4.4 Exponential &
    Logarithmic Equations
                     Day 2


Romans 15:4 For whatever was written in former
days was written for our instruction, that through
endurance and through the encouragement of the
Scriptures we might have hope.
Solve:
 1.   4   2 x−1
                  − 27 = 0
Solve:
 1.   4   2 x−1
                  − 27 = 0
              2 x−1
          4           = 27
Solve:
 1.   4   2 x−1
                  − 27 = 0
              2 x−1
          4           = 27
              2 x−1
      log 4           = log 27
Solve:
 1.      4   2 x−1
                     − 27 = 0
                 2 x−1
             4           = 27
                 2 x−1
        log 4            = log 27
      ( 2x − 1) log 4 = log 27
Solve:
 1.      4   2 x−1
                     − 27 = 0
                 2 x−1
             4           = 27
                 2 x−1
        log 4            = log 27
      ( 2x − 1) log 4 = log 27
                  log 27
         2x − 1 =
                   log 4
Solve:
 1.      4   2 x−1
                     − 27 = 0
                 2 x−1
             4           = 27
                 2 x−1
        log 4            = log 27
      ( 2x − 1) log 4 = log 27
                  log 27
         2x − 1 =
                   log 4
              log 27
         2x =        +1
               log 4
Solve:
 1.      4   2 x−1
                     − 27 = 0
                 2 x−1
             4           = 27          log 27 1
        log 4    2 x−1
                         = log 27   x=        +
                                       2 log 4 2
      ( 2x − 1) log 4 = log 27          this is now
                  log 27            “calculator ready”
         2x − 1 =
                   log 4
              log 27
         2x =        +1
               log 4
Solve:
 1.      4   2 x−1
                     − 27 = 0
                 2 x−1
             4           = 27          log 27 1
        log 4    2 x−1
                         = log 27   x=        +
                                       2 log 4 2
      ( 2x − 1) log 4 = log 27          this is now
                  log 27            “calculator ready”
         2x − 1 =
                   log 4               x ≈ 1.6887
              log 27
         2x =        +1
               log 4
Solve:
 2. e = x − 1
         x   2
Solve:
 2. e = x − 1
         x   2


     no algebraic method presents itself ...
                 do graphically
Solve:
 2. e = x − 1
         x     2


     no algebraic method presents itself ...
                 do graphically

                      x          2
             y1 = e       y2 = x − 1
Solve:
 2. e = x − 1
         x     2


     no algebraic method presents itself ...
                 do graphically

                      x            2
             y1 = e        y2 = x − 1

               find intersection points
Solve:
 2. e = x − 1
         x     2


     no algebraic method presents itself ...
                 do graphically

                      x             2
             y1 = e         y2 = x − 1

               find intersection points

                      x ≈ −1.1478
Solve:
 3.   x > log x − 2
Solve:
 3.   x > log x − 2
           one variable ... one axis
Solve:
 3.   x > log x − 2
           one variable ... one axis


         graph : x − log x + 2 > 0
Solve:
 3.   x > log x − 2
           one variable ... one axis


         graph : x − log x + 2 > 0

              x > 0 or ( 0,∞ )
Solve:
 4.   y < log ( 2x ) + 1
Solve:
 4.   y < log ( 2x ) + 1
           two variables ... two axes
            graph on graph paper!
Solve:
 4.   y < log ( 2x ) + 1
           two variables ... two axes
            graph on graph paper!

          graph : y1 = log ( 2x ) + 1
            dotted line & shade below
Solve:
 5.      x
      y≥e −2
Solve:
 5.      x
      y≥e −2
         two variables ... two axes
          graph on graph paper!
Solve:
 5.       x
      y≥e −2
         two variables ... two axes
          graph on graph paper!

                              x
         graph : y1 = e − 2
              solid line & shade above
Solve:
 6.   5   3x−1
                 −7   4x
                           >0   (algebraically)
Solve:
 6.   5   3x−1
                 −7   4x
                           >0   (algebraically)

          3x−1        4x
      5          >7
Solve:
 6.      5   3x−1
                    −7   4x
                              >0   (algebraically)

            3x−1         4x
        5           >7
      ( 3x − 1) log 5 > 4x log 7
Solve:
 6.      5   3x−1
                    −7   4x
                              >0   (algebraically)

            3x−1         4x
        5           >7
      ( 3x − 1) log 5 > 4x log 7
  3x log 5 − log 5 > 4x log 7
Solve:
 6.      5   3x−1
                    −7   4x
                              >0   (algebraically)

            3x−1         4x
        5           >7
      ( 3x − 1) log 5 > 4x log 7
  3x log 5 − log 5 > 4x log 7
  3x log 5 − 4x log 7 > log 5
Solve:
 6.      5   3x−1
                    −7   4x
                              >0   (algebraically)

            3x−1         4x
        5           >7
      ( 3x − 1) log 5 > 4x log 7
  3x log 5 − log 5 > 4x log 7
  3x log 5 − 4x log 7 > log 5

  x ( 3log 5 − 4 log 7 ) > log 5
Solve:
 6.      5   3x−1
                    −7   4x
                              >0    (algebraically)

            3x−1         4x
        5           >7
      ( 3x − 1) log 5 > 4x log 7
  3x log 5 − log 5 > 4x log 7
  3x log 5 − 4x log 7 > log 5

  x ( 3log 5 − 4 log 7 ) > log 5

  do ( 3log 5 − 4 log 7 ) on calc
Solve:
 6.      5   3x−1
                    −7   4x
                              >0    (algebraically)

            3x−1         4x
        5           >7                       log 5
                                     x<
      ( 3x − 1) log 5 > 4x log 7        3log 5 − 4 log 7
  3x log 5 − log 5 > 4x log 7
  3x log 5 − 4x log 7 > log 5

  x ( 3log 5 − 4 log 7 ) > log 5

  do ( 3log 5 − 4 log 7 ) on calc
Solve:
 6.      5   3x−1
                    −7   4x
                              >0    (algebraically)

            3x−1         4x
        5           >7                       log 5
                                     x<
      ( 3x − 1) log 5 > 4x log 7        3log 5 − 4 log 7
  3x log 5 − log 5 > 4x log 7
                                           x < −.5446
  3x log 5 − 4x log 7 > log 5

  x ( 3log 5 − 4 log 7 ) > log 5

  do ( 3log 5 − 4 log 7 ) on calc
HW #7

It is time for us all to stand and cheer for the doer,
the achiever – the one who recognizes the challenge
and does something about it.
                                 Vince Lombardi

0409 ch 4 day 9

  • 1.
    4.4 Exponential & Logarithmic Equations Day 2 Romans 15:4 For whatever was written in former days was written for our instruction, that through endurance and through the encouragement of the Scriptures we might have hope.
  • 2.
    Solve: 1. 4 2 x−1 − 27 = 0
  • 3.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27
  • 4.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27 2 x−1 log 4 = log 27
  • 5.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27 2 x−1 log 4 = log 27 ( 2x − 1) log 4 = log 27
  • 6.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27 2 x−1 log 4 = log 27 ( 2x − 1) log 4 = log 27 log 27 2x − 1 = log 4
  • 7.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27 2 x−1 log 4 = log 27 ( 2x − 1) log 4 = log 27 log 27 2x − 1 = log 4 log 27 2x = +1 log 4
  • 8.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27 log 27 1 log 4 2 x−1 = log 27 x= + 2 log 4 2 ( 2x − 1) log 4 = log 27 this is now log 27 “calculator ready” 2x − 1 = log 4 log 27 2x = +1 log 4
  • 9.
    Solve: 1. 4 2 x−1 − 27 = 0 2 x−1 4 = 27 log 27 1 log 4 2 x−1 = log 27 x= + 2 log 4 2 ( 2x − 1) log 4 = log 27 this is now log 27 “calculator ready” 2x − 1 = log 4 x ≈ 1.6887 log 27 2x = +1 log 4
  • 10.
    Solve: 2. e= x − 1 x 2
  • 11.
    Solve: 2. e= x − 1 x 2 no algebraic method presents itself ... do graphically
  • 12.
    Solve: 2. e= x − 1 x 2 no algebraic method presents itself ... do graphically x 2 y1 = e y2 = x − 1
  • 13.
    Solve: 2. e= x − 1 x 2 no algebraic method presents itself ... do graphically x 2 y1 = e y2 = x − 1 find intersection points
  • 14.
    Solve: 2. e= x − 1 x 2 no algebraic method presents itself ... do graphically x 2 y1 = e y2 = x − 1 find intersection points x ≈ −1.1478
  • 15.
    Solve: 3. x > log x − 2
  • 16.
    Solve: 3. x > log x − 2 one variable ... one axis
  • 17.
    Solve: 3. x > log x − 2 one variable ... one axis graph : x − log x + 2 > 0
  • 18.
    Solve: 3. x > log x − 2 one variable ... one axis graph : x − log x + 2 > 0 x > 0 or ( 0,∞ )
  • 19.
    Solve: 4. y < log ( 2x ) + 1
  • 20.
    Solve: 4. y < log ( 2x ) + 1 two variables ... two axes graph on graph paper!
  • 21.
    Solve: 4. y < log ( 2x ) + 1 two variables ... two axes graph on graph paper! graph : y1 = log ( 2x ) + 1 dotted line & shade below
  • 22.
    Solve: 5. x y≥e −2
  • 23.
    Solve: 5. x y≥e −2 two variables ... two axes graph on graph paper!
  • 24.
    Solve: 5. x y≥e −2 two variables ... two axes graph on graph paper! x graph : y1 = e − 2 solid line & shade above
  • 25.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically)
  • 26.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7
  • 27.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 ( 3x − 1) log 5 > 4x log 7
  • 28.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 ( 3x − 1) log 5 > 4x log 7 3x log 5 − log 5 > 4x log 7
  • 29.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 ( 3x − 1) log 5 > 4x log 7 3x log 5 − log 5 > 4x log 7 3x log 5 − 4x log 7 > log 5
  • 30.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 ( 3x − 1) log 5 > 4x log 7 3x log 5 − log 5 > 4x log 7 3x log 5 − 4x log 7 > log 5 x ( 3log 5 − 4 log 7 ) > log 5
  • 31.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 ( 3x − 1) log 5 > 4x log 7 3x log 5 − log 5 > 4x log 7 3x log 5 − 4x log 7 > log 5 x ( 3log 5 − 4 log 7 ) > log 5 do ( 3log 5 − 4 log 7 ) on calc
  • 32.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 log 5 x< ( 3x − 1) log 5 > 4x log 7 3log 5 − 4 log 7 3x log 5 − log 5 > 4x log 7 3x log 5 − 4x log 7 > log 5 x ( 3log 5 − 4 log 7 ) > log 5 do ( 3log 5 − 4 log 7 ) on calc
  • 33.
    Solve: 6. 5 3x−1 −7 4x >0 (algebraically) 3x−1 4x 5 >7 log 5 x< ( 3x − 1) log 5 > 4x log 7 3log 5 − 4 log 7 3x log 5 − log 5 > 4x log 7 x < −.5446 3x log 5 − 4x log 7 > log 5 x ( 3log 5 − 4 log 7 ) > log 5 do ( 3log 5 − 4 log 7 ) on calc
  • 34.
    HW #7 It istime for us all to stand and cheer for the doer, the achiever – the one who recognizes the challenge and does something about it. Vince Lombardi