Laser basics
Optics, Eugene Hecht, Chpt. 13;
Optical resonator tutorial:
http://www.dewtronics.com/tutorials/lasers/leot/
Laser oscillation
Laser is oscillator
• Like servo with positive feedback
• Greater than unity gain
Ruby laser example
Laser turn-on and gain saturation
Laser gain and losses
Gain decreases as output
power increases
• Saturation
Fabry-Perot cavity for feedback
• High reflectivity mirrors
• Low loss per round trip
• Must remember resonance conditions
– round trip path is multiple of l
• High reflectivity Fabry-Perot cavity
• Boundary conditions
– field is zero on mirrors
• Multiple wavelengths possible
– agrees with resonance conditions
Laser longitudinal modes
Classical mechanics analog
Multi-mode laser
Fabry-Perot boundary conditions
Multiple resonant frequencies
Single longitudinal mode lasers
• Insert etalon into cavity
• Use low reflectivity etalon
– low loss
Laser transverse modes
• Wave equation looks like harmonic oscillator
• Ex: E = E e -iwt
• Separate out z dependence
• Solutions for x and y are Hermite polynomials
Frequencies of transverse modes
Transverse laser modes
0
2
2








 E
c
n
E
w
0
2
2

 x
m
k
dt
x
d
0
2 2
2
2
2
2
2
2
2




































E
k
c
n
y
E
x
E
z
E
ik
z
E w
Single transverse mode lasers
• Put aperture in laser
• Create loss for higher order modes
Multi-longitudinal Multi-transverse&long. Single mode
Gaussian beams
• Zero order mode is Gaussian
• Intensity profile:
• beam waist: w0
• confocal parameter: z
• far from waist
• divergence angle
2
2
/
2
0
w
r
e
I
I 

2
2
0
0 1 









w
z
w
w

l
l
 2
0
w
zR 
0
w
z
w

l

0
0
637
.
0
2
w
w
l

l



Gaussian propagation
Power distribution in Gaussian
• Intensity distribution:
• Experimentally to measure full width at half maximum (FWHM) diameter
• Relation is dFWHM = w 2 ln2 ~ 1.4 w
• Define average intensity
• Iavg = 4 P / ( d2
FWHM)
• Overestimates peak: I0 = Iavg/1.4
2
2
/
2
0
w
r
e
I
I 

Resonator options
• Best known -- planar, concentric, confocal
• Confocal unique
– mirror alignment not critical
– position is critical
– transverse mode frequencies identical
Types of resonators
Special cases

06-laser-basics.ppt

  • 1.
    Laser basics Optics, EugeneHecht, Chpt. 13; Optical resonator tutorial: http://www.dewtronics.com/tutorials/lasers/leot/
  • 2.
    Laser oscillation Laser isoscillator • Like servo with positive feedback • Greater than unity gain Ruby laser example Laser turn-on and gain saturation Laser gain and losses Gain decreases as output power increases • Saturation
  • 3.
    Fabry-Perot cavity forfeedback • High reflectivity mirrors • Low loss per round trip • Must remember resonance conditions – round trip path is multiple of l
  • 4.
    • High reflectivityFabry-Perot cavity • Boundary conditions – field is zero on mirrors • Multiple wavelengths possible – agrees with resonance conditions Laser longitudinal modes Classical mechanics analog Multi-mode laser Fabry-Perot boundary conditions Multiple resonant frequencies
  • 5.
    Single longitudinal modelasers • Insert etalon into cavity • Use low reflectivity etalon – low loss
  • 6.
    Laser transverse modes •Wave equation looks like harmonic oscillator • Ex: E = E e -iwt • Separate out z dependence • Solutions for x and y are Hermite polynomials Frequencies of transverse modes Transverse laser modes 0 2 2          E c n E w 0 2 2   x m k dt x d 0 2 2 2 2 2 2 2 2 2                                     E k c n y E x E z E ik z E w
  • 7.
    Single transverse modelasers • Put aperture in laser • Create loss for higher order modes Multi-longitudinal Multi-transverse&long. Single mode
  • 8.
    Gaussian beams • Zeroorder mode is Gaussian • Intensity profile: • beam waist: w0 • confocal parameter: z • far from waist • divergence angle 2 2 / 2 0 w r e I I   2 2 0 0 1           w z w w  l l  2 0 w zR  0 w z w  l  0 0 637 . 0 2 w w l  l    Gaussian propagation
  • 9.
    Power distribution inGaussian • Intensity distribution: • Experimentally to measure full width at half maximum (FWHM) diameter • Relation is dFWHM = w 2 ln2 ~ 1.4 w • Define average intensity • Iavg = 4 P / ( d2 FWHM) • Overestimates peak: I0 = Iavg/1.4 2 2 / 2 0 w r e I I  
  • 10.
    Resonator options • Bestknown -- planar, concentric, confocal • Confocal unique – mirror alignment not critical – position is critical – transverse mode frequencies identical Types of resonators Special cases