SlideShare a Scribd company logo
1 of 1
Download to read offline
A Pre-coded Generalized Frequency Division Multiplexing System
0453/KOL/2015 dated April 24, 2015
Novel / Special Features
• Special properties of modulation
matrices are exploited to get Block
IDFT pre-coding
• Pre-coding helps in combating
wireless channel
• Pre-coding reduces Peak power
to average power ratio
significantly
Abstract of invention
The present invention relates to Generalized Frequency
Division Multiplexing (GFDM). In particular, the present
invention is directed to develop a pre-coded generalized
frequency division multiplexing system based on properties of
modulation matrix of three advanced pre-coding schemes
namely Block Inverse Discrete Fourier Transform (BIDFT),
Discrete Fourier Transform (DFT) and Singular Value
Decomposition (SVD). Block inverse discrete Fourier transform
(BIDFT) and discrete Fourier transform (DFT)-based pre-coding
schemes are found to outperform conventional GFDM receiver
due to frequency diversity gain while having complexity similar
to zero forcing receiver of GFDM. Both BIDFT- and DFT-based
pre-coding schemes reduce peak-to-average power ratio
significantly.
Suvra Sekhar Das
Assistant Professor
GSSST, IIT Kharagpur
Shashank Tiwari
Doctoral Student
GSSST, IIT Kharagpur
QAM
Modu
lated
Data
Possible End Users
• 5G Applications
• Machine Type
Communication
• Very low latency
Applications
• Cognitive Radio

More Related Content

What's hot

5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System
5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System
5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical SystemINFOGAIN PUBLICATION
 
2a transmission media
2a transmission  media2a transmission  media
2a transmission mediakavish dani
 
Ber performance of ofdm with discrete wavelet transform for time dispersive c...
Ber performance of ofdm with discrete wavelet transform for time dispersive c...Ber performance of ofdm with discrete wavelet transform for time dispersive c...
Ber performance of ofdm with discrete wavelet transform for time dispersive c...eSAT Publishing House
 
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSKSimulation Study and Performance Comparison of OFDM System with QPSK and BPSK
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSKpaperpublications3
 
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...CSCJournals
 
Chapter 5(Cellular Concepts)
Chapter 5(Cellular Concepts)Chapter 5(Cellular Concepts)
Chapter 5(Cellular Concepts)Nusrat Sharmin
 
Transmission modes & medias networking
Transmission modes & medias networkingTransmission modes & medias networking
Transmission modes & medias networkingVINOTHINI DURAIRAJ
 
Data transmission medium
Data transmission medium Data transmission medium
Data transmission medium Vishal Kumar
 
Optical power debugging in dwdm system having fixed gain amplifiers
Optical power debugging in dwdm system having fixed gain amplifiersOptical power debugging in dwdm system having fixed gain amplifiers
Optical power debugging in dwdm system having fixed gain amplifierseSAT Journals
 
Optical add drop multiplexer in Optical Fiber Communication
Optical add drop multiplexer in Optical Fiber CommunicationOptical add drop multiplexer in Optical Fiber Communication
Optical add drop multiplexer in Optical Fiber CommunicationTanvir Amin
 
cell splitting and sectoring
cell splitting and sectoringcell splitting and sectoring
cell splitting and sectoringShwetanshu Gupta
 
PAPR Reduction in OFDM using Active and Non-Active Channels
PAPR Reduction in OFDM using Active and Non-Active ChannelsPAPR Reduction in OFDM using Active and Non-Active Channels
PAPR Reduction in OFDM using Active and Non-Active ChannelsIOSR Journals
 
IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...
IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...
IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...IRJET Journal
 

What's hot (20)

5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System
5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System
5 Simulation of Gain flattening 32 channels EDFA-DWDM Optical System
 
2a transmission media
2a transmission  media2a transmission  media
2a transmission media
 
Ber performance of ofdm with discrete wavelet transform for time dispersive c...
Ber performance of ofdm with discrete wavelet transform for time dispersive c...Ber performance of ofdm with discrete wavelet transform for time dispersive c...
Ber performance of ofdm with discrete wavelet transform for time dispersive c...
 
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSKSimulation Study and Performance Comparison of OFDM System with QPSK and BPSK
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK
 
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
 
B04730912
B04730912B04730912
B04730912
 
abcd
abcdabcd
abcd
 
Frp Ccc
Frp CccFrp Ccc
Frp Ccc
 
Introduction to WDM and TDM
 Introduction to WDM and TDM Introduction to WDM and TDM
Introduction to WDM and TDM
 
Chapter 5(Cellular Concepts)
Chapter 5(Cellular Concepts)Chapter 5(Cellular Concepts)
Chapter 5(Cellular Concepts)
 
Transmission modes & medias networking
Transmission modes & medias networkingTransmission modes & medias networking
Transmission modes & medias networking
 
Data transmission medium
Data transmission medium Data transmission medium
Data transmission medium
 
Optical power debugging in dwdm system having fixed gain amplifiers
Optical power debugging in dwdm system having fixed gain amplifiersOptical power debugging in dwdm system having fixed gain amplifiers
Optical power debugging in dwdm system having fixed gain amplifiers
 
Optical add drop multiplexer in Optical Fiber Communication
Optical add drop multiplexer in Optical Fiber CommunicationOptical add drop multiplexer in Optical Fiber Communication
Optical add drop multiplexer in Optical Fiber Communication
 
cell splitting and sectoring
cell splitting and sectoringcell splitting and sectoring
cell splitting and sectoring
 
PAPR Reduction in OFDM using Active and Non-Active Channels
PAPR Reduction in OFDM using Active and Non-Active ChannelsPAPR Reduction in OFDM using Active and Non-Active Channels
PAPR Reduction in OFDM using Active and Non-Active Channels
 
Transmission media
Transmission mediaTransmission media
Transmission media
 
PPT
PPTPPT
PPT
 
Optical multiplexers
Optical multiplexersOptical multiplexers
Optical multiplexers
 
IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...
IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...
IRJET- Microstrip Coupled Band Pass Filter for the Application in Communicati...
 

Similar to A Pre-coded Generalized Frequency Division Multiplexing System

Wireless Communication fundamentals and 4G Technology
Wireless Communication fundamentals and 4G TechnologyWireless Communication fundamentals and 4G Technology
Wireless Communication fundamentals and 4G TechnologyKiranShanbhag9
 
Orthogonal Frequency Division Multiplexing (Ofdm)
Orthogonal Frequency Division Multiplexing (Ofdm)Orthogonal Frequency Division Multiplexing (Ofdm)
Orthogonal Frequency Division Multiplexing (Ofdm)shoayb mohammed
 
Lte presentation at und
Lte presentation at undLte presentation at und
Lte presentation at undZahirul Islam
 
Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...
Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...
Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...IJTET Journal
 
DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...
DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...
DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...ijwmn
 
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...GauravBhartie
 
Introduction to ofdm
Introduction to ofdmIntroduction to ofdm
Introduction to ofdmaftab alam
 
FDM,OFDM,OFDMA,MIMO
FDM,OFDM,OFDMA,MIMOFDM,OFDM,OFDMA,MIMO
FDM,OFDM,OFDMA,MIMONadeem Rana
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Opticl CoM 6.pptx
Opticl CoM 6.pptxOpticl CoM 6.pptx
Opticl CoM 6.pptxChinnuJose3
 
A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...
A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...
A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...IRJET Journal
 
LTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleLTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleMd Mustafizur Rahman
 
AinaBpresentation29122020_bh 06012021.pptx
AinaBpresentation29122020_bh 06012021.pptxAinaBpresentation29122020_bh 06012021.pptx
AinaBpresentation29122020_bh 06012021.pptxYosraBOUCHOUCHA2
 
FPGA Based Power Efficient Chanalizer For Software Defined Radio
FPGA Based Power Efficient Chanalizer For Software Defined RadioFPGA Based Power Efficient Chanalizer For Software Defined Radio
FPGA Based Power Efficient Chanalizer For Software Defined RadioIJMER
 
DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...
DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...
DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...cscpconf
 

Similar to A Pre-coded Generalized Frequency Division Multiplexing System (20)

Tdd Versus Fdd
Tdd Versus FddTdd Versus Fdd
Tdd Versus Fdd
 
Wireless Communication fundamentals and 4G Technology
Wireless Communication fundamentals and 4G TechnologyWireless Communication fundamentals and 4G Technology
Wireless Communication fundamentals and 4G Technology
 
Ofdm
OfdmOfdm
Ofdm
 
Orthogonal Frequency Division Multiplexing (Ofdm)
Orthogonal Frequency Division Multiplexing (Ofdm)Orthogonal Frequency Division Multiplexing (Ofdm)
Orthogonal Frequency Division Multiplexing (Ofdm)
 
WCN U5.pptx
WCN U5.pptxWCN U5.pptx
WCN U5.pptx
 
Lte presentation at und
Lte presentation at undLte presentation at und
Lte presentation at und
 
Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...
Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...
Efficient Design of Higher Order Variable Digital Filter for Multi Modulated ...
 
LTE Uplink Power Control
LTE Uplink Power ControlLTE Uplink Power Control
LTE Uplink Power Control
 
DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...
DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...
DYNAMIC OPTIMIZATION OF OVERLAP-AND-ADD LENGTH OVER MIMO MBOFDM SYSTEM BASED ...
 
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
 
Introduction to ofdm
Introduction to ofdmIntroduction to ofdm
Introduction to ofdm
 
FDM,OFDM,OFDMA,MIMO
FDM,OFDM,OFDMA,MIMOFDM,OFDM,OFDMA,MIMO
FDM,OFDM,OFDMA,MIMO
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Opticl CoM 6.pptx
Opticl CoM 6.pptxOpticl CoM 6.pptx
Opticl CoM 6.pptx
 
ofdm
ofdmofdm
ofdm
 
A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...
A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...
A Comparison on Different Techniques for PAPR and BER Reduction in OFDM Commu...
 
LTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleLTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic Principle
 
AinaBpresentation29122020_bh 06012021.pptx
AinaBpresentation29122020_bh 06012021.pptxAinaBpresentation29122020_bh 06012021.pptx
AinaBpresentation29122020_bh 06012021.pptx
 
FPGA Based Power Efficient Chanalizer For Software Defined Radio
FPGA Based Power Efficient Chanalizer For Software Defined RadioFPGA Based Power Efficient Chanalizer For Software Defined Radio
FPGA Based Power Efficient Chanalizer For Software Defined Radio
 
DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...
DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...
DYNAMIC OPTIMIZATION OF OVERLAPAND- ADD LENGTH OVER MBOFDM SYSTEM BASED ON SN...
 

A Pre-coded Generalized Frequency Division Multiplexing System

  • 1. A Pre-coded Generalized Frequency Division Multiplexing System 0453/KOL/2015 dated April 24, 2015 Novel / Special Features • Special properties of modulation matrices are exploited to get Block IDFT pre-coding • Pre-coding helps in combating wireless channel • Pre-coding reduces Peak power to average power ratio significantly Abstract of invention The present invention relates to Generalized Frequency Division Multiplexing (GFDM). In particular, the present invention is directed to develop a pre-coded generalized frequency division multiplexing system based on properties of modulation matrix of three advanced pre-coding schemes namely Block Inverse Discrete Fourier Transform (BIDFT), Discrete Fourier Transform (DFT) and Singular Value Decomposition (SVD). Block inverse discrete Fourier transform (BIDFT) and discrete Fourier transform (DFT)-based pre-coding schemes are found to outperform conventional GFDM receiver due to frequency diversity gain while having complexity similar to zero forcing receiver of GFDM. Both BIDFT- and DFT-based pre-coding schemes reduce peak-to-average power ratio significantly. Suvra Sekhar Das Assistant Professor GSSST, IIT Kharagpur Shashank Tiwari Doctoral Student GSSST, IIT Kharagpur QAM Modu lated Data Possible End Users • 5G Applications • Machine Type Communication • Very low latency Applications • Cognitive Radio