphis ahamad
 
spark egnition engine
spark egnition enginespark egnition engine
spark egnition enginenaphis ahamad
 
basics of Internal combution engine
basics of Internal combution enginebasics of Internal combution engine
basics of Internal combution enginenaphis ahamad
 
compression egnition engine engine
compression egnition engine enginecompression egnition engine engine
compression egnition engine enginenaphis ahamad
 
PROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCESPROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCESnaphis ahamad
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second lawnaphis ahamad
 
BASIC THERMODYNAMICS
BASIC THERMODYNAMICSBASIC THERMODYNAMICS
BASIC THERMODYNAMICSnaphis ahamad
 
Vapour compression refrigeration system
Vapour compression refrigeration systemVapour compression refrigeration system
Vapour compression refrigeration systemnaphis ahamad
 
Vapour absorption system
Vapour absorption systemVapour absorption system
Vapour absorption systemnaphis ahamad
 
Air refrigerationsystem
Air refrigerationsystemAir refrigerationsystem
Air refrigerationsystemnaphis ahamad
 
Air conditioning equipment
Air conditioning equipmentAir conditioning equipment
Air conditioning equipmentnaphis ahamad
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relationsnaphis ahamad
 
Vapour power cycle a
Vapour power cycle aVapour power cycle a
Vapour power cycle anaphis ahamad
 

More from naphis ahamad (20)

I c engine
I c engine I c engine
I c engine
 
Si engines.ppt naphis converted
Si engines.ppt naphis convertedSi engines.ppt naphis converted
Si engines.ppt naphis converted
 
Si engines.ppt naphis
Si engines.ppt naphisSi engines.ppt naphis
Si engines.ppt naphis
 
cooling and lubrication system
cooling and lubrication systemcooling and lubrication system
cooling and lubrication system
 
spark egnition engine
spark egnition enginespark egnition engine
spark egnition engine
 
basics of Internal combution engine
basics of Internal combution enginebasics of Internal combution engine
basics of Internal combution engine
 
compression egnition engine engine
compression egnition engine enginecompression egnition engine engine
compression egnition engine engine
 
PROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCESPROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCES
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second law
 
BASIC THERMODYNAMICS
BASIC THERMODYNAMICSBASIC THERMODYNAMICS
BASIC THERMODYNAMICS
 
Entropy
EntropyEntropy
Entropy
 
Vapour compression refrigeration system
Vapour compression refrigeration systemVapour compression refrigeration system
Vapour compression refrigeration system
 
Vapour absorption system
Vapour absorption systemVapour absorption system
Vapour absorption system
 
Air refrigerationsystem
Air refrigerationsystemAir refrigerationsystem
Air refrigerationsystem
 
Air conditioning
Air conditioningAir conditioning
Air conditioning
 
Air conditioning equipment
Air conditioning equipmentAir conditioning equipment
Air conditioning equipment
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relations
 
Gas turbine
Gas turbineGas turbine
Gas turbine
 
Vapour power cycle a
Vapour power cycle aVapour power cycle a
Vapour power cycle a
 
Steam engine
Steam engineSteam engine
Steam engine
 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

compressor

  • 1. INTERNAL COMBUTION ENGINE Made by: Assistant Professor : NAPHIS AHAMAD MECHANICAL ENGINEERING 6/10/2017 Naphis Ahamad (ME) JIT 1
  • 2. 6/10/2017 Naphis Ahamad (ME) JIT 2 UNIT V
  • 3. COMPRESSOR – A device which takes a definite quantity of fluid ( usually gas, and most often air ) and deliver it at a required pressure. Air Compressor – 1) Takes in atmospheric air, 2) Compresses it, and 3) Delivers it to a storage vessel ( i.e. Reservoir ). Compression requires Work to be done on the gas, Compressor must be driven by some sort of Prime Mover ( i.e. Engine ) Air Compressors 6/10/2017 NAPHIS AHAMAD(ME)JIT 3
  • 4. Reciprocating Rotary Single – acting Double - Acting No. of Sides of Piston in operation No. of Stages for Compression Centrifugal Single – stage Multi - stage Classification Air Compressors 6/10/2017 NAPHIS AHAMAD(ME)JIT 4
  • 5. Reciprocating Compressor - Working 2. Principle of Operation  Fig. shows single-acting piston actions in the cylinder of a reciprocating compressor.  The piston is driven by a crank shaft via a connecting rod.  At the top of the cylinder are a suction valve and a discharge valve.  A reciprocating compressor usually has two, three, four, or six cylinders in it. 6/10/2017 NAPHIS AHAMAD(ME)JIT 5
  • 6. Reciprocating Compressor - Working 6/10/2017 NAPHIS AHAMAD(ME)JIT 6
  • 7. Reciprocating Compressor – Equation for Work Volume Pressure P1 P2 V1V2 3 2 2”2’ 4 1 (Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  Operations : 4 – 1 : Volume V1 of air aspirated into Compressor, at P1 and T1. 1 – 2 : Air compressed according to PVn = Const. from P1 to P2. → Temp increase from T1 to T2. 2 – 3 : Compressed air at P2 and V2 with temperature T2 is delivered.
  • 8. Reciprocating Compressor – Equation for Work During Compression, due to the excess temperature above surrounding, the air will exchange the heat to the surrounding.  Compression Index, n is always less than γ, the adiabatic index. As Compressor is a work consuming device, every effort is desired to reduce the work. Work done = Area under P-V curve  1 – 2” : Adiabatic Compression = Max. Work.  1 – 2 : Polytropic Compression  1 – 2’ : Isothermal Compression = Min. Work.
  • 9. Reciprocating Compressor – Equation for Work Thus, comparison between the Isothermal Work and the Actual Work is important. Isothermal Efficiency, ηiso = Isothermal Work Actual Work Thus, more the Isothermal Efficiency, more the actual compression approaches to the Isothermal Compression. P1 P2 V1V2 3 2 2”2’ 4 1(Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  Actual Work = Wact = Area 4-1-2-3-4 Wact = Area (4-1) – Area (1-2) – Area (2-3)                           1 1 1 2211 2211 1122 2211 22 1122 11 n VPVP VPVP n VPVP VPVP VP n VPVP VP 6/10/2017 NAPHIS AHAMAD(ME)JIT 9
  • 10.                                   11 22 11 2211 2211 1 1 1 1 1 1 VP VP VP n n VPVP n n VPVP n Wiso Reciprocating Compressor – Equation for Work P1 P2 V1V2 3 2 2”2’ 4 1(Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  Now, n nn P P V V VPVP /1 2 1 1 2 2211                               n iso P P P P VP n n W /1 2 1 1 2 11 1 1
  • 11.                                              n n iso P P P P VP n n P P P P VP n n W /1 1 2 1 2 11 /1 2 1 1 2 11 1 1 1 1 Reciprocating Compressor – Equation for Work P1 P2 V1V2 3 2 2”2’ 4 1(Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  The solution of this equation is always negative. This shows that Work is done ON the Compressor.                          n n iso P P mRT n n W 1 1 2 1 1 1Delivery Temperature, n n P P TT 1 1 2 12                                  n n iso P P VP n n W 1 1 2 11 1 1
  • 12. Reciprocating Compressor – Equation for Work P1 P2 V1V4 6 2 5 1 CVP n  3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc Clearance Volume : Volume that remains inside the cylinder after the piston reaches the end of its inward stroke. Thus, Effective Stroke Volume = V1 – V4 Actual Work = Wact = Area 1-2-3-4 Wact = Area (5-1-2-6) – Area (5-4-3-6) 6/10/2017 NAPHIS AHAMAD(ME)JIT 12
  • 13. Reciprocating Compressor – Equation for Work                                         n m n m act P P VP n n P P VP n n W 1 1 2 41 1 1 2 11 1 1 1 1                         n act P P P P VVP n n W /1 2 1 1 2 411 1 1                                        n m n m act P P VP n n P P VP n n W 1 4 3 44 1 1 2 11 1 1 1 1 P1 P2 V1V4 6 2 5 1 CVP n  3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc But, P4 = P1 and P3 = P2
  • 14. Reciprocating Compressor – Volumetric Efficiency Volumetric Efficiency : Ratio of free air delivered to the displacement of the compressor. Ratio of Effective Swept Volume to Swept Volume. Volumetric Efficiency = Effective Swept Volume Swept Volume V1 – V4 V1 – V3 = Vc Vs = = γ Clearance Volume Swept Volume Clearance Ratio = Presence of Clearance Volume Volumetric Efficiency less than 1. ( 60 – 85 % ) P1 P2 V1V4 6 2 5 1 CVP n  3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc ( 4 – 10 % ) 6/10/2017 NAPHIS AHAMAD(ME)JIT 14
  • 15. Reciprocating Compressor – Volumetric Efficiency ↑ Pr. Ratio ↑ Effect of Clearance Volume ….Clearance air expansion through greater volume before intake   Cylinder bore and stroke is fixed. Effective Swept Volume (V1 – V4) ↓ with ↑ Pr. Ratio ↓ Volumetric Efficiency                    3 4 31 3 31 3 3 3 31 4 31 3 31 4 31 3 31 4331 31 41 1 1 1 V V VV V VV V V V VV V VV V VV V VV V VV VVVV VV VV vol                     P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1- V3=Vs Total Volume, V1 Clearance Volume, V3=Vc
  • 16. Reciprocating Compressor – Volumetric Efficiency                                                  11 11 11 11 /1 4 3 /1 4 3 31 3 4 3 31 3 4 3 31 3 n vol n vol vol vol P P P P VV V V V VV V V V VV V     P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc
  • 17. Reciprocating Compressor – Multistage High Pressure required by Single – Stage :  1. Requires heavy working parts. 2. Has to accommodate high pressure ratios. 3. Increased balancing problems. 4. High Torque fluctuations. 5. Requires heavy Flywheel installations. This demands for MULTI – STAGING…!!
  • 18. Reciprocating Compressor – Multistage Series arrangement of cylinders, in which the compressed air from earlier cylinder (i.e. discharge) becomes the intake air for the next cylinder (i.e. inlet). Intercooler : Compressed air is cooled between cylinders. L.P. = Low Pressure I.P. = Intermediate Pressure H.P. = High Pressure L.P. Cylinder I.P. Cylinder H.P. Cylinder Intercooler Intercooler Air Intake Air Delivery 6/10/2017 NAPHIS AHAMAD(ME)JIT 18
  • 19. Reciprocating Compressor – Multistage Intake Pr. P1 or Ps Delivery Pr. P3 or Pd 3 2 9 5 4 1 CVP n  8 7 6 Intermediate Pr. P2 CVP  Without Intercooling Perfect Intercooling L.P. H.P. Volume Overall Pr. Range : P1 – P3 Single – stage cycle : 8-1-5-6 Without Intercooling : L.P. : 8-1-4-7 H.P. : 7-4-5-6 With Intercooling : L.P. : 8-1-4-7 H.P. : 7-2-3-6 Perfect Intercooling : After initial compression in L.P. cylinder, air is cooled in the Intercooler to its original temperature, before entering H.P. cylinder i.e. T2 = T1 OR Points 1 and 2 are on SAME Isothermal line. 6/10/2017 NAPHIS AHAMAD(ME)JIT 19
  • 20. Reciprocating Compressor – Multistage Ideal Conditions for Multi – Stage Compressors : A. Single – Stage Compressor : CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. Single – stage cycle : 8-1-5-6                    1 1 5 11 1 1 n n P P VP n n W Delivery Temperature, n n P P TT 1 1 5 15         6/10/2017 NAPHIS AHAMAD(ME)JIT 20
  • 21. Reciprocating Compressor – Multistage CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. B. Two – Stage Compressor (Without Intercooling) : Without Intercooling : L.P. : 8-1-4-7 H.P. : 7-4-5-6                                         n n n n P P VP n n P P VP n n W 1 4 5 44 1 1 4 11 1 1 1 1 This is SAME as that of Work done in Single – Stage. Delivery Temperature also remains SAME. Without Intercooling  6/10/2017 NAPHIS AHAMAD(ME)JIT 21
  • 22. Reciprocating Compressor – Multistage CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. C. Two – Stage Compressor (With Perfect Intercooling) : With Intercooling : L.P. : 8-1-4-7-8 H.P. : 7-2-3-6-7                                         n n n n P P VP n n P P VP n n W 1 2 3 22 1 1 4 11 1 1 1 1 Delivery Temperature, 12 1 2 3 1 1 2 3 23 , TTas P P T P P TT n n n n               6/10/2017 NAPHIS AHAMAD(ME)JIT 22
  • 23. Reciprocating Compressor – Multistage CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. C. Two – Stage Compressor (With Perfect Intercooling) : With Intercooling : L.P. : 8-1-4-7-8 H.P. : 7-2-3-6-7                           n n n n P P P P VP n n W 1 2 3 1 1 2 11 2 1 Now, T2 = T1 P2V2 = P1V1 Also P4 = P2 Shaded Area 2-4-5-3-2 : Work Saving due to Intercooler…!!
  • 24. Reciprocating Compressor – Multistage Condition for Min. Work : CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. Intermediate Pr. P2 → P1 : Area 2-4-5-3-2 → 0 Intermediate Pr. P2 → P3 : Area 2-4-5-3-2 → 0  There is an Optimum P2 for which Area 2-4-5-3-2 is maximum, i.e. Work is minimum…!!                           n n n n P P P P VP n n W 1 2 3 1 1 2 11 2 1 0 2 1 2 3 1 1 2 2                          dP P P P P d dP dW n n n n For min. Work, 6/10/2017 NAPHIS AHAMAD(ME)JIT 24
  • 25. Reciprocating Compressor – Multistage Condition for Min. Work :         0 111 1 1 2 1 3 1 1 21 1                                            n n n n n n n n P n n PP n n P 0 2 1 2 3 1 1 2 2                          dP P P P P d dP dW n n n n                       n n n n n PP P P 1 3112 2 /1 2    31 2 2 PPP  2 3 1 2 312 P P P P ORPPP  CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P.
  • 26. Reciprocating Compressor – Multistage P2 obtained with this condition (Pr. Ratio per stage is equal) is the Ideal Intermediate Pr. Which, with Perfect Intercooling, gives Minimum Work, Wmin.                         n n P PP VP n n W 1 1 2/1 31 11 1 1 2                     n n P P VP n n W 1 1 2 11 1 1 2                      n n P P VP n n W 2 1 1 3 11 1 1 2 Equal Work per cylinder…!!
  • 27. Reciprocating Compressor – Efficiency How to Increase Isothermal Efficiency ? A. Spray Injection : Assimilation of water into the compressor cylinder towards the compression stroke. Object is to cool the air for next operation. Demerits : 1. Requires special gear for injection. 2. Injected water interferes with the cylinder lubrication. 3. Damage to cylinder walls and valves. ater must be separated before delivery of air. B. Water Jacketing : Circulating water around the cylinder to help for cooling the air during compression. 6/10/2017 NAPHIS AHAMAD(ME)JIT 27
  • 28. Reciprocating Compressor – Efficiency How to Increase Isothermal Efficiency ? C. Inter – Cooling : For high speed and high Pr. Ratio compressors. Compressed air from earlier stage is cooled to its original temperature before passing it to the next stage. D. External Fins : For small capacity compressors, fins on external surfaces are useful. E. Cylinder Proportions : Short stroke and large bore provides much greater surface for cooling. Cylinder head surface is far more effective than barrel surface. 6/10/2017 NAPHIS AHAMAD(ME)JIT 28
  • 29. Reciprocating Compressor – Efficiency Clearance Volume : Consists of two spaces. 1. Space between cylinder end & the piston to allow for wear. 2. Space for reception of valves. High – class H.P. compressors : Clearance Vol. = 3 % of Swept Vol. : Lead (Pb) fuse wire used to measure the gap between cylinder end and piston. Low – grade L.P. compressors : Clearance Vol. = 6 % of Swept Vol. : Flattened ball of putty used to measure the gap between cylinder end and piston. Effect of Clearance Vol. : Vol. taken in per stroke < Swept Vol. ↑ Size of compressor ↑ Power to drive compressor.  6/10/2017 NAPHIS AHAMAD(ME)JIT 29
  • 30. P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V4=Vs Total Volume, V1 Clearance Volume, V3=Vc Reciprocating Compressor – Work Done                                        n n n n P P VP n n P P VP n n W 1 4 3 44 1 1 2 11 1 1 1 1 Assumption : Compression and Expansion follow same Law. Work / cycle = Area 1-2-3-4-1 P3 = P2 and P4 = P1                                         n n a n n P P VP n n P P VVP n n W 1 1 2 1 1 1 2 411 1 1 1)( 1 6/10/2017 NAPHIS AHAMAD(ME)JIT 30
  • 31. P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V4=Vs Total Volume, V1 Clearance Volume, V3=Vc Reciprocating Compressor – Work Done                     n n P P TRm n n W 1 1 2 11 1 1 m1 is the actual mass of air delivered. Work done / kg of air delivered :                     n n P P TR n n W 1 1 2 1 1 1 6/10/2017 NAPHIS AHAMAD(ME)JIT 31
  • 32. Rotary compressors These compressors use rotors in place of pistons, giving a pulsating free discharge air. These rotors are power driven. They have the following advantages over reciprocating compressors: oThey require a lower starting torque oThey give a continuous, pulsation free discharge air oThey generally provide higher output oThey require smaller foundations, vibrate less, and have lesser parts, which means less failure rate 6/10/2017 NAPHIS AHAMAD(ME)JIT 32