SlideShare a Scribd company logo
Sandstone Uranium Deposits –
Roll-Fronts, Solution Fronts, Redox Fronts


                                              IAEA Technical Meeting on the
                                               Origin of Sandstone Uranium
                                              Deposits: A Global Perspective
                                                  28 May – 1 June 2012
                                                      Vienna, Austria




   W. William Boberg, Boberg GeoTech International Ltd., Denver, Colorado USA   1
Summary Review of Roll-Front History
 Gruner in 1956 described the multiple migration-
  accretion process to concentrate uranium in
  sediments
 Harshman in 1962 recognized alteration as a guide
  to uranium deposits in the Shirley Basin and
  published pictures and diagrams of roll fronts being
  mined in open pit mines at the time
 Hans Adler in 1964 describes a concept of genesis of
  “ore-rolls” for sandstone-type uranium deposits
 Shawe & Granger in 1965 summarize “ore-rolls”
 Bruce Rubin in 1970 describes roll-front zonation
  using a diagram that is still in wide use today
                                                      2
Roll-Front Deposits
 Have been called roll-fronts, “ore-rolls”, solution
  fronts, geochemical cells, reduction-oxidation
  (redox) fronts

 In reality the process is the mixing of groundwater
  fluids of varying chemistry (for example oxidizing
  groundwater interfacing with/mixing with a
  reducing groundwater)

 May contain a variety of accessory metals (such as
  molybdenum, vanadium and selenium)

 Other metals appear to be able to be concentrated
  by similar processes but not always by a redox
  reaction
                                                        3
General Roll Front Diagram
                                        Bounding Clay




  Altered or Oxidized Sand
                                          Roll-Front     Deposit


  Altered Tongue
                                                    Reduced or
                                                    Unoxidized Sand

                                    Bounding Clay



                                                                   4
Adapted From Harshman (USGS) 1962
What does it take to form a Uranium
        Roll-Front Deposit?
 A Source of Uranium
 A Transportation System
    Surficial Water Flow (Transports Uranium to Ground Water
     Recharge)
    Ground Water Flow
       Regionally Transmissive Host Sandstone (Good Porosity and
        Permeability)
       Oxygenated Ground Water
       Focused Ground Water Flux
            Aquacludes (bounding shales / clays)
            Paleochannel systems
 A Trap (A Suitable Host Rock)
    Fluvial or Marine Sandstones
    Regional Chemically Reducing Environment
    Development of Reduction-Oxidation Interface
 Time (Continuity of Favorable Conditions to Build Deposit)
                                                               5
Postulated Eh-pH Conditions During
Transportation and Deposition of Uranium




  Eh
+200                                pH
                                    8
   0
                                    6
 -200
                                    4
 -400                                   6
General Characteristics of Uranium
            Roll-Front Deposits
 Host Rock - Sandstones with good porosity and permeability
 Genesis – Epigenetic (introduced later than host rock)
 Mineralization
    Mineral is commonly uraninite - UO2 or coffinite – U(SiO4)1-x(OH)4x
    Commonly as amorphous coatings on sand grains and fillings in interstitial
     spaces
 Deposits
    Average Grade: 0.05% - 0.25% U3O8
    Size: Economic deposits may contain 2-25+ million pounds U3O8
    Depth: 60 – 600 meters
 Roll-Front Geometry
    Map View
       Narrow: Commonly 3 meters to 40 meters wide
       Long: Continuous for long distances (kilometers to 10’s of kilometers),
        not all ore quality along length
       Sinuous: Extreme, often complex sinuousity
    Cross-Sectional View
       Crescent (convex downdip) shape, commonly 2 meters to 8 meters thick
       Commonly in a complex stacked system of multiple roll-fronts        7
Model of Formation of a
     Roll Front Deposit In Sandstone
            Modified from Granger & Warren (USGS), 1978

 Ground Water
   Bulk flow rate of ground water = 58m3/yr thru 1m2
   Ground water velocity = 290 m/year
   Oxygen content = 5 ppm
   Uranium content = 50 ppb
 Sedimentary Unit
   Porosity = 20%
   Hydraulic conductivity = 40m/day
   Rate of advance of roll-front = 1.4 cm/year
 Time Required to Form
   10 km long oxidized tongue = 700,000 years
   10 m wide, 0.28% U3O8 grade deposit = 50,000 years
                                                          8
Source of the Uranium for
    Roll-Front Deposits In Sandstone

 The source of uranium for roll-front deposits
 in sandstones has been postulated to be the
 following:
    Hydrothermal Fluids
    Precambrian Vein Deposits
    Precambrian Granites and Derived Arkose
    Uraniferous Volcanic Tuffs
   The last two on the list, individually or in
combination, are the most likely sources for most
        roll front deposits in sandstone
                                               9
Basic Roll-Front Characteristics




                                   10
General Formation of a Roll-Front System
     Uranium source – U-enriched granitic rocks or volcanic tuffs
     Uranium carried in oxidizing surface and ground waters
     Uranium precipitated at reduction oxidation (redox) interface
     Redox interface migrates downdip with continued oxidation and
      precipitation
     The uranium mineralization at the redox interface
      is commonly called a roll-front




From Van Holland, 2010, After Boberg, 1981                            11
Roll-Front Oxidized Tongue in Plan View
      1 – 20 km




After Van Holland, 2010                12
Typical Gamma – Resistivity Log Used in
    Geophysical Logging of Bore Holes

                                 Mineral Intercepts are
                                 Commonly defined as:

                          Thickness – Average Grade – Depth / GT
                                 (GT = Grade x Thickness)

                                        Example:
                            3.1m – 0.12% eU3O8 – 162m / 0.37

                                GT = 0.37 (3.1m x 0.12%)




                                                            13
After Van Holland, 2010
Calculation of Equivalent Uranium (eU3O8)
     Downhole probe records natural gamma radiation
         which is then used to calculate eU3O8
                         Spontaneous
    Gamma – grade calculation curve                          Single Point Resistivity
       2000 cps/10 units calibrated   Potential (SP)         (Lithology indicator)
                                      Lithology indicator
   Depth
                                                            Shale
      143
                            0.9m of 0.04% eU3O8                         Sand

      146                                                           Siltstone
                                                                                  Gamma
                                                                                  Lithology
                            2.9m of 0.05% eU3O8                          Sand     Indicator
      149                                                                         100 cps/10 units
                                                             Shale
      151                                                                 Sand
                                                             Shale

      153                                                     Shale

                                                                           Sand


                                                                                          14
From Boberg, 2006
Mapping of a Roll-Front




                                        3m – 10m
From Van Holland, 2010              Contour of Ore Grade GT’s   15
“Stacking” of Roll-Fronts in Multiple Sands
It is not uncommon for multiple sand layers in a sedimentary
sequence to contain roll fronts.

The complexity of the three-dimensional view of changes in a roll
front combined with the variations in the shape and dimensions of
the altered tongue make mapping of each individual roll front a
challenge, let alone multiple stacked fronts.




After Boberg, 1981                                             16
Mapping of Roll-Fronts in an Upper Sand




Modified From Van Holland, 2010       17
Mapping of Roll-Fronts in a Middle Sand




Modified From Van Holland, 2010       18
Mapping of Roll-Fronts in a Lower Sand




Modified From Van Holland, 2010        19
Composite Mapping Showing the
   Complexity of Roll-Fronts in all 3 Sands




Modified From Van Holland, 2010          20
Drill Pattern to Test Roll-Front Complexity
                                  Delineating the composite
                                  deposit on a 30m grid
                                       will require 383 holes.




Modified From Van Holland, 2010                            21
Radioactive Decay Series of Uranium 238
              Uranium Equilibrium and Disequilibrium
                                                    The downhole gamma probe measures
                                                     natural gamma radiation released by
                                                     uranium daughter products – mainly
                                                     Bismuth 214, not Uranium
                                                    When uranium and its daughter
                                                     products are in secular equilibrium,
                                                     chemical uranium will be equal to
                                                     gamma equivalent uranium
                                                    Roll front uranium deposits in
                                                     sandstones are dynamic systems with
                                                     active groundwater flow
                                                    Varying chemical nature of decay
                                                     products (Example – Radon is a short-
                                                     lived gas easily moved by ground
                                                     water) results in each decay product
                                                     being dissolved and moved
                                                     differentially, resulting in
                                                     disequilibrium in the uranium deposit
Modified From Boberg, 2006 and Van Holland, 2010                                        22
Uranium Disequilibrium Evaluations
                               Graph of multiple sample results
                               from a deposit comparing
                               chemical uranium (cU3O8) to
                               gamma equivalent uranium
                               (eU3O8) for each sample pair.
                               Deposit is out of equilibrium in
                               favor of chemical at higher
                               grades. Gamma commonly
                               under-represents high values.

                    Note: It has been found to be common for higher
                    grades to be in positive disequilibrium and lower
                    grades (~<0.04%) to be in negative
                    disequilibrium

                        Plot comparing chemical uranium
                        (cU3O8) to gamma equivalent
                        uranium (eU3O8) for each sample pair
                        for a core interval through a deposit.
From Boberg, 2006                                              23
Basic Roll-Front Characteristics




From Van Holland, 2010 (adapted from Rubin, 1970)   24
Roll-Front Remobilization
Results in Actual Ore Body Being in a Different
Location than Projected by Gamma Probe Data
                                     Previous redox    Current redox
                                      front location   front location




                         Roll-front by gamma log
                          interpretation (eU3O8)
                            Roll-front by chemical assay
                               interpretation (cU3O8)
From Van Holland, 2010                                                  25
In Situ Recovery Mining Considerations
Different considerations are necessary to assess amenability
 of the deposit for ISL mining than for conventional mining
     High grade “limb ore” tied up in mudstones or with organics will not be ISL
     mined but will often be considered in conventional mine planning.
                                        Open Pit Zone
0                                                                                       0
                                                 ISL Mine Zone
5                                                                                       5

10                                                                                  10


15                                                                                  15
 Cutoff grade of 0.02% U3O8 (or 0.03% U3O8), minimum GT of 0.09 for depths of
  less than 300 meters or minimum GT of 0.15 for depths greater than 1000 feet
  (i.e., 5 meters of 0.02% U3O8 above 300 meters could be considered an ISL
  addressable resource – depending on deposit disequilibrium studies and
  economic sensitivity evaluations and specific deposit characteristics)
 Sand unit must be saturated, porous and permeable
 Uranium must be in porous and permeable sand, not organics or mudstones
 Each production pattern (one production well and four injection wells) covering
  a surface area of approximately 450 to 900 square meters, will commonly
  address a resource of approximately 5,000 to 10,000 pounds U3O8.
                                                                                   26
Shirley Basin Converging Roll-Fronts




                                                27
Photo by Nick Ferris – 1960’s
Roll-Front in Pit Wall




From Wyoming Mining Association Website - http://www.wma-minelife.com/uranium/mining/rllfrnt1.html
                                                                                                     28
Roll-Fronts in Outcrop




Photo from Bill Boberg Collection                        29

More Related Content

What's hot

traps_Masoom
 traps_Masoom traps_Masoom
traps_Masoom
Masoom Shani
 
Reservoir rock
Reservoir rockReservoir rock
Reservoir rock
Sohail Nawab
 
Wall Rock Alteration.pdf
Wall Rock Alteration.pdfWall Rock Alteration.pdf
Wall Rock Alteration.pdf
Bibek Chatterjee
 
Sampling techniques
Sampling techniquesSampling techniques
Sampling techniques
Pramoda Raj
 
Application of fluid inclusion
Application of fluid inclusionApplication of fluid inclusion
Application of fluid inclusion
Swapnil Pal
 
Mantle melting and Magmatic processes
Mantle melting and Magmatic processesMantle melting and Magmatic processes
Mantle melting and Magmatic processes
Ananya21Mittal
 
Sequence Stratigraphy
Sequence StratigraphySequence Stratigraphy
Wall Rock Alteration
Wall Rock AlterationWall Rock Alteration
Wall Rock Alteration
Adithya Shettar
 
Topic 3 ore forming processes and magmatic mineral deposits
Topic 3 ore forming processes and magmatic mineral depositsTopic 3 ore forming processes and magmatic mineral deposits
Topic 3 ore forming processes and magmatic mineral deposits
Geology Department, Faculty of Science, Tanta University
 
03 boberg 2012 iaea - wy uranium province
03 boberg 2012   iaea - wy uranium province03 boberg 2012   iaea - wy uranium province
03 boberg 2012 iaea - wy uranium province
Monatom Mgl
 
Lowstand system tracts
Lowstand system tractsLowstand system tracts
Lowstand system tracts
uos
 
Introduction of sequence stratigraphy
Introduction of sequence stratigraphyIntroduction of sequence stratigraphy
Introduction of sequence stratigraphy
Wajid09
 
BOMBAY HIGH
BOMBAY HIGHBOMBAY HIGH
BOMBAY HIGH
Himadri Samal
 
Economic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore depositsEconomic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore deposits
AbdelMonem Soltan
 
Fluids inclusion of metamorphic rocks
Fluids inclusion of metamorphic rocksFluids inclusion of metamorphic rocks
Fluids inclusion of metamorphic rocks
Pramoda Raj
 
Hydrothermal alterations
Hydrothermal alterationsHydrothermal alterations
Concept of Source Rock Characterisation
Concept of Source Rock CharacterisationConcept of Source Rock Characterisation
Concept of Source Rock Characterisation
EmmanuelTubonemi
 
Anderson s-theory-of-faulting (1)
Anderson s-theory-of-faulting (1)Anderson s-theory-of-faulting (1)
Anderson s-theory-of-faulting (1)
Abhinav Porwal
 
Digenesis
DigenesisDigenesis
Quantitative and Qualitative Seismic Interpretation of Seismic Data
Quantitative and Qualitative Seismic Interpretation of Seismic Data Quantitative and Qualitative Seismic Interpretation of Seismic Data
Quantitative and Qualitative Seismic Interpretation of Seismic Data
Haseeb Ahmed
 

What's hot (20)

traps_Masoom
 traps_Masoom traps_Masoom
traps_Masoom
 
Reservoir rock
Reservoir rockReservoir rock
Reservoir rock
 
Wall Rock Alteration.pdf
Wall Rock Alteration.pdfWall Rock Alteration.pdf
Wall Rock Alteration.pdf
 
Sampling techniques
Sampling techniquesSampling techniques
Sampling techniques
 
Application of fluid inclusion
Application of fluid inclusionApplication of fluid inclusion
Application of fluid inclusion
 
Mantle melting and Magmatic processes
Mantle melting and Magmatic processesMantle melting and Magmatic processes
Mantle melting and Magmatic processes
 
Sequence Stratigraphy
Sequence StratigraphySequence Stratigraphy
Sequence Stratigraphy
 
Wall Rock Alteration
Wall Rock AlterationWall Rock Alteration
Wall Rock Alteration
 
Topic 3 ore forming processes and magmatic mineral deposits
Topic 3 ore forming processes and magmatic mineral depositsTopic 3 ore forming processes and magmatic mineral deposits
Topic 3 ore forming processes and magmatic mineral deposits
 
03 boberg 2012 iaea - wy uranium province
03 boberg 2012   iaea - wy uranium province03 boberg 2012   iaea - wy uranium province
03 boberg 2012 iaea - wy uranium province
 
Lowstand system tracts
Lowstand system tractsLowstand system tracts
Lowstand system tracts
 
Introduction of sequence stratigraphy
Introduction of sequence stratigraphyIntroduction of sequence stratigraphy
Introduction of sequence stratigraphy
 
BOMBAY HIGH
BOMBAY HIGHBOMBAY HIGH
BOMBAY HIGH
 
Economic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore depositsEconomic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore deposits
 
Fluids inclusion of metamorphic rocks
Fluids inclusion of metamorphic rocksFluids inclusion of metamorphic rocks
Fluids inclusion of metamorphic rocks
 
Hydrothermal alterations
Hydrothermal alterationsHydrothermal alterations
Hydrothermal alterations
 
Concept of Source Rock Characterisation
Concept of Source Rock CharacterisationConcept of Source Rock Characterisation
Concept of Source Rock Characterisation
 
Anderson s-theory-of-faulting (1)
Anderson s-theory-of-faulting (1)Anderson s-theory-of-faulting (1)
Anderson s-theory-of-faulting (1)
 
Digenesis
DigenesisDigenesis
Digenesis
 
Quantitative and Qualitative Seismic Interpretation of Seismic Data
Quantitative and Qualitative Seismic Interpretation of Seismic Data Quantitative and Qualitative Seismic Interpretation of Seismic Data
Quantitative and Qualitative Seismic Interpretation of Seismic Data
 

Viewers also liked

Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Donald Carpenter
 
1 u deposits sandstones looking forward cuney
1 u deposits sandstones looking forward cuney1 u deposits sandstones looking forward cuney
1 u deposits sandstones looking forward cuney
Monatom Mgl
 
Uranium Ore Deposits
Uranium Ore DepositsUranium Ore Deposits
Topic 2 the mining cycle
Topic 2  the mining cycleTopic 2  the mining cycle
URANIUM ORE DEPOSITS IN EGYPT
URANIUM ORE DEPOSITS IN EGYPTURANIUM ORE DEPOSITS IN EGYPT
Well logging
Well loggingWell logging

Viewers also liked (6)

Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
 
1 u deposits sandstones looking forward cuney
1 u deposits sandstones looking forward cuney1 u deposits sandstones looking forward cuney
1 u deposits sandstones looking forward cuney
 
Uranium Ore Deposits
Uranium Ore DepositsUranium Ore Deposits
Uranium Ore Deposits
 
Topic 2 the mining cycle
Topic 2  the mining cycleTopic 2  the mining cycle
Topic 2 the mining cycle
 
URANIUM ORE DEPOSITS IN EGYPT
URANIUM ORE DEPOSITS IN EGYPTURANIUM ORE DEPOSITS IN EGYPT
URANIUM ORE DEPOSITS IN EGYPT
 
Well logging
Well loggingWell logging
Well logging
 

Similar to 02 boberg iaea roll front development & expl

Week 2 geophysical survey
Week 2   geophysical surveyWeek 2   geophysical survey
Week 2 geophysical survey
tierah89
 
09 wilde iaea meeting may 2012
09 wilde iaea meeting may 201209 wilde iaea meeting may 2012
09 wilde iaea meeting may 2012
Monatom Mgl
 
Saxendrift resource summary July 2013
Saxendrift resource summary July 2013Saxendrift resource summary July 2013
Saxendrift resource summary July 2013
James AH Campbell
 
Reservoir Geology Assessed Practical
Reservoir Geology Assessed PracticalReservoir Geology Assessed Practical
Reservoir Geology Assessed Practical
lwandfluh
 
Aggregate used in concrete and building purposes
Aggregate used in concrete and building purposesAggregate used in concrete and building purposes
Aggregate used in concrete and building purposes
Geology Department, Faculty of Science, Tanta University
 
Topic 4: Mine wastes
Topic 4: Mine wastesTopic 4: Mine wastes
Topic 4: Mine wastes
London Mining Network
 
PDAC 2020 ppp hand out 2020 [autosaved]
PDAC 2020 ppp hand out 2020 [autosaved]PDAC 2020 ppp hand out 2020 [autosaved]
PDAC 2020 ppp hand out 2020 [autosaved]
Follow me on Twitter @Stockshaman
 
Laurence d. wesley characterisation and classification of tropical residual...
Laurence d. wesley   characterisation and classification of tropical residual...Laurence d. wesley   characterisation and classification of tropical residual...
Laurence d. wesley characterisation and classification of tropical residual...
scgcolombia
 
Lrlcp yulini 649_paper
Lrlcp yulini 649_paperLrlcp yulini 649_paper
Lrlcp yulini 649_paper
Yulini Arediningsih, M.Sc. P.Geo
 
Tailings
TailingsTailings
Athabasca Basin Uranium by Darren Smith
Athabasca Basin Uranium by Darren SmithAthabasca Basin Uranium by Darren Smith
Athabasca Basin Uranium by Darren Smith
Uranium Exploration
 
MRS_Dounreay_paper
MRS_Dounreay_paperMRS_Dounreay_paper
MRS_Dounreay_paper
Cédric Meier
 
05 xiaodong liu geologic setting of interformational-braided-channel type sa...
05 xiaodong liu  geologic setting of interformational-braided-channel type sa...05 xiaodong liu  geologic setting of interformational-braided-channel type sa...
05 xiaodong liu geologic setting of interformational-braided-channel type sa...
Monatom Mgl
 
"Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit...
"Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit..."Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit...
"Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit...
Lakeland Resources Inc. (TSXv: LK)
 
Uranium resources and reserves in egypt
Uranium resources and reserves in egyptUranium resources and reserves in egypt
Uranium resources and reserves in egypt
Geology Department, Faculty of Science, Tanta University
 
Review of geological hazards in jazan, saudi arabia
Review of geological hazards in jazan, saudi arabiaReview of geological hazards in jazan, saudi arabia
Review of geological hazards in jazan, saudi arabia
William Shehata
 
04 bonnetti iaea 2012
04 bonnetti iaea 201204 bonnetti iaea 2012
04 bonnetti iaea 2012
Monatom Mgl
 
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptx
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptxCHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptx
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptx
ALEXANDROCAYUBAMENDO
 
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdf
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdfCHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdf
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdf
ALEXANDROCAYUBAMENDO
 
Materials of the earth'scrust
Materials of the earth'scrustMaterials of the earth'scrust
Materials of the earth'scrust
jeetshah007
 

Similar to 02 boberg iaea roll front development & expl (20)

Week 2 geophysical survey
Week 2   geophysical surveyWeek 2   geophysical survey
Week 2 geophysical survey
 
09 wilde iaea meeting may 2012
09 wilde iaea meeting may 201209 wilde iaea meeting may 2012
09 wilde iaea meeting may 2012
 
Saxendrift resource summary July 2013
Saxendrift resource summary July 2013Saxendrift resource summary July 2013
Saxendrift resource summary July 2013
 
Reservoir Geology Assessed Practical
Reservoir Geology Assessed PracticalReservoir Geology Assessed Practical
Reservoir Geology Assessed Practical
 
Aggregate used in concrete and building purposes
Aggregate used in concrete and building purposesAggregate used in concrete and building purposes
Aggregate used in concrete and building purposes
 
Topic 4: Mine wastes
Topic 4: Mine wastesTopic 4: Mine wastes
Topic 4: Mine wastes
 
PDAC 2020 ppp hand out 2020 [autosaved]
PDAC 2020 ppp hand out 2020 [autosaved]PDAC 2020 ppp hand out 2020 [autosaved]
PDAC 2020 ppp hand out 2020 [autosaved]
 
Laurence d. wesley characterisation and classification of tropical residual...
Laurence d. wesley   characterisation and classification of tropical residual...Laurence d. wesley   characterisation and classification of tropical residual...
Laurence d. wesley characterisation and classification of tropical residual...
 
Lrlcp yulini 649_paper
Lrlcp yulini 649_paperLrlcp yulini 649_paper
Lrlcp yulini 649_paper
 
Tailings
TailingsTailings
Tailings
 
Athabasca Basin Uranium by Darren Smith
Athabasca Basin Uranium by Darren SmithAthabasca Basin Uranium by Darren Smith
Athabasca Basin Uranium by Darren Smith
 
MRS_Dounreay_paper
MRS_Dounreay_paperMRS_Dounreay_paper
MRS_Dounreay_paper
 
05 xiaodong liu geologic setting of interformational-braided-channel type sa...
05 xiaodong liu  geologic setting of interformational-braided-channel type sa...05 xiaodong liu  geologic setting of interformational-braided-channel type sa...
05 xiaodong liu geologic setting of interformational-braided-channel type sa...
 
"Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit...
"Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit..."Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit...
"Athabasca Basin Uranium" by Lakeland Resources Inc. geologist Darren L. Smit...
 
Uranium resources and reserves in egypt
Uranium resources and reserves in egyptUranium resources and reserves in egypt
Uranium resources and reserves in egypt
 
Review of geological hazards in jazan, saudi arabia
Review of geological hazards in jazan, saudi arabiaReview of geological hazards in jazan, saudi arabia
Review of geological hazards in jazan, saudi arabia
 
04 bonnetti iaea 2012
04 bonnetti iaea 201204 bonnetti iaea 2012
04 bonnetti iaea 2012
 
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptx
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptxCHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptx
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pptx
 
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdf
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdfCHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdf
CHARACTERISTICS OF WIRELINE WELL LOGD USED IN THE.pdf
 
Materials of the earth'scrust
Materials of the earth'scrustMaterials of the earth'scrust
Materials of the earth'scrust
 

More from Monatom Mgl

Iaea
IaeaIaea
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хуульMonatom Mgl
 
12.компанийн тухай хууль
12.компанийн тухай хууль12.компанийн тухай хууль
12.компанийн тухай хуульMonatom Mgl
 
11.газрын тухай хууль
11.газрын тухай хууль11.газрын тухай хууль
11.газрын тухай хуульMonatom Mgl
 
10.газрын тухай хууль
10.газрын тухай хууль10.газрын тухай хууль
10.газрын тухай хуульMonatom Mgl
 
9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хуульMonatom Mgl
 
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хуульMonatom Mgl
 
6.усны тухай хууль
6.усны тухай хууль6.усны тухай хууль
6.усны тухай хуульMonatom Mgl
 
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хуульMonatom Mgl
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хуульMonatom Mgl
 
3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хуульMonatom Mgl
 
1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хуульMonatom Mgl
 
13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хуульMonatom Mgl
 
03 iaea conference becker
03 iaea conference becker03 iaea conference becker
03 iaea conference becker
Monatom Mgl
 
Tm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsTm on origin of sandston uranium deposits
Tm on origin of sandston uranium deposits
Monatom Mgl
 
Summary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmSummary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tm
Monatom Mgl
 
Session 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaSession 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowska
Monatom Mgl
 
Tmus programme
Tmus programmeTmus programme
Tmus programme
Monatom Mgl
 
04 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 201204 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 2012
Monatom Mgl
 

More from Monatom Mgl (20)

Iaea
IaeaIaea
Iaea
 
Scan
ScanScan
Scan
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль
 
12.компанийн тухай хууль
12.компанийн тухай хууль12.компанийн тухай хууль
12.компанийн тухай хууль
 
11.газрын тухай хууль
11.газрын тухай хууль11.газрын тухай хууль
11.газрын тухай хууль
 
10.газрын тухай хууль
10.газрын тухай хууль10.газрын тухай хууль
10.газрын тухай хууль
 
9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль
 
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
 
6.усны тухай хууль
6.усны тухай хууль6.усны тухай хууль
6.усны тухай хууль
 
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль
 
3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль
 
1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль
 
13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль
 
03 iaea conference becker
03 iaea conference becker03 iaea conference becker
03 iaea conference becker
 
Tm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsTm on origin of sandston uranium deposits
Tm on origin of sandston uranium deposits
 
Summary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmSummary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tm
 
Session 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaSession 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowska
 
Tmus programme
Tmus programmeTmus programme
Tmus programme
 
04 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 201204 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 2012
 

02 boberg iaea roll front development & expl

  • 1. Sandstone Uranium Deposits – Roll-Fronts, Solution Fronts, Redox Fronts IAEA Technical Meeting on the Origin of Sandstone Uranium Deposits: A Global Perspective 28 May – 1 June 2012 Vienna, Austria W. William Boberg, Boberg GeoTech International Ltd., Denver, Colorado USA 1
  • 2. Summary Review of Roll-Front History  Gruner in 1956 described the multiple migration- accretion process to concentrate uranium in sediments  Harshman in 1962 recognized alteration as a guide to uranium deposits in the Shirley Basin and published pictures and diagrams of roll fronts being mined in open pit mines at the time  Hans Adler in 1964 describes a concept of genesis of “ore-rolls” for sandstone-type uranium deposits  Shawe & Granger in 1965 summarize “ore-rolls”  Bruce Rubin in 1970 describes roll-front zonation using a diagram that is still in wide use today 2
  • 3. Roll-Front Deposits  Have been called roll-fronts, “ore-rolls”, solution fronts, geochemical cells, reduction-oxidation (redox) fronts  In reality the process is the mixing of groundwater fluids of varying chemistry (for example oxidizing groundwater interfacing with/mixing with a reducing groundwater)  May contain a variety of accessory metals (such as molybdenum, vanadium and selenium)  Other metals appear to be able to be concentrated by similar processes but not always by a redox reaction 3
  • 4. General Roll Front Diagram Bounding Clay Altered or Oxidized Sand Roll-Front Deposit Altered Tongue Reduced or Unoxidized Sand Bounding Clay 4 Adapted From Harshman (USGS) 1962
  • 5. What does it take to form a Uranium Roll-Front Deposit?  A Source of Uranium  A Transportation System  Surficial Water Flow (Transports Uranium to Ground Water Recharge)  Ground Water Flow  Regionally Transmissive Host Sandstone (Good Porosity and Permeability)  Oxygenated Ground Water  Focused Ground Water Flux  Aquacludes (bounding shales / clays)  Paleochannel systems  A Trap (A Suitable Host Rock)  Fluvial or Marine Sandstones  Regional Chemically Reducing Environment  Development of Reduction-Oxidation Interface  Time (Continuity of Favorable Conditions to Build Deposit) 5
  • 6. Postulated Eh-pH Conditions During Transportation and Deposition of Uranium Eh +200 pH 8 0 6 -200 4 -400 6
  • 7. General Characteristics of Uranium Roll-Front Deposits  Host Rock - Sandstones with good porosity and permeability  Genesis – Epigenetic (introduced later than host rock)  Mineralization  Mineral is commonly uraninite - UO2 or coffinite – U(SiO4)1-x(OH)4x  Commonly as amorphous coatings on sand grains and fillings in interstitial spaces  Deposits  Average Grade: 0.05% - 0.25% U3O8  Size: Economic deposits may contain 2-25+ million pounds U3O8  Depth: 60 – 600 meters  Roll-Front Geometry  Map View  Narrow: Commonly 3 meters to 40 meters wide  Long: Continuous for long distances (kilometers to 10’s of kilometers), not all ore quality along length  Sinuous: Extreme, often complex sinuousity  Cross-Sectional View  Crescent (convex downdip) shape, commonly 2 meters to 8 meters thick  Commonly in a complex stacked system of multiple roll-fronts 7
  • 8. Model of Formation of a Roll Front Deposit In Sandstone Modified from Granger & Warren (USGS), 1978  Ground Water  Bulk flow rate of ground water = 58m3/yr thru 1m2  Ground water velocity = 290 m/year  Oxygen content = 5 ppm  Uranium content = 50 ppb  Sedimentary Unit  Porosity = 20%  Hydraulic conductivity = 40m/day  Rate of advance of roll-front = 1.4 cm/year  Time Required to Form  10 km long oxidized tongue = 700,000 years  10 m wide, 0.28% U3O8 grade deposit = 50,000 years 8
  • 9. Source of the Uranium for Roll-Front Deposits In Sandstone The source of uranium for roll-front deposits in sandstones has been postulated to be the following:  Hydrothermal Fluids  Precambrian Vein Deposits  Precambrian Granites and Derived Arkose  Uraniferous Volcanic Tuffs The last two on the list, individually or in combination, are the most likely sources for most roll front deposits in sandstone 9
  • 11. General Formation of a Roll-Front System  Uranium source – U-enriched granitic rocks or volcanic tuffs  Uranium carried in oxidizing surface and ground waters  Uranium precipitated at reduction oxidation (redox) interface  Redox interface migrates downdip with continued oxidation and  precipitation  The uranium mineralization at the redox interface  is commonly called a roll-front From Van Holland, 2010, After Boberg, 1981 11
  • 12. Roll-Front Oxidized Tongue in Plan View 1 – 20 km After Van Holland, 2010 12
  • 13. Typical Gamma – Resistivity Log Used in Geophysical Logging of Bore Holes Mineral Intercepts are Commonly defined as: Thickness – Average Grade – Depth / GT (GT = Grade x Thickness) Example: 3.1m – 0.12% eU3O8 – 162m / 0.37 GT = 0.37 (3.1m x 0.12%) 13 After Van Holland, 2010
  • 14. Calculation of Equivalent Uranium (eU3O8) Downhole probe records natural gamma radiation which is then used to calculate eU3O8 Spontaneous Gamma – grade calculation curve Single Point Resistivity 2000 cps/10 units calibrated Potential (SP) (Lithology indicator) Lithology indicator Depth Shale 143 0.9m of 0.04% eU3O8 Sand 146 Siltstone Gamma Lithology 2.9m of 0.05% eU3O8 Sand Indicator 149 100 cps/10 units Shale 151 Sand Shale 153 Shale Sand 14 From Boberg, 2006
  • 15. Mapping of a Roll-Front 3m – 10m From Van Holland, 2010 Contour of Ore Grade GT’s 15
  • 16. “Stacking” of Roll-Fronts in Multiple Sands It is not uncommon for multiple sand layers in a sedimentary sequence to contain roll fronts. The complexity of the three-dimensional view of changes in a roll front combined with the variations in the shape and dimensions of the altered tongue make mapping of each individual roll front a challenge, let alone multiple stacked fronts. After Boberg, 1981 16
  • 17. Mapping of Roll-Fronts in an Upper Sand Modified From Van Holland, 2010 17
  • 18. Mapping of Roll-Fronts in a Middle Sand Modified From Van Holland, 2010 18
  • 19. Mapping of Roll-Fronts in a Lower Sand Modified From Van Holland, 2010 19
  • 20. Composite Mapping Showing the Complexity of Roll-Fronts in all 3 Sands Modified From Van Holland, 2010 20
  • 21. Drill Pattern to Test Roll-Front Complexity Delineating the composite deposit on a 30m grid will require 383 holes. Modified From Van Holland, 2010 21
  • 22. Radioactive Decay Series of Uranium 238 Uranium Equilibrium and Disequilibrium  The downhole gamma probe measures natural gamma radiation released by uranium daughter products – mainly Bismuth 214, not Uranium  When uranium and its daughter products are in secular equilibrium, chemical uranium will be equal to gamma equivalent uranium  Roll front uranium deposits in sandstones are dynamic systems with active groundwater flow  Varying chemical nature of decay products (Example – Radon is a short- lived gas easily moved by ground water) results in each decay product being dissolved and moved differentially, resulting in disequilibrium in the uranium deposit Modified From Boberg, 2006 and Van Holland, 2010 22
  • 23. Uranium Disequilibrium Evaluations Graph of multiple sample results from a deposit comparing chemical uranium (cU3O8) to gamma equivalent uranium (eU3O8) for each sample pair. Deposit is out of equilibrium in favor of chemical at higher grades. Gamma commonly under-represents high values. Note: It has been found to be common for higher grades to be in positive disequilibrium and lower grades (~<0.04%) to be in negative disequilibrium Plot comparing chemical uranium (cU3O8) to gamma equivalent uranium (eU3O8) for each sample pair for a core interval through a deposit. From Boberg, 2006 23
  • 24. Basic Roll-Front Characteristics From Van Holland, 2010 (adapted from Rubin, 1970) 24
  • 25. Roll-Front Remobilization Results in Actual Ore Body Being in a Different Location than Projected by Gamma Probe Data Previous redox Current redox front location front location Roll-front by gamma log interpretation (eU3O8) Roll-front by chemical assay interpretation (cU3O8) From Van Holland, 2010 25
  • 26. In Situ Recovery Mining Considerations Different considerations are necessary to assess amenability of the deposit for ISL mining than for conventional mining High grade “limb ore” tied up in mudstones or with organics will not be ISL mined but will often be considered in conventional mine planning. Open Pit Zone 0 0 ISL Mine Zone 5 5 10 10 15 15  Cutoff grade of 0.02% U3O8 (or 0.03% U3O8), minimum GT of 0.09 for depths of less than 300 meters or minimum GT of 0.15 for depths greater than 1000 feet (i.e., 5 meters of 0.02% U3O8 above 300 meters could be considered an ISL addressable resource – depending on deposit disequilibrium studies and economic sensitivity evaluations and specific deposit characteristics)  Sand unit must be saturated, porous and permeable  Uranium must be in porous and permeable sand, not organics or mudstones  Each production pattern (one production well and four injection wells) covering a surface area of approximately 450 to 900 square meters, will commonly address a resource of approximately 5,000 to 10,000 pounds U3O8. 26
  • 27. Shirley Basin Converging Roll-Fronts 27 Photo by Nick Ferris – 1960’s
  • 28. Roll-Front in Pit Wall From Wyoming Mining Association Website - http://www.wma-minelife.com/uranium/mining/rllfrnt1.html 28
  • 29. Roll-Fronts in Outcrop Photo from Bill Boberg Collection 29