5.2 Trigonometric Functions
              of Real Numbers




Isaiah 40:31 But those who hope in the LORD will renew
their strength. They will soar on wings like eagles; they will
run and not grow weary, they will walk and not be faint.
Recall ...
P has coordinates
    ( x, y )
and
    ( cos θ , sin θ )
1
sin θ = y   csc θ =
                    y

                    1
cos θ = x   sec θ =
                    x

        y           x
tan θ =     cot θ =
        x           y

  denominators ≠ 0
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π
   1.   sin
            3
             7π
   2.   cos
              6
            11π
   3.   tan
              4
            17π
   4.   sec
              3
          17π
   5. csc
           2
          121π
   6. cot
            6
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π             3
   1.   sin
            3            2
             7π
   2.   cos
              6
            11π
   3.   tan
              4
            17π
   4.   sec
              3
          17π
   5. csc
           2
          121π
   6. cot
            6
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π             3
   1.   sin
            3            2
             7π               − 3
   2.   cos
              6                2
            11π
   3.   tan
              4
            17π
   4.   sec
              3
          17π
   5. csc
           2
          121π
   6. cot
            6
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π             3
   1.   sin
            3            2
             7π               − 3
   2.   cos
              6                2
            11π
   3.   tan              −1
              4
            17π
   4.   sec
              3
          17π
   5. csc
           2
          121π
   6. cot
            6
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π             3
   1.   sin
            3            2
             7π               − 3
   2.   cos
              6                2
            11π
   3.   tan              −1
              4
            17π
   4.   sec                    2
              3
          17π
   5. csc
           2
          121π
   6. cot
            6
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π             3
   1.   sin
            3            2
             7π               − 3
   2.   cos
              6                2
            11π
   3.   tan              −1
              4
            17π
   4.   sec                    2
              3
          17π
   5. csc                1
           2
          121π
   6. cot
            6
Groups: Using your Unit Circle, evaluate these
trigonometric expressions:

            π             3
   1.   sin
            3            2
             7π               − 3
   2.   cos
              6                2
            11π
   3.   tan              −1
              4
            17π
   4.   sec                    2
              3
          17π
   5. csc                1
           2
          121π
   6. cot                      3
            6
You need to know the sign of each trig function
               in each quadrant.
You need to know the sign of each trig function
               in each quadrant.


                             sin +
                             cos +
                             tan +
You need to know the sign of each trig function
               in each quadrant.


           sin +             sin +
           cos −             cos +
           tan −             tan +
You need to know the sign of each trig function
               in each quadrant.


           sin +             sin +
           cos −             cos +
           tan −             tan +



           sin −
           cos −
           tan +
You need to know the sign of each trig function
               in each quadrant.


           sin +             sin +
           cos −             cos +
           tan −             tan +



           sin −             sin −
           cos −             cos +
           tan +             tan −
You need to know the sign of each trig function
               in each quadrant.


           sin +             sin +
           cos −             cos +
           tan −             tan +



           sin −             sin −
           cos −             cos +
           tan +             tan −



          All Students Take Calculus
Fundamental Identities
Fundamental Identities

Reciprocal Identities
Fundamental Identities

Reciprocal Identities
             1
   csc θ =
           sin θ
Fundamental Identities

Reciprocal Identities
             1               1
   csc θ =         sec θ =
           sin θ           cos θ
Fundamental Identities

Reciprocal Identities
             1               1               1
   csc θ =         sec θ =         cot θ =
           sin θ           cos θ           tan θ
Fundamental Identities
Pythagorean Identities
Fundamental Identities
Pythagorean Identities
     2      2
  sin θ + cos θ = 1
Fundamental Identities
Pythagorean Identities
     2      2            2          2
  sin θ + cos θ = 1   tan θ + 1 = sec θ
Fundamental Identities
Pythagorean Identities
     2      2            2          2           2      2
  sin θ + cos θ = 1   tan θ + 1 = sec θ   1+ cot θ = csc θ
Fundamental Identities
Pythagorean Identities
     2      2            2          2           2      2
  sin θ + cos θ = 1   tan θ + 1 = sec θ   1+ cot θ = csc θ
Fundamental Identities
Even-Odd Identities
Fundamental Identities
Even-Odd Identities
  sin ( −θ ) = − sin θ
Fundamental Identities
Even-Odd Identities
  sin ( −θ ) = − sin θ




                               sin +
                               cos +
                               tan +

                               sin −
                               cos +
                               tan −
Fundamental Identities
Even-Odd Identities
  sin ( −θ ) = − sin θ   cos ( −θ ) = cosθ




                                  sin +
                                  cos +
                                  tan +

                                  sin −
                                  cos +
                                  tan −
Fundamental Identities
Even-Odd Identities
  sin ( −θ ) = − sin θ   cos ( −θ ) = cosθ   tan ( −θ ) = − tan θ




                                  sin +
                                  cos +
                                  tan +

                                  sin −
                                  cos +
                                  tan −
Fundamental Identities
Even-Odd Identities
  sin ( −θ ) = − sin θ    cos ( −θ ) = cosθ      tan ( −θ ) = − tan θ
    csc ( −θ ) = − cscθ      sec ( −θ ) = secθ     cot ( −θ ) = − cot θ


                                   sin +
                                   cos +
                                   tan +

                                   sin −
                                   cos +
                                   tan −
Often in Trig, we don’t end up on our “magic points”.
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )   recall ... .5236 is a radian angle rotation
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )   recall ... .5236 is a radian angle rotation
          .5000
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )    recall ... .5236 is a radian angle rotation
           .5000
2. cos ( 3.2 )
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )    recall ... .5236 is a radian angle rotation
           .5000
2. cos ( 3.2 )
          −.9983
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )    recall ... .5236 is a radian angle rotation
           .5000
2. cos ( 3.2 )
          −.9983
3. csc ( 37 )
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )    recall ... .5236 is a radian angle rotation
           .5000
2. cos ( 3.2 )
          −.9983
3. csc ( 37 )
         −1.5539
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )    recall ... .5236 is a radian angle rotation
           .5000
2. cos ( 3.2 )
          −.9983
3. csc ( 37 )
         −1.5539

4. cot (1.7 )
Often in Trig, we don’t end up on our “magic points”.
Use your calculator to find these Trig values:

1. sin (.5236 )    recall ... .5236 is a radian angle rotation
           .5000
2. cos ( 3.2 )
          −.9983
3. csc ( 37 )
         −1.5539

4. cot (1.7 )
         −.1299
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13


        −5
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA


        −5
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                              2     2    2
                     ( −5 )       + y = 13
        −5
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                              2        2   2
                     ( −5 )       + y = 13
                                   2
        −5            25 + y = 169
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                              2        2   2
                     ( −5 )       + y = 13
                                   2
        −5            25 + y = 169
                              2
                         y = 144
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                              2        2   2
                     ( −5 )       + y = 13
                                   2
        −5            25 + y = 169
                              2
                         y = 144
                              y = 12
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                              2        2   2
                     ( −5 )       + y = 13
                                   2
        −5            25 + y = 169
                              2
                         y = 144
                              y = 12
                12
        sin θ =
                13
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                               2        2   2
                      ( −5 )       + y = 13
                                    2
        −5             25 + y = 169
                               2
                          y = 144
                               y = 12
                12
        sin θ =
                13
                 −5
        cosθ =
                 13
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                               2        2   2
                      ( −5 )       + y = 13
                                    2
        −5             25 + y = 169
                               2
                          y = 144
                               y = 12
                12
        sin θ =
                13
                 −5
        cosθ =
                 13
                −12
        tan θ =
                  5
−5
If cosθ =    and θ is in QII, find all the trig functions.
          13


    y        13   This is easiest if we use SOHCAHTOA
                               2        2   2
                      ( −5 )       + y = 13
                                    2
        −5             25 + y = 169
                               2
                          y = 144
                               y = 12
                12               13
        sin θ =          cscθ =
                13               12
                 −5              −13
        cosθ =           secθ =
                 13               5
                −12              −5
        tan θ =          cot θ =
                  5              12
HW #3

I don’t look at myself as a basketball coach. I look at
myself as a leader who happens to coach basketball.
                             Mike Krzyzewski

0503 ch 5 day 3

  • 1.
    5.2 Trigonometric Functions of Real Numbers Isaiah 40:31 But those who hope in the LORD will renew their strength. They will soar on wings like eagles; they will run and not grow weary, they will walk and not be faint.
  • 3.
    Recall ... P hascoordinates ( x, y ) and ( cos θ , sin θ )
  • 4.
    1 sin θ =y csc θ = y 1 cos θ = x sec θ = x y x tan θ = cot θ = x y denominators ≠ 0
  • 5.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions:
  • 6.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 1. sin 3 7π 2. cos 6 11π 3. tan 4 17π 4. sec 3 17π 5. csc 2 121π 6. cot 6
  • 7.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 3 1. sin 3 2 7π 2. cos 6 11π 3. tan 4 17π 4. sec 3 17π 5. csc 2 121π 6. cot 6
  • 8.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 3 1. sin 3 2 7π − 3 2. cos 6 2 11π 3. tan 4 17π 4. sec 3 17π 5. csc 2 121π 6. cot 6
  • 9.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 3 1. sin 3 2 7π − 3 2. cos 6 2 11π 3. tan −1 4 17π 4. sec 3 17π 5. csc 2 121π 6. cot 6
  • 10.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 3 1. sin 3 2 7π − 3 2. cos 6 2 11π 3. tan −1 4 17π 4. sec 2 3 17π 5. csc 2 121π 6. cot 6
  • 11.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 3 1. sin 3 2 7π − 3 2. cos 6 2 11π 3. tan −1 4 17π 4. sec 2 3 17π 5. csc 1 2 121π 6. cot 6
  • 12.
    Groups: Using yourUnit Circle, evaluate these trigonometric expressions: π 3 1. sin 3 2 7π − 3 2. cos 6 2 11π 3. tan −1 4 17π 4. sec 2 3 17π 5. csc 1 2 121π 6. cot 3 6
  • 13.
    You need toknow the sign of each trig function in each quadrant.
  • 14.
    You need toknow the sign of each trig function in each quadrant. sin + cos + tan +
  • 15.
    You need toknow the sign of each trig function in each quadrant. sin + sin + cos − cos + tan − tan +
  • 16.
    You need toknow the sign of each trig function in each quadrant. sin + sin + cos − cos + tan − tan + sin − cos − tan +
  • 17.
    You need toknow the sign of each trig function in each quadrant. sin + sin + cos − cos + tan − tan + sin − sin − cos − cos + tan + tan −
  • 18.
    You need toknow the sign of each trig function in each quadrant. sin + sin + cos − cos + tan − tan + sin − sin − cos − cos + tan + tan − All Students Take Calculus
  • 19.
  • 20.
  • 21.
  • 22.
    Fundamental Identities Reciprocal Identities 1 1 csc θ = sec θ = sin θ cos θ
  • 23.
    Fundamental Identities Reciprocal Identities 1 1 1 csc θ = sec θ = cot θ = sin θ cos θ tan θ
  • 24.
  • 25.
  • 26.
    Fundamental Identities Pythagorean Identities 2 2 2 2 sin θ + cos θ = 1 tan θ + 1 = sec θ
  • 27.
    Fundamental Identities Pythagorean Identities 2 2 2 2 2 2 sin θ + cos θ = 1 tan θ + 1 = sec θ 1+ cot θ = csc θ
  • 28.
    Fundamental Identities Pythagorean Identities 2 2 2 2 2 2 sin θ + cos θ = 1 tan θ + 1 = sec θ 1+ cot θ = csc θ
  • 29.
  • 30.
  • 31.
    Fundamental Identities Even-Odd Identities sin ( −θ ) = − sin θ sin + cos + tan + sin − cos + tan −
  • 32.
    Fundamental Identities Even-Odd Identities sin ( −θ ) = − sin θ cos ( −θ ) = cosθ sin + cos + tan + sin − cos + tan −
  • 33.
    Fundamental Identities Even-Odd Identities sin ( −θ ) = − sin θ cos ( −θ ) = cosθ tan ( −θ ) = − tan θ sin + cos + tan + sin − cos + tan −
  • 34.
    Fundamental Identities Even-Odd Identities sin ( −θ ) = − sin θ cos ( −θ ) = cosθ tan ( −θ ) = − tan θ csc ( −θ ) = − cscθ sec ( −θ ) = secθ cot ( −θ ) = − cot θ sin + cos + tan + sin − cos + tan −
  • 35.
    Often in Trig,we don’t end up on our “magic points”.
  • 36.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values:
  • 37.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 )
  • 38.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation
  • 39.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000
  • 40.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000 2. cos ( 3.2 )
  • 41.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000 2. cos ( 3.2 ) −.9983
  • 42.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000 2. cos ( 3.2 ) −.9983 3. csc ( 37 )
  • 43.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000 2. cos ( 3.2 ) −.9983 3. csc ( 37 ) −1.5539
  • 44.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000 2. cos ( 3.2 ) −.9983 3. csc ( 37 ) −1.5539 4. cot (1.7 )
  • 45.
    Often in Trig,we don’t end up on our “magic points”. Use your calculator to find these Trig values: 1. sin (.5236 ) recall ... .5236 is a radian angle rotation .5000 2. cos ( 3.2 ) −.9983 3. csc ( 37 ) −1.5539 4. cot (1.7 ) −.1299
  • 46.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13
  • 47.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 −5
  • 48.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA −5
  • 49.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 −5
  • 50.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169
  • 51.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169 2 y = 144
  • 52.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169 2 y = 144 y = 12
  • 53.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169 2 y = 144 y = 12 12 sin θ = 13
  • 54.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169 2 y = 144 y = 12 12 sin θ = 13 −5 cosθ = 13
  • 55.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169 2 y = 144 y = 12 12 sin θ = 13 −5 cosθ = 13 −12 tan θ = 5
  • 56.
    −5 If cosθ = and θ is in QII, find all the trig functions. 13 y 13 This is easiest if we use SOHCAHTOA 2 2 2 ( −5 ) + y = 13 2 −5 25 + y = 169 2 y = 144 y = 12 12 13 sin θ = cscθ = 13 12 −5 −13 cosθ = secθ = 13 5 −12 −5 tan θ = cot θ = 5 12
  • 57.
    HW #3 I don’tlook at myself as a basketball coach. I look at myself as a leader who happens to coach basketball. Mike Krzyzewski