SlideShare a Scribd company logo
1 of 54
Download to read offline
CE 336- FOUNDATION ENGINEERING
SPRING 2021
28.04.21
Deep Foundations
Example 1:
A 400 mm square prestressed concrete pile is to be
driven 19 m into the soil profile shown in the figure.
a) Compute the net load transferred to the ground
through toe bearing
b) Compute the nominal side friction capacity
c) Compute the ASD downward load capacity using a
factor of safety of 2.8.
Solution 1:
𝐸 = 𝛽0 𝑂𝐢𝑅 + 𝛽1𝑁60
𝐸 = 5000 1 + 1200 βˆ— 25 = 35000π‘˜π‘ƒπ‘Ž
πΌπ‘Ÿ =
35000
2 1 + 0.3 βˆ— 188 βˆ— π‘‘π‘Žπ‘›36Β°
= 99
πœŽβ€²π‘§π· = 17.8 βˆ— 3 + 18.2 βˆ’ 9.81 βˆ— 16 =188kPa
According to the figures,
𝑁𝛾
βˆ— = 15; π‘π‘ž
βˆ— = 76
(a)
* *
' '
t ZD
q B N N
 
 
ο€½ ο€ͺ ο€ͺ  ο€ͺ
   
35000
114
2 1 ' tan ' 2 1 0.30 163 tan36
s
r
zD
E
I
v  
ο€½ ο€½ ο€½
ο€ͺ  ο€ͺ ο€ͺ ο‚΄  ο‚΄ ο‚΄ ο‚°
Solution 1:
π‘žβ€²π‘› = 𝐡𝛾𝑁𝛾
βˆ— + πœŽβ€²π‘§π·π‘π‘ž
βˆ—
π‘žβ€²π‘› = 0.4 βˆ— 18.2 βˆ’ 9.8 βˆ— 15 + 188 βˆ— 76 = 14338π‘˜π‘ƒπ‘Ž
π‘žβ€²π‘›π΄π‘‘ = 14338 βˆ— 0.42 = 2294π‘˜π‘
(b)
Solution 1:
𝐾0 = 1 βˆ’ π‘ π‘–π‘›πœ‘β€² π‘‚πΆπ‘…π‘ π‘–π‘›πœ‘β€²
𝐾0 = 1 βˆ’ 𝑠𝑖𝑛36 (1) 𝑠𝑖𝑛36
π‘‘π‘œ 1 βˆ’ 𝑠𝑖𝑛36 (4) 𝑠𝑖𝑛36
𝐾0 = 0.41 π‘‘π‘œ 0.93
𝛽 = 𝐾0
𝐾
𝐾0
π‘‘π‘Žπ‘› πœ‘β€²
πœ‘π‘“
πœ‘β€²
𝛽 = 0.41 βˆ— 1.2 βˆ— tan 36 βˆ— 0.8 π‘‘π‘œ 0.93 βˆ— 1.2 βˆ— tan 36 βˆ— 0.8 = 0.27 π‘‘π‘œ 0.61
(c) π‘ƒπ‘Ž =
π‘žβ€²π‘›π΄π‘‘ + Οƒ 𝑓𝑛𝐴𝑠
𝐹
=
2294 + 1272
2.8
= 1274 π‘˜π‘
Example 2:
A straight drilled shaft of diameter 1 m is
installed in a soil profile, as shown in the figure.
SPT were performed at intervals of
approximately 1 m below the base. Determine
the toe bearing capacity.
Solution 2:
Use average N60 value over a depth of 2D from the base or tip.
O’Neill and Reese (1999)
Example 3:
The drilled shaft shown is to be designed
without the benefit of any on-site static load
tests. The soil conditions are uniform and the
site characterization program was average.
Unit weights of soil layers above the water
table are 17kN/m3 and below are 20kN/m3.
Compute the allowable downward load
capacity.
Solution 3:
We assume that;
Silt sand above groundwater table Ι£ = 17 kN/m3
Silt sand below groundwater table Ι£ = 20 kN/m3
Sand above groundwater table Ι£ = 20 kN/m3
For Drilled Shaft
𝛽 = 1,5 βˆ’ 0,245 𝑧
𝑓𝑠 = 𝛽 βˆ— πœŽβ€²π‘§
Solution 3:
Layer z (m) Ξ² Οƒ'z (kPa) fs (kPa) As (m2
) Ps (kN)
Silty sand above GWT 1 1.26 17.0 21.34 3.77 80.43
Silty sand below GWT 2.75 1.09 41.6 45.54 2.83 128.78
Sand below GWT (3.5m-9m) 6.25 0.89 77.3 68.61 10.37 711.30
Sand below GWT (9m-14m) 11.5 0.67 130.8 87.53 9.42 824.95
Total 1745.46
60
' 57.5* 57.5 22 1265
t
q N kPa
ο€½ ο€½ ο‚΄ ο€½
 
2
2
0.6
0.283
4
t
m
A m
 ο‚΄
ο€½ ο€½
  2
' 1265 0.283 1745
701
3
t t s s
a
q A f A kPa m kN
P kN
FS
ο€ͺ  ο€ͺ ο‚΄ 
ο€½ ο€½ ο€½
οƒ₯
(For drilled shaft)
Example 4:
A concrete pile 40 cm in diameter and 10 m long is driven into a homogenous mass of clayey soil of medium
consistency. The water table is at the ground surface.The undrained shear strength is 80 kPa and the
adhesion factor Ξ± = 0.75. Compute the ultimate load bearing capacity.
Solution 4:
Example 5:
It is designed that the steel pile having a
diameter 40cm given in the figure below has
to have an allowable bearing capacity which
should be maximum 490 kN. Calculate the
length of the pile by considering the factor of
safety as 3.
Solution 5:
𝑄𝑒𝑙𝑑 = 𝑄𝑝 + 𝑄𝑠
𝑄𝑝 = 9 βˆ— 𝑐𝑒 βˆ— 𝐴𝑝 = 9 βˆ— 125 βˆ—
0.42 βˆ— πœ‹
4
= 141.4 π‘˜π‘
𝑄𝑠 = ෍ 𝑐𝑒 βˆ— 𝛼 βˆ— 𝑝 βˆ— βˆ†π‘™
According to Randolph and Murphy (1985),
πœŽβ€²π‘§π· 1 = 3 βˆ— 17 = 51π‘˜π‘ƒπ‘Ž β†’
𝑐𝑒
πœŽβ€²
𝑧𝐷 1
=
50
51
β‰ˆ 1 β†’ 𝛼1 β‰ˆ 0.5 (𝑏𝑙𝑒𝑒)
πœŽβ€²π‘§π· 2 = 6 βˆ— 17 + 2 βˆ— 19 βˆ’ 9.8 = 120.4π‘˜π‘ƒπ‘Ž β†’
𝑐𝑒
πœŽβ€²
𝑧𝐷 2
=
50
120.4
β‰ˆ 0.41 β†’ 𝛼2 β‰ˆ 0.78 (π‘Ÿπ‘’π‘‘)
Solution 5:
For safety, 𝐿 can be assumed zero while determining the lowest possible value of 𝛼3
𝑝 = πœ‹ βˆ— 0.4 = 1.26 π‘š
𝑄𝑠 = 50 βˆ— 0.5 βˆ— 6 + 50 βˆ— 0.78 βˆ— 4 + 125 βˆ— 0.52 βˆ— L βˆ— 1.26 = 385.56 + 81.9𝐿
πœŽβ€²π‘§π· 3 = 6 βˆ— 17 + 4 βˆ— 19 βˆ’ 9.8 +
𝐿
2
βˆ— 19.5 βˆ’ 9.8 = 138.8 + 4.85𝐿
β†’
𝑐𝑒
πœŽβ€²
𝑧𝐷 2
=
125
138.8
β‰ˆ 0.9 β†’ 𝛼3 β‰ˆ 0.52 (π‘”π‘Ÿπ‘’π‘’π‘›)
π‘„π‘Žπ‘™π‘™ = 500π‘˜π‘ β†’ 𝑄𝑒𝑙𝑑 = 1500π‘˜π‘ β†’ 141.4 + 385.56 + 81.9𝐿 = 1500 β†’ 𝐿 = 11.2 π‘š
𝑃𝑖𝑙𝑒 π‘™π‘’π‘›π‘”π‘‘β„Ž = 6 + 4 + 11.2 = 21.2 β‰ˆ 22π‘š
Example 6:
The load-settlement data shown in the figure were
obtained from a full-scale static load test on a 400mm
square, 17m long concrete pile (fΒ΄c=40MPa). Use
Davisson’s method to compute the ultimate
downward load capacity.
Solution 6:
Interpratation of static load tests
Solution 6:
𝐸 = 4700 𝑓′𝑐 = 4700 40 π‘€π‘ƒπ‘Ž = 30000 π‘€π‘ƒπ‘Ž
4π‘šπ‘š +
𝐡
120
+
𝑃𝐷
𝐴𝐸
= 4π‘šπ‘š +
40π‘šπ‘š
120
+
𝑃 17000π‘šπ‘š
0.42 βˆ— 30000000π‘˜π‘ƒπ‘Ž
= 7.3π‘šπ‘š + 0.0035𝑃
𝑃𝑒𝑙𝑑 = 1650π‘˜π‘
Example 7:
Given that n1 = 4, n2 = 3, D = 305 mm, d = 1220 mm,
and L = 15 m. The piles are square in cross section
and embedded in a homogenous clay with Ι£ = 15.5
kN/m3 and cu = 70 kN/m2. Using a factor of safety
equal to 4, determine the allowable load bearing
capacity of the group pile.
Solution 7:
Determine the ultimate capacity assuming that the piles in the group act as individual piles.
σ′𝑧 = Ι£ Γ— ΰ΅—
𝐿
2 = 15.5 Γ— ΰ΅—
15
2 = 116.25π‘˜π‘ƒπ‘Ž
The average value for Ξ€
𝑐𝑒
σ′𝑧 = Ξ€
70
116.25 = 0.6
 
 
 
1 2
1 2
9
9
u p s
p p u
s u
u p u u
Q n n Q Q
Q A c
Q pc L
Q n n A c pc L


ο€½ 
ο€½
ο€½ 
ο€½  
οƒ₯
οƒ₯
οƒ₯ οƒ₯
  
  
2
0.305 0.305 0.093 m
4 0.305 1.22 m
p
A
p
ο€½ ο€½
ο€½ ο€½
from figure for 70 kPa, 0.63
u
c 
ο€½ ο€½
           
 
4 3 9 0.093 70 0.63 1.22 70 15
12 58.59 807.03 10387 kN
ult
Q ο€½ 
 οƒΉ
 
ο€½  ο‚»
οƒ₯
Solution 7:
Determine the ultimate capacity assuming that the piles in the group act as a block with dimensions
Lg x Bg x L.
 
 
   
* *
*
Skin resistance of the block:
2
Point bearing capacity :
Thus the ultimate load is equal to:
2
g u g g u
p p p u c g g u c
ult g g u c g g u
p c L L B c L
A Q A c N L B c N
Q L B c N L B c L
 ο€½  
ο€½ ο€½
ο€½   
οƒ₯ οƒ₯
οƒ₯ οƒ₯
      
      
1
2
*
1 2 4 1 1.22 0.305 3.965 m
2
1 2 3 1 1.22 0.305 2.745 m
2
15 3.965
5.46 and 1.44
2.745 2.745
From figure, 8.6
g
g
g
g g
c
D
L n d
D
B n d
L
L
B B
N
 οƒΆ
ο€½ ο€­  ο€½ ο€­  ο€½
 οƒ·
 οƒΈ
 οƒΆ
ο€½ ο€­  ο€½ ο€­  ο€½
 οƒ·
 οƒΈ
ο€½ ο€½ ο€½ ο€½
ο€½
Solution 7:
        
Block capacity 3.965 2.745 70 8.6 2 3.965 2.745 70 15
6552 14091 20643 kN
ο€½  
ο€½  ο€½
 
 
 
10387 kN 20643 kN
10387
2597 kN
4
g ult
g ult
g all
Q
Q
Q
FS
ο€½ ο€Ό
ο€½ ο€½ ο‚»
Example 8:
A group pile in clay is shown in the figure on
the right. Determine the consolidation
settlement of the pile groups.
Assume that all the clay layers are normally
consolidated.
Solution 8:
Because the lengths of the piles are 15 m each, the stress distribution starts at a depth of 10 m below
the top of the pile.
Settlement of Layer I
0(1) (1)
1
(1)
0(1) 0(1)
' '
log
1 '
c
c
C H
e
 


 οƒΆ  οƒΆ
 
ο€½  οƒ·  οƒ·
 οƒ·  οƒ·

 οƒΈ  οƒΈ
     
(1)
1 1
2000
' 51.6
3.3 3.5 2.2 3.5
g g
Q
kPa
L z B z

 ο€½ ο€½ ο€½
 
 
 
0(1)
' 2 16.2 12.5 18 9.81 134.8kPa
 ο€½ ο‚΄  ο‚΄ ο€­ ο€½
(1)
0.3 7 134.8 51.6
log 162.4
1 0.82 134.8
c mm

ο‚΄ 
 οƒΆ  οƒΆ
ο€½ ο€½
 οƒ·  οƒ·

 οƒΈ  οƒΈ
Solution 8:
Settlement of Layer II
0(2) (2)
2
(2)
0(2) 0(2)
' '
log
1 '
c
c
C H
e
 


 οƒΆ  οƒΆ
 
ο€½  οƒ·  οƒ·
 οƒ·  οƒ·

 οƒΈ  οƒΈ
     
(2)
2 2
2000
' 14.52
3.3 9 2.2 9
g g
Q
kPa
L z B z

 ο€½ ο€½ ο€½
 
 
 
0(2)
' 2 16.2 16 18 9.81 181.62kPa
 ο€½ ο‚΄  ο‚΄ ο€­ ο€½
(2)
0.2 4 181.62 14.52
log 15.7
1 0.7 181.62
c mm

ο‚΄ 
 οƒΆ  οƒΆ
ο€½ ο€½
 οƒ·  οƒ·

 οƒΈ  οƒΈ
Solution 8:
Settlement of Layer III
0(3) (3)
3
(3)
0(3) 0(3)
' '
log
1 '
c
c
C H
e
 


 οƒΆ  οƒΆ
 
ο€½  οƒ·  οƒ·
 οƒ·  οƒ·

 οƒΈ  οƒΈ
     
(3)
3 3
2000
' 9.2
3.3 12 2.2 12
g g
Q
kPa
L z B z

 ο€½ ο€½ ο€½
 
 
 
0(3)
' 2 16.2 19 18 9.81 208.99kPa
 ο€½ ο‚΄  ο‚΄ ο€­ ο€½
(3)
0.25 2 208.99 9.2
log 5.4
1 0.75 208.99
c mm

ο‚΄ 
 οƒΆ  οƒΆ
ο€½ ο€½
 οƒ·  οƒ·

 οƒΈ  οƒΈ
Total settlement
( ) (1) (2) (3) 162.4 15.7 5.4 183.5
c T c c c mm
   
ο€½   ο€½   ο€½
-Ultimate (fully mobilized) load capacity
Deep Foundations-Pile Load Transfer Mechanism
𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š = π‘ β„Žπ‘Žπ‘“π‘‘ π‘ π‘˜π‘–π‘› π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ + 𝑑𝑖𝑝 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ βˆ’ π‘Šπ‘π‘–π‘™π‘’
𝑅 = 𝑄𝑒𝑙𝑑 = 𝑄𝑠 + 𝑄𝑏 βˆ’ π‘Š
𝑝
Buoyancy effect
should be taken
into account
-Ultimate (fully mobilized) load capacity
Deep Foundations-Pile Load Transfer Mechanism
𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š
=
π‘ π‘˜π‘–π‘› π‘ β„Žπ‘Žπ‘“π‘‘ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
+
𝑑𝑖𝑝 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
Friction pile
(clayey soil, adhesion)
End bearing pile
(rock formation)
𝑅 = 𝑄𝑒𝑙𝑑 = 𝑄𝑠 + 𝑄𝑏 βˆ’ π‘Š
𝑝
End bearing pile
(granular soils)
>3 m
or
5B
-Ultimate (fully mobilized) load capacity
Deep Foundations-Pile Load Transfer Mechanism
𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š = π‘ π‘˜π‘–π‘› π‘ β„Žπ‘Žπ‘“π‘‘ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ + 𝑑𝑖𝑝 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘‘π‘’π‘“π‘œπ‘Ÿπ‘šπ‘Žπ‘‘π‘–π‘œπ‘›
to attain fully mobilised capacity
10 to 25% of the pile width
0.5 to 1% of the pile width
-Bearing resistance (Undrained condition, clayey soil, non-free draining)
Deep Foundations-Pile Axial Load Capacity
𝑄𝑏 = 𝐴𝑏 𝑠𝑐𝑁𝑐𝑐𝑒 + π‘π‘žΟƒβ€²π‘ž (π‘π‘œπ‘Ÿπ‘’π‘‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠)
Ab=cross-sectional area of the base of the pile
-Bearing resistance (Drained condition, granular soil, free draining)
𝑄𝑏 = 𝐴𝑏 π‘π‘žΟƒβ€²π‘ž (π‘π‘œπ‘Ÿπ‘’π‘‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠)
𝑠𝑐𝑁𝑐 = 9.0 π‘“π‘œπ‘Ÿ π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ π‘œπ‘Ÿ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ 𝑝𝑖𝑙𝑒
may be neglected (Nq=1)
Deep Foundations-Pile Axial Load Capacity
-Bearing resistance (Drained condition, granular soil, free draining)
𝑄𝑏 = 𝐴𝑏 π‘π‘žΟƒβ€²π‘ž
Ο† Nq
20.00 12.40
21.00 13.80
22.00 15.50
23.00 17.90
24.00 21.40
25.00 26.00
26.00 29.50
27.00 34.00
28.00 39.70
29.00 46.50
30.00 56.70
31.00 68.20
32.00 81.00
33.00 96.00
34.00 115.00
35.00 143.00
36.00 168.00
37.00 194.00
38.00 231.00
39.00 276.00
40.00 346.00
41.00 420.00
42.00 525.00
43.00 650.00
44.00 780.00
45.00 930.00
𝐷
𝐡
π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘π‘ 
𝐿𝑝𝑖𝑙𝑒
𝐡
π‘€π‘’π‘¦π‘’π‘Ÿβ„Žπ‘œπ‘“
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Undrained condition, clayey soil, non-free draining)
 Ξ±-method (π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠)
𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠
As= shaft area of the of the pile
Ξ±= adhesion factor and f(slenderness, shear strength)
πΉπ‘œπ‘Ÿ
𝑐𝑒
σ′𝑣0
≀ 1; Ξ± = 0.5Fp
𝑐𝑒
σ′𝑣0
βˆ’0.5
≀ 1
πΉπ‘œπ‘Ÿ
𝑐𝑒
σ′𝑣0
β‰₯ 1; Ξ± = 0.5Fp
𝑐𝑒
σ′𝑣0
βˆ’0.25
Fp = 1.0 if
𝐿𝑝
𝐡
≀ 50
= 0.7if
𝐿𝑝
𝐡
β‰₯ 120
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Undrained condition, clayey soil, non-free draining)
 Ξ±-method (π‘π‘œπ‘Ÿπ‘’π‘‘ 𝑝𝑖𝑙𝑒𝑠)
𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠
As= shaft area of the of the pile
Ξ±= adhesion factor and f(shear strength)
Ξ± = 1.0 π‘“π‘œπ‘Ÿ 𝑐𝑒 ≀ 30
Ξ± = 1. 16 βˆ’
𝑐𝑒
185
π‘“π‘œπ‘Ÿ 30 < 𝑐𝑒 ≀ 150
Ξ± = 0.35 π‘“π‘œπ‘Ÿ 𝑐𝑒 > 150
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Drained condition, granular soil, free draining)
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 (π‘π‘œπ‘Ÿπ‘’π‘‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠)
As= shaft area of the of the pile
Ks= coefficient of horizontal soil stress
Ξ΄'= the angle of friction b/w pile and soil
Ξ΄β€² = Ο• = 0.75Ο•β€²
𝐾0 = 1 βˆ’ 𝑠𝑖𝑛ϕ′
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Drained condition, granular soil, free draining)
𝑄𝑠 = βσ′𝑣0𝐴𝑠
Ξ²=0.18+0.65Dr
Dr=relative density in decimal form
 Ξ²-method (π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠)
𝑄𝑠 = βσ′𝑣0𝐴𝑠
Ξ²=1.5-0.245 𝑧
z= depth to the mid-layer (m)
 Ξ²-method (π‘π‘œπ‘Ÿπ‘’π‘‘ 𝑝𝑖𝑙𝑒𝑠)
Ex1: A bridge pier is to be supported by 1.0 π‘š diameter driven-cast in place concrete
piles. The design load per pile is determined as 700 π‘˜π‘ by the structural engineer.
Calculate the total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand Ξ³=17 kN/m3 Ο•'=36˚
Clay Ξ³=20 kN/m3 cu=100 kPa
σ𝑣0 (π‘˜π‘ƒπ‘Ž) 𝑒 (π‘˜π‘ƒπ‘Ž) σ′𝑣0 (π‘˜π‘ƒπ‘Ž)
51
102
102 + 20β„Žπ‘π‘™π‘Žπ‘¦ 10β„Žπ‘π‘™π‘Žπ‘¦
51
102
102 + 10β„Žπ‘π‘™π‘Žπ‘¦
Ex1: A bridge pier is to be supported by 1.0 π‘š diameter driven-cast in place concrete
piles. The design load per pile is determined as 700 π‘˜π‘ by the structural engineer.
Calculate the total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand Ξ³=17 kN/m3 Ο•'=36˚
Clay Ξ³=20 kN/m3 cu=100 kPa
β€’
𝐿𝑝
𝐡
β‰₯ 12, π‘‘β„Žπ‘’π‘  𝐿𝑝,π‘šπ‘–π‘› β‰₯ 12 π‘š
𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š 𝑄𝑒𝑙𝑑 = βˆ‘π‘„π‘  + 𝑄𝑏
β€’ πΉπ‘œπ‘Ÿ π‘ π‘Žπ‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠
𝐾𝑠 = 0.41 1.5 = 0.62 Ξ΄β€² = Ο• = 0.75 Ο•β€² = 27˚
𝐾0 = 1 βˆ’ 𝑠𝑖𝑛ϕ′ = 0.41
Ex1 (cont.)
Deep Foundations- Single Pile Capacity
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² (Ο€π·π‘™π‘ π‘Žπ‘›π‘‘)
σ′𝑣0 @𝑧=3π‘š = 3 17 = 51 kPa 𝑄𝑠,1 = 0.62 54 tan 27 Ο€ 1 6 = 303.7 π‘˜π‘
β€’ 𝑭𝒐𝒓 π’„π’π’‚π’š π’π’‚π’šπ’†π’“
𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 πΉπ‘œπ‘Ÿ
𝑐𝑒
σ′𝑣0
≀ 1; Ξ± = 0.5Fp
𝑐𝑒
σ′𝑣0
βˆ’0.5
≀ 1 Fp = 1.0 if
𝐿𝑝
𝐡
≀ 50
= 0.7if
𝐿𝑝
𝐡
β‰₯ 120
σ′𝑣0 @𝑧=6π‘š = 6 17 = 102 kPa
𝑐𝑒
σ′𝑣0
=
100
102
< 1 Ξ± = 0.5Fp
𝑐𝑒
σ′𝑣0
βˆ’0.5
= 0.5
100
102 + 20 βˆ’ 10 π‘™π‘π‘™π‘Žπ‘¦
βˆ’0.5
𝑄𝑏 = 𝐴𝑏 𝑠𝑐𝑁𝑐𝑐𝑒 = Ο€ 0.5 2 9 100 = 706.9 π‘˜π‘
𝐴𝑠 = π𝐡(2π‘™π‘π‘™π‘Žπ‘¦)
𝑄𝑠,2 = 0.5
100
102 + 10 π‘™π‘π‘™π‘Žπ‘¦
βˆ’0.5
100 Ο€(1)(2π‘™π‘π‘™π‘Žπ‘¦)
β€’ 𝑭𝒐𝒓 𝒔𝒂𝒏𝒅 π’π’‚π’šπ’†π’“
Sand Ξ³=17 kN/m3 Ο•'=36˚
Clay Ξ³=20 kN/m3 cu=100 kPa 2π‘™π‘π‘™π‘Žπ‘¦
Ex1 (cont.)
Deep Foundations- Single Pile Capacity
β€’ 𝑄𝑒𝑙𝑑 = 𝑄𝑠,1 + 𝑄𝑠,2 + 𝑄𝑏 βˆ’ π‘Š
𝑝
303.7 + 𝑄𝑠,2 + 706.9 = Ο€ 0.5 2
25 βˆ— 6 + 15 βˆ— 2π‘™π‘π‘™π‘Žπ‘¦ + 700(3) π‘‡π‘Ÿπ‘–π‘Žπ‘™ π‘Žπ‘›π‘‘ π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ
π‘œπ‘Ÿ π‘’π‘žπ‘› π‘ π‘œπ‘™π‘£π‘–π‘›π‘”
β€’ π‘„π‘Žπ‘™π‘™π‘œπ‘€ =
𝑄𝑠,1+𝑄𝑠,2+𝑄𝑏
𝐹𝑆
βˆ’ π‘Š
𝑝 = 700
1010.6 + 314.2
100
102 + 10 π‘™π‘π‘™π‘Žπ‘¦
βˆ’0.5
π‘™π‘π‘™π‘Žπ‘¦ = 117.8 + 23.6 π‘™π‘π‘™π‘Žπ‘¦ + 700(3)
1010.6 + 314.2
100
102 + 10 π‘™π‘π‘™π‘Žπ‘¦
βˆ’0.5
π‘™π‘π‘™π‘Žπ‘¦ = 2217.8 + 70.8π‘™π‘π‘™π‘Žπ‘¦
π‘™π‘šπ‘–π‘‘ π‘π‘™π‘Žπ‘¦ = 4 π‘š 𝐿𝑝 = 6 + 2 βˆ— 4 = πŸπŸ” π’Ž
Eqn is written
wrt. Midpoint
of clay layer
Ξ³π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’β€² = 25 βˆ’ 10
Ξ³π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ = 25 π‘˜π‘/π‘š3
π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘œπ‘“ π‘ π‘Žπ‘“π‘’π‘‘π‘¦
Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The
design load per pile is determined as 2000 π‘˜π‘ by the structural engineer. Calculate the
total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand Ξ³=17 kN/m3 Ο•'=28˚
Clay Ξ³=18 kN/m3 cu=30 kPa
σ𝑣0 (π‘˜π‘ƒπ‘Ž) 𝑒 (π‘˜π‘ƒπ‘Ž) σ′𝑣0 (π‘˜π‘ƒπ‘Ž)
51
102
210 60
Sand Ξ³=19 kN/m3 Ο•' =38˚
Clay Ξ³=18 kN/m3 cu=150 kPa
6 m
6 m
120
324
51
102
150
204
Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The
design load per pile is determined as 2000 π‘˜π‘ by the structural engineer. Calculate the
total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand Ξ³=17 kN/m3 Ο•'=28˚
Clay Ξ³=18 kN/m3 cu=30 kPa
σ𝑣0 (π‘˜π‘ƒπ‘Ž) 𝑒 (π‘˜π‘ƒπ‘Ž) σ′𝑣0 (π‘˜π‘ƒπ‘Ž)
51
102
210 60
Sand Ξ³=19 kN/m3 Ο•' =38˚
Clay Ξ³=18 kN/m3 cu=150 kPa
6 m
6 m
120
324
51
102
150
204
β€’ 𝐸𝐢7 σ𝑝𝑖𝑙𝑒 π‘π‘œπ‘šπ‘ =
𝑄𝑝𝑖𝑙𝑒
𝐴𝑏
≀
σ𝑐,π‘˜
4
σ𝑝𝑖𝑙𝑒 π‘π‘œπ‘šπ‘ ≀
30
4
= 7.5 π‘€π‘ƒπ‘Ž
𝑄𝑝𝑖𝑙𝑒
𝐴𝑏
=
2000000
𝐴𝑏
= 7.5 𝑃𝑖𝑙𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ β‡’ 𝐡 = 600π‘šπ‘š
Ex2 (cont.)
Deep Foundations- Single Pile Capacity
6 m Sand Ξ³=17 kN/m3 Ο•'=28˚
Clay Ξ³=18 kN/m3 cu=30 kPa
Sand Ξ³=19 kN/m3 Ο•' =38˚
Clay Ξ³=18 kN/m3 cu=150 kPa
6 m
6 m
β€’ Embedment length>3 m or 5B= 3m
L=12+3=15 m
β€’
𝐿𝑝
𝐡
=
15
0.6
= 25 β‰₯ 12
<50
β€’ πΉπ‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘ π‘Žπ‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘‘π‘œπ‘
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠
Ο• = 0.75Ο•β€² = 21.8˚
𝐾0 = 1 βˆ’ 𝑠𝑖𝑛ϕ′
= 0.53 π‘Žπ‘›π‘‘ 𝐾𝑠 = 𝐾0 0.85 = 0.45
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 = 0.45 51 tan 21.8 Ο€(0.6)6 = 103.8 π‘˜π‘
β€’ 𝑄𝑒𝑙𝑑 = 𝑄𝑠,π‘ π‘Žπ‘›π‘‘1 + 𝑄𝑠,π‘π‘™π‘Žπ‘¦ + 𝑄𝑠,π‘ π‘Žπ‘›π‘‘2 + 𝑄𝑏 βˆ’ π‘Š
𝑝
Ex2 (cont.)
Deep Foundations- Single Pile Capacity
6 m Sand Ξ³=17 kN/m3 Ο•'=28˚
Clay Ξ³=18 kN/m3 cu=30 kPa
Sand Ξ³=19 kN/m3 Ο•' =38˚
Clay Ξ³=18 kN/m3 cu=150 kPa
6 m
6 m
L=15 m
β€’ 𝑄𝑒𝑙𝑑 = 𝑄𝑠,π‘ π‘Žπ‘›π‘‘1 + 𝑄𝑠,π‘π‘™π‘Žπ‘¦ + 𝑄𝑠,π‘ π‘Žπ‘›π‘‘2 + 𝑄𝑏 βˆ’ π‘Š
𝑝
𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 Ξ± = 1.0 π‘“π‘œπ‘Ÿ 𝑐𝑒 ≀ 30
𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 = 1 30 Ο€ 0.6 6 = 339.3 π‘˜π‘
β€’ For clay layer
β€’ πΉπ‘œπ‘Ÿ π‘ π‘Žπ‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘π‘œπ‘‘π‘‘π‘œπ‘š
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠
𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 = 0.33 163.5 tan 28.5 Ο€ 0.6 3 = 165.7 π‘˜π‘
𝑄𝑏 = 𝐴𝑏 π‘π‘žΟƒβ€²π‘ž = Ο€0.32
120 177 = 6005.5 kN
β€’ π‘Š
𝑝 = Ο€ 0.3 2 6 25 + 9 15 = 80.6 π‘˜π‘
𝑄𝑒𝑙𝑑 = 103.8 + 339.3 + 165.7 + 6005.5 βˆ’ 80.6 = 6533.7 π‘˜π‘
π‘„π‘Žπ‘™π‘™ =
βˆ‘π‘„π‘  + 𝑄𝑏
3
βˆ’ π‘Š
𝑝 = 2124.2 β‰₯ 2000 π‘˜π‘
120
Ξ³π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’β€² = 25 βˆ’ 10
-Load vs settlement: Load controlled test, to obtain ultimate load
 Load increment= 25% of working load
 Ultimate load= 200% of working load
Deep Foundations- Pile Load Test (Davisson Approach)
1) Clayey soil
2) Granular soil
Total
settlement
Elastic
settlement
Net settlement=Total settlement- pile elastic settlement
δ𝑝𝑖𝑙𝑒 π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ =
(𝑄𝑀𝑝+0.6𝑄𝑀𝑠)𝐿𝑝
𝐴𝑏𝐸𝑝𝑖𝑙𝑒
𝑄𝑀𝑝 = π‘€π‘œπ‘Ÿπ‘˜π‘–π‘›π‘” π‘™π‘œπ‘Žπ‘‘
𝑄𝑀𝑠 = π‘ β„Žπ‘Žπ‘“π‘‘ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘–π‘›π‘” π‘™π‘œπ‘Žπ‘‘ @π‘€π‘œπ‘Ÿπ‘˜π‘–π‘›π‘”
-Load vs settlement
 Use net settlement values
Deep Foundations- Pile Axial Load Test
δ𝑒𝑙𝑑 = 0.012 π΅π‘Ÿπ‘’π‘“ + 0.1
𝐡
π΅π‘Ÿπ‘’π‘“
+
𝑄𝑒𝐿𝑝
𝐴𝑏𝐸𝑝
K M
K
M
Net settlement (mm)
𝑄𝑒𝑙𝑑 = π‘ˆπ‘™π‘‘π‘–π‘šπ‘Žπ‘‘π‘’ π‘™π‘œπ‘Žπ‘‘ (π‘˜π‘)
𝐡 = 𝑃𝑖𝑙𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ (π‘šπ‘š)
π΅π‘Ÿπ‘’π‘“ = π‘…π‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ 𝑝𝑖𝑙𝑒 π‘€π‘–π‘‘π‘‘β„Ž π‘šπ‘š
= 300 mm
𝐿𝑝 = 𝑃𝑖𝑙𝑒 π‘™π‘’π‘›π‘”π‘‘β„Ž (π‘šπ‘š)
𝐴𝑏 = 𝐸𝑛𝑑 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Žπ‘Ÿπ‘’π‘Ž π‘šπ‘š2
𝐸𝑝 = 𝑃𝑖𝑙𝑒 π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  (πΊπ‘ƒπ‘Ž)
δ𝑒𝑙𝑑
𝑄𝑒𝑙𝑑
-Ex3: Lp= 20 m, BxB=406x406 mm, Ep=30 GPa (C30 concrete), Qult ?
Deep Foundations- Pile Axial Load Test
δ𝑒𝑙𝑑 = 0.012 π΅π‘Ÿπ‘’π‘“ + 0.1
𝐡
π΅π‘Ÿπ‘’π‘“
+
𝑄𝑒𝐿𝑝
𝐴𝑏𝐸𝑝
K=3.735
Net settlement (mm)
δ𝑒𝑙𝑑 = 0.012 300 + 0.1
406
300
+
𝑄𝑒20000
(406)(406)(30)
𝑄𝑒𝑙𝑑 = 1460 π‘˜π‘
-Downdrag force acting on pile: force exerted by settling soil on pile (Ξ΄soil> Ξ΄pile)
Deep Foundations- Negative Skin Friction
 Placement of fill (granular) settlement of the fill by selfweight
additional consolidation of soft clayey layers beneath fill
 Lowering of GWT Οƒ' and settlement increases
additional
settlement
for the pile
-Downdrag force acting on pile
Deep Foundations- Negative Skin Friction
β€’ 𝑄𝑝 = 𝑃0 + 𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘”
π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 0.25 σ′𝑣(Ο€π΅π‘™π‘π‘™π‘Žπ‘¦ π‘™π‘Žπ‘¦π‘’π‘Ÿ)
β€’ For clay layer upon consolidation
β€’ For sand layer upon settling
π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 𝐾0σ′𝑣 tan Ξ΄β€² (Ο€π΅π‘™π‘ π‘Žπ‘›π‘‘)
Ξ΄β€² = (0.6)Ο•β€²
Resistance
Load
Force
P0
Qb
𝐹𝑆 =
𝑄𝑠 + 𝑄𝑏
𝑃0 + 𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘”
β‰₯ 2.0
𝑄𝑠 + 𝑄𝑏
Ex2 (cont.): 2 m height of a very large fill (Ξ³=20 kN/m3) will be placed next to the pile
on the behalf of approach fill. Check whether adequate FS exists or not?
Deep Foundations- Negative Skin Friction
6 m Sand Ξ³=17 kN/m3 Ο•'=28˚
6 m
6 m
Clay Ξ³=18 kN/m3 cu=30 kPa
Sand Ξ³=19 kN/m3 Ο•' =38˚
Clay Ξ³=18 kN/m3 cu=150 kPa
β€’ 𝐹𝑆 =
𝑄𝑠+𝑄𝑝
𝑃0+𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘+π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘”
β‰₯ 2.0
𝐹𝑆 =
6614.3
2000 + 80.6 + π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘”
π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 0.25 σ′𝑣(Ο€π·π‘™π‘π‘™π‘Žπ‘¦ π‘™π‘Žπ‘¦π‘’π‘Ÿ)
σ′𝑣0 =
102 + 150
2
+ (2)(20) = 166 π‘˜π‘ƒπ‘Ž
Fill
π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 0.25 166 Ο€ 0.6 6 = 469 π‘˜π‘
𝐹𝑆 =
6614.3
2000 + 80.6 + 469
= 2.59
Piles working under tension:
Deep Foundations- Uplift Capacity
β€’ 𝐹𝑆 =
𝑄𝑠+𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘
π‘„π‘’π‘π‘€π‘Žπ‘Ÿπ‘‘
β‰₯ 3.0~6.0
 Ship building docks  Wind turbines, chimneys or any structures
exposed to lateral loads
-Group action: zone of soil or rock which is stressed by the entire group extends to a
much greater width and depth than the zone beneath the single pile. Spacing (s) between
adjacent piles should be increased (>5B)
Deep Foundations- Piles in Group
 (# of piles) x Qult (single pile) > Qult (group) under same displacement
 Even though loading tests made on a single pile have indicated satisfactory performance, failure or
excessive settlement may take place
Friction pile
(clayey soil, adhesion)
End bearing pile
(granular soils)
-Group capacity:
Deep Foundations- Piles in Group
Group Efficiency Approach
Qult, group = (Ξ·) x (# of piles) x Qult (single pile)
Ξ· (efficiency)=1βˆ’Οˆ
[ π‘š βˆ’ 1 𝑛 + 𝑛 βˆ’ 1 π‘š]
90(π‘š)(𝑛)
ψ in degrees = tanβˆ’1
𝐡
𝑠
B
B
B
B B
π‘š = π‘›π‘œ π‘œπ‘“ π‘Ÿπ‘œπ‘€π‘ 
𝑛 = π‘›π‘œ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›π‘ 
s = spacing b/w piles measured from center to center
-Group capacity:
Deep Foundations- Piles in Group
Terzaghi-Peck Block Approach
 shallow spread foundation
 Crucial for soil profiles consisting of soft clay layers (low cu values)
 𝑄𝑒𝑙𝑑 = βˆ‘π‘„π‘  + 𝑄𝑏
𝑄𝑠 = 2 πΏπ‘π‘™π‘œπ‘π‘˜ + π΅π‘π‘™π‘œπ‘π‘˜ βˆ‘π·π‘–Ξ±(𝑐𝑒) or 𝑄𝑠 = 2 πΏπ‘π‘™π‘œπ‘π‘˜ + π΅π‘π‘™π‘œπ‘π‘˜ βˆ‘π·π‘–πΎπ‘ Οƒβ€²π‘£0 tan Ξ΄β€²
clayey soil granular soil
𝑄𝑏 = (πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜) 𝑠𝑐𝑁𝑐𝑐𝑒 𝑄𝑏 = (πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜) π‘π‘žΟƒβ€²π‘žπ‘ π‘ž
clayey soil granular soil
𝐷 = 𝐿𝑝
-Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find
Qult, group? B=0.6 m
Deep Foundations- Piles in Group
πΊπ‘Ÿπ‘œπ‘’π‘ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž
s=1.8 m
β€’ 𝑄𝑒𝑙𝑑,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏
σ′𝑣0 (π‘˜π‘ƒπ‘Ž)
114
228
𝑄𝑏 = 𝐴𝑏 𝑠𝑐𝑁𝑐𝑐𝑒 = Ο€ 0.3 2 9 60 = 152.7 π‘˜π‘
𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 = 1.16 βˆ’
60
185
60 Ο€ 0.6 12 = 1134.2 π‘˜π‘ Ξ± = 1. 16 βˆ’
𝑐𝑒
185
π‘“π‘œπ‘Ÿ 30 < 𝑐𝑒 ≀ 150
Pile layout
s=1.8 m
-Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find
Qult, group? B=0.6 m
Deep Foundations- Piles in Group
Pile layout
s=1.8 m
β€’ Q𝑒𝑙𝑑,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏 = 152.7 + 1134.2 = 1286.9 π‘˜π‘
β€’ Qult, group = (Ξ·) x (# of piles) x Qult (single pile)
Ξ· (efficiency)=1βˆ’Οˆ
[ π‘š βˆ’ 1 𝑛 + 𝑛 βˆ’ 1 π‘š]
90(π‘š)(𝑛)
ψ in degrees = tanβˆ’1
𝐡
𝑠
= tanβˆ’1
0.6
1.8
= 18.4˚
Ξ· =1βˆ’18.4
[ 3 βˆ’ 1 4 + 4 βˆ’ 1 3]
90(4)(3)
= 0.71
π‘š = 3
𝑛 = 4
β€’ Qult, group = (0.71)(12)(1286.9)=10964.4 kN
s=1.8 m
-Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find
Qult, group? B=0.6 m
Deep Foundations- Piles in Group
Pile layout
s=1.8 m
s=1.8 m
Terzaghiβˆ’Peck Block π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž
𝑄𝑠 = 2 πΏπ‘π‘™π‘œπ‘π‘˜ + π΅π‘π‘™π‘œπ‘π‘˜ Ξ±(𝑐𝑒)
 𝑄𝑒𝑙𝑑,π‘π‘™π‘œπ‘π‘˜ = 𝑄𝑠 + 𝑄𝑏
𝑄𝑠 = 2[ 1.8 3 + 1.8 2 12 0.84 60 = 10886.4 kN
Ξ± = 1. 16 βˆ’
𝑐𝑒
185
π‘“π‘œπ‘Ÿ 30 < 𝑐𝑒 ≀ 150
𝑄𝑏 = πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜ 𝑠𝑐𝑁𝑐𝑐𝑒 = πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜ 9𝑐𝑒
𝑄𝑏 = 5.4 3.6 9 60 = 10497.6π‘˜π‘
 𝑄𝑒𝑙𝑑,π‘π‘™π‘œπ‘π‘˜ = 𝑄𝑠 + 𝑄𝑏 = 10886.4 + 10497.6 = 21384 π‘˜π‘
 𝑄𝑒𝑙𝑑,π‘π‘™π‘œπ‘π‘˜ = min πΊπ‘Ÿπ‘œπ‘’π‘ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž, π‘‡π‘’π‘Ÿπ‘§π‘Žπ‘”β„Žπ‘– βˆ’ π‘ƒπ‘’π‘π‘˜ π‘π‘™π‘œπ‘π‘˜ π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž = 10694.4 π‘˜π‘

More Related Content

What's hot

Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
Β 
Unit 2 shallow foundations Hand written notes
Unit 2  shallow foundations Hand written notesUnit 2  shallow foundations Hand written notes
Unit 2 shallow foundations Hand written notesPRASANTHI PETLURU
Β 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Make Mannan
Β 
Standard penetration test(spt)
Standard penetration test(spt)Standard penetration test(spt)
Standard penetration test(spt)KHK karimi
Β 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Mohammed Zakaria
Β 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
Β 
Lecture 3 foundation settlement
Lecture 3 foundation settlementLecture 3 foundation settlement
Lecture 3 foundation settlementDr.Abdulmannan Orabi
Β 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
Β 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
Β 
Bearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTBearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTLatif Hyder Wadho
Β 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
Β 
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.Sayed Sajid H.Zidani
Β 
shallow foundation, types and factor
shallow foundation, types and factorshallow foundation, types and factor
shallow foundation, types and factorSANJEEV Wazir
Β 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footingArun Kurali
Β 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test pptsayan sarkar
Β 
Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Make Mannan
Β 

What's hot (20)

Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Β 
Unit 2 shallow foundations Hand written notes
Unit 2  shallow foundations Hand written notesUnit 2  shallow foundations Hand written notes
Unit 2 shallow foundations Hand written notes
Β 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Β 
Standard penetration test(spt)
Standard penetration test(spt)Standard penetration test(spt)
Standard penetration test(spt)
Β 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)
Β 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Β 
Lecture 3 foundation settlement
Lecture 3 foundation settlementLecture 3 foundation settlement
Lecture 3 foundation settlement
Β 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Β 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Β 
Bearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTBearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPT
Β 
Pile settlement-ps
Pile settlement-psPile settlement-ps
Pile settlement-ps
Β 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
Β 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Β 
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
Β 
shallow foundation, types and factor
shallow foundation, types and factorshallow foundation, types and factor
shallow foundation, types and factor
Β 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
Β 
Unit6 svd
Unit6 svdUnit6 svd
Unit6 svd
Β 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test ppt
Β 
05 chapter 6 mat foundations
05 chapter 6 mat foundations05 chapter 6 mat foundations
05 chapter 6 mat foundations
Β 
Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...
Β 

Similar to Foundationeng deep-foundations_ps

Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Make Mannan
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soilLatif Hyder Wadho
Β 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stressMalika khalil
Β 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Make Mannan
Β 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Make Mannan
Β 
Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Bruno Reyes A.
Β 
Presentation
PresentationPresentation
PresentationAli Abuzant
Β 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidationMalika khalil
Β 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footingLatif Hyder Wadho
Β 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRobin Arthur Flores
Β 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831Miguel Ángel
Β 
2 compression
2  compression2  compression
2 compressionAhmed Gamal
Β 
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...Make Mannan
Β 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distributionMalika khalil
Β 
Pipe project daniel
Pipe project danielPipe project daniel
Pipe project danielDaniel Jalili
Β 
presentation_41.pptx
presentation_41.pptxpresentation_41.pptx
presentation_41.pptxShathaTaha2
Β 

Similar to Foundationeng deep-foundations_ps (20)

Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
Β 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stress
Β 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Β 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Β 
Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2
Β 
Presentation
PresentationPresentation
Presentation
Β 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
Β 
Ch.3-Examples 3.pdf
Ch.3-Examples 3.pdfCh.3-Examples 3.pdf
Ch.3-Examples 3.pdf
Β 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
Β 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
Β 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
Β 
Ch.4-Examples 2.pdf
Ch.4-Examples 2.pdfCh.4-Examples 2.pdf
Ch.4-Examples 2.pdf
Β 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831
Β 
2 compression
2  compression2  compression
2 compression
Β 
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Β 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distribution
Β 
psad 1.pdf
psad 1.pdfpsad 1.pdf
psad 1.pdf
Β 
Pipe project daniel
Pipe project danielPipe project daniel
Pipe project daniel
Β 
presentation_41.pptx
presentation_41.pptxpresentation_41.pptx
presentation_41.pptx
Β 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
Β 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
Β 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
Β 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
Β 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
Β 
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
Β 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
Β 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
Β 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
Β 

Foundationeng deep-foundations_ps

  • 1. CE 336- FOUNDATION ENGINEERING SPRING 2021 28.04.21 Deep Foundations
  • 2. Example 1: A 400 mm square prestressed concrete pile is to be driven 19 m into the soil profile shown in the figure. a) Compute the net load transferred to the ground through toe bearing b) Compute the nominal side friction capacity c) Compute the ASD downward load capacity using a factor of safety of 2.8.
  • 3. Solution 1: 𝐸 = 𝛽0 𝑂𝐢𝑅 + 𝛽1𝑁60 𝐸 = 5000 1 + 1200 βˆ— 25 = 35000π‘˜π‘ƒπ‘Ž πΌπ‘Ÿ = 35000 2 1 + 0.3 βˆ— 188 βˆ— π‘‘π‘Žπ‘›36Β° = 99 πœŽβ€²π‘§π· = 17.8 βˆ— 3 + 18.2 βˆ’ 9.81 βˆ— 16 =188kPa According to the figures, 𝑁𝛾 βˆ— = 15; π‘π‘ž βˆ— = 76 (a) * * ' ' t ZD q B N N     ο€½ ο€ͺ ο€ͺ  ο€ͺ     35000 114 2 1 ' tan ' 2 1 0.30 163 tan36 s r zD E I v   ο€½ ο€½ ο€½ ο€ͺ  ο€ͺ ο€ͺ ο‚΄  ο‚΄ ο‚΄ ο‚°
  • 4. Solution 1: π‘žβ€²π‘› = 𝐡𝛾𝑁𝛾 βˆ— + πœŽβ€²π‘§π·π‘π‘ž βˆ— π‘žβ€²π‘› = 0.4 βˆ— 18.2 βˆ’ 9.8 βˆ— 15 + 188 βˆ— 76 = 14338π‘˜π‘ƒπ‘Ž π‘žβ€²π‘›π΄π‘‘ = 14338 βˆ— 0.42 = 2294π‘˜π‘ (b)
  • 5. Solution 1: 𝐾0 = 1 βˆ’ π‘ π‘–π‘›πœ‘β€² π‘‚πΆπ‘…π‘ π‘–π‘›πœ‘β€² 𝐾0 = 1 βˆ’ 𝑠𝑖𝑛36 (1) 𝑠𝑖𝑛36 π‘‘π‘œ 1 βˆ’ 𝑠𝑖𝑛36 (4) 𝑠𝑖𝑛36 𝐾0 = 0.41 π‘‘π‘œ 0.93 𝛽 = 𝐾0 𝐾 𝐾0 π‘‘π‘Žπ‘› πœ‘β€² πœ‘π‘“ πœ‘β€² 𝛽 = 0.41 βˆ— 1.2 βˆ— tan 36 βˆ— 0.8 π‘‘π‘œ 0.93 βˆ— 1.2 βˆ— tan 36 βˆ— 0.8 = 0.27 π‘‘π‘œ 0.61 (c) π‘ƒπ‘Ž = π‘žβ€²π‘›π΄π‘‘ + Οƒ 𝑓𝑛𝐴𝑠 𝐹 = 2294 + 1272 2.8 = 1274 π‘˜π‘
  • 6. Example 2: A straight drilled shaft of diameter 1 m is installed in a soil profile, as shown in the figure. SPT were performed at intervals of approximately 1 m below the base. Determine the toe bearing capacity.
  • 7. Solution 2: Use average N60 value over a depth of 2D from the base or tip. O’Neill and Reese (1999)
  • 8. Example 3: The drilled shaft shown is to be designed without the benefit of any on-site static load tests. The soil conditions are uniform and the site characterization program was average. Unit weights of soil layers above the water table are 17kN/m3 and below are 20kN/m3. Compute the allowable downward load capacity.
  • 9. Solution 3: We assume that; Silt sand above groundwater table Ι£ = 17 kN/m3 Silt sand below groundwater table Ι£ = 20 kN/m3 Sand above groundwater table Ι£ = 20 kN/m3 For Drilled Shaft 𝛽 = 1,5 βˆ’ 0,245 𝑧 𝑓𝑠 = 𝛽 βˆ— πœŽβ€²π‘§
  • 10. Solution 3: Layer z (m) Ξ² Οƒ'z (kPa) fs (kPa) As (m2 ) Ps (kN) Silty sand above GWT 1 1.26 17.0 21.34 3.77 80.43 Silty sand below GWT 2.75 1.09 41.6 45.54 2.83 128.78 Sand below GWT (3.5m-9m) 6.25 0.89 77.3 68.61 10.37 711.30 Sand below GWT (9m-14m) 11.5 0.67 130.8 87.53 9.42 824.95 Total 1745.46 60 ' 57.5* 57.5 22 1265 t q N kPa ο€½ ο€½ ο‚΄ ο€½   2 2 0.6 0.283 4 t m A m  ο‚΄ ο€½ ο€½   2 ' 1265 0.283 1745 701 3 t t s s a q A f A kPa m kN P kN FS ο€ͺ  ο€ͺ ο‚΄  ο€½ ο€½ ο€½ οƒ₯ (For drilled shaft)
  • 11. Example 4: A concrete pile 40 cm in diameter and 10 m long is driven into a homogenous mass of clayey soil of medium consistency. The water table is at the ground surface.The undrained shear strength is 80 kPa and the adhesion factor Ξ± = 0.75. Compute the ultimate load bearing capacity. Solution 4:
  • 12. Example 5: It is designed that the steel pile having a diameter 40cm given in the figure below has to have an allowable bearing capacity which should be maximum 490 kN. Calculate the length of the pile by considering the factor of safety as 3. Solution 5: 𝑄𝑒𝑙𝑑 = 𝑄𝑝 + 𝑄𝑠 𝑄𝑝 = 9 βˆ— 𝑐𝑒 βˆ— 𝐴𝑝 = 9 βˆ— 125 βˆ— 0.42 βˆ— πœ‹ 4 = 141.4 π‘˜π‘ 𝑄𝑠 = ෍ 𝑐𝑒 βˆ— 𝛼 βˆ— 𝑝 βˆ— βˆ†π‘™ According to Randolph and Murphy (1985), πœŽβ€²π‘§π· 1 = 3 βˆ— 17 = 51π‘˜π‘ƒπ‘Ž β†’ 𝑐𝑒 πœŽβ€² 𝑧𝐷 1 = 50 51 β‰ˆ 1 β†’ 𝛼1 β‰ˆ 0.5 (𝑏𝑙𝑒𝑒) πœŽβ€²π‘§π· 2 = 6 βˆ— 17 + 2 βˆ— 19 βˆ’ 9.8 = 120.4π‘˜π‘ƒπ‘Ž β†’ 𝑐𝑒 πœŽβ€² 𝑧𝐷 2 = 50 120.4 β‰ˆ 0.41 β†’ 𝛼2 β‰ˆ 0.78 (π‘Ÿπ‘’π‘‘)
  • 13. Solution 5: For safety, 𝐿 can be assumed zero while determining the lowest possible value of 𝛼3 𝑝 = πœ‹ βˆ— 0.4 = 1.26 π‘š 𝑄𝑠 = 50 βˆ— 0.5 βˆ— 6 + 50 βˆ— 0.78 βˆ— 4 + 125 βˆ— 0.52 βˆ— L βˆ— 1.26 = 385.56 + 81.9𝐿 πœŽβ€²π‘§π· 3 = 6 βˆ— 17 + 4 βˆ— 19 βˆ’ 9.8 + 𝐿 2 βˆ— 19.5 βˆ’ 9.8 = 138.8 + 4.85𝐿 β†’ 𝑐𝑒 πœŽβ€² 𝑧𝐷 2 = 125 138.8 β‰ˆ 0.9 β†’ 𝛼3 β‰ˆ 0.52 (π‘”π‘Ÿπ‘’π‘’π‘›) π‘„π‘Žπ‘™π‘™ = 500π‘˜π‘ β†’ 𝑄𝑒𝑙𝑑 = 1500π‘˜π‘ β†’ 141.4 + 385.56 + 81.9𝐿 = 1500 β†’ 𝐿 = 11.2 π‘š 𝑃𝑖𝑙𝑒 π‘™π‘’π‘›π‘”π‘‘β„Ž = 6 + 4 + 11.2 = 21.2 β‰ˆ 22π‘š
  • 14. Example 6: The load-settlement data shown in the figure were obtained from a full-scale static load test on a 400mm square, 17m long concrete pile (fΒ΄c=40MPa). Use Davisson’s method to compute the ultimate downward load capacity.
  • 15. Solution 6: Interpratation of static load tests
  • 16. Solution 6: 𝐸 = 4700 𝑓′𝑐 = 4700 40 π‘€π‘ƒπ‘Ž = 30000 π‘€π‘ƒπ‘Ž 4π‘šπ‘š + 𝐡 120 + 𝑃𝐷 𝐴𝐸 = 4π‘šπ‘š + 40π‘šπ‘š 120 + 𝑃 17000π‘šπ‘š 0.42 βˆ— 30000000π‘˜π‘ƒπ‘Ž = 7.3π‘šπ‘š + 0.0035𝑃 𝑃𝑒𝑙𝑑 = 1650π‘˜π‘
  • 17. Example 7: Given that n1 = 4, n2 = 3, D = 305 mm, d = 1220 mm, and L = 15 m. The piles are square in cross section and embedded in a homogenous clay with Ι£ = 15.5 kN/m3 and cu = 70 kN/m2. Using a factor of safety equal to 4, determine the allowable load bearing capacity of the group pile.
  • 18. Solution 7: Determine the ultimate capacity assuming that the piles in the group act as individual piles. σ′𝑧 = Ι£ Γ— ΰ΅— 𝐿 2 = 15.5 Γ— ΰ΅— 15 2 = 116.25π‘˜π‘ƒπ‘Ž The average value for Ξ€ 𝑐𝑒 σ′𝑧 = Ξ€ 70 116.25 = 0.6       1 2 1 2 9 9 u p s p p u s u u p u u Q n n Q Q Q A c Q pc L Q n n A c pc L   ο€½  ο€½ ο€½  ο€½   οƒ₯ οƒ₯ οƒ₯ οƒ₯       2 0.305 0.305 0.093 m 4 0.305 1.22 m p A p ο€½ ο€½ ο€½ ο€½ from figure for 70 kPa, 0.63 u c  ο€½ ο€½               4 3 9 0.093 70 0.63 1.22 70 15 12 58.59 807.03 10387 kN ult Q ο€½   οƒΉ   ο€½  ο‚» οƒ₯
  • 19. Solution 7: Determine the ultimate capacity assuming that the piles in the group act as a block with dimensions Lg x Bg x L.         * * * Skin resistance of the block: 2 Point bearing capacity : Thus the ultimate load is equal to: 2 g u g g u p p p u c g g u c ult g g u c g g u p c L L B c L A Q A c N L B c N Q L B c N L B c L  ο€½   ο€½ ο€½ ο€½    οƒ₯ οƒ₯ οƒ₯ οƒ₯               1 2 * 1 2 4 1 1.22 0.305 3.965 m 2 1 2 3 1 1.22 0.305 2.745 m 2 15 3.965 5.46 and 1.44 2.745 2.745 From figure, 8.6 g g g g g c D L n d D B n d L L B B N  οƒΆ ο€½ ο€­  ο€½ ο€­  ο€½  οƒ·  οƒΈ  οƒΆ ο€½ ο€­  ο€½ ο€­  ο€½  οƒ·  οƒΈ ο€½ ο€½ ο€½ ο€½ ο€½
  • 20. Solution 7:          Block capacity 3.965 2.745 70 8.6 2 3.965 2.745 70 15 6552 14091 20643 kN ο€½   ο€½  ο€½       10387 kN 20643 kN 10387 2597 kN 4 g ult g ult g all Q Q Q FS ο€½ ο€Ό ο€½ ο€½ ο‚»
  • 21. Example 8: A group pile in clay is shown in the figure on the right. Determine the consolidation settlement of the pile groups. Assume that all the clay layers are normally consolidated.
  • 22. Solution 8: Because the lengths of the piles are 15 m each, the stress distribution starts at a depth of 10 m below the top of the pile. Settlement of Layer I 0(1) (1) 1 (1) 0(1) 0(1) ' ' log 1 ' c c C H e      οƒΆ  οƒΆ   ο€½  οƒ·  οƒ·  οƒ·  οƒ·   οƒΈ  οƒΈ       (1) 1 1 2000 ' 51.6 3.3 3.5 2.2 3.5 g g Q kPa L z B z   ο€½ ο€½ ο€½       0(1) ' 2 16.2 12.5 18 9.81 134.8kPa  ο€½ ο‚΄  ο‚΄ ο€­ ο€½ (1) 0.3 7 134.8 51.6 log 162.4 1 0.82 134.8 c mm  ο‚΄   οƒΆ  οƒΆ ο€½ ο€½  οƒ·  οƒ·   οƒΈ  οƒΈ
  • 23. Solution 8: Settlement of Layer II 0(2) (2) 2 (2) 0(2) 0(2) ' ' log 1 ' c c C H e      οƒΆ  οƒΆ   ο€½  οƒ·  οƒ·  οƒ·  οƒ·   οƒΈ  οƒΈ       (2) 2 2 2000 ' 14.52 3.3 9 2.2 9 g g Q kPa L z B z   ο€½ ο€½ ο€½       0(2) ' 2 16.2 16 18 9.81 181.62kPa  ο€½ ο‚΄  ο‚΄ ο€­ ο€½ (2) 0.2 4 181.62 14.52 log 15.7 1 0.7 181.62 c mm  ο‚΄   οƒΆ  οƒΆ ο€½ ο€½  οƒ·  οƒ·   οƒΈ  οƒΈ
  • 24. Solution 8: Settlement of Layer III 0(3) (3) 3 (3) 0(3) 0(3) ' ' log 1 ' c c C H e      οƒΆ  οƒΆ   ο€½  οƒ·  οƒ·  οƒ·  οƒ·   οƒΈ  οƒΈ       (3) 3 3 2000 ' 9.2 3.3 12 2.2 12 g g Q kPa L z B z   ο€½ ο€½ ο€½       0(3) ' 2 16.2 19 18 9.81 208.99kPa  ο€½ ο‚΄  ο‚΄ ο€­ ο€½ (3) 0.25 2 208.99 9.2 log 5.4 1 0.75 208.99 c mm  ο‚΄   οƒΆ  οƒΆ ο€½ ο€½  οƒ·  οƒ·   οƒΈ  οƒΈ Total settlement ( ) (1) (2) (3) 162.4 15.7 5.4 183.5 c T c c c mm     ο€½   ο€½   ο€½
  • 25. -Ultimate (fully mobilized) load capacity Deep Foundations-Pile Load Transfer Mechanism 𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š = π‘ β„Žπ‘Žπ‘“π‘‘ π‘ π‘˜π‘–π‘› π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ + 𝑑𝑖𝑝 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ βˆ’ π‘Šπ‘π‘–π‘™π‘’ 𝑅 = 𝑄𝑒𝑙𝑑 = 𝑄𝑠 + 𝑄𝑏 βˆ’ π‘Š 𝑝 Buoyancy effect should be taken into account
  • 26. -Ultimate (fully mobilized) load capacity Deep Foundations-Pile Load Transfer Mechanism 𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š = π‘ π‘˜π‘–π‘› π‘ β„Žπ‘Žπ‘“π‘‘ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ + 𝑑𝑖𝑝 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ Friction pile (clayey soil, adhesion) End bearing pile (rock formation) 𝑅 = 𝑄𝑒𝑙𝑑 = 𝑄𝑠 + 𝑄𝑏 βˆ’ π‘Š 𝑝 End bearing pile (granular soils) >3 m or 5B
  • 27. -Ultimate (fully mobilized) load capacity Deep Foundations-Pile Load Transfer Mechanism 𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š = π‘ π‘˜π‘–π‘› π‘ β„Žπ‘Žπ‘“π‘‘ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ + 𝑑𝑖𝑝 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘‘π‘’π‘“π‘œπ‘Ÿπ‘šπ‘Žπ‘‘π‘–π‘œπ‘› to attain fully mobilised capacity 10 to 25% of the pile width 0.5 to 1% of the pile width
  • 28. -Bearing resistance (Undrained condition, clayey soil, non-free draining) Deep Foundations-Pile Axial Load Capacity 𝑄𝑏 = 𝐴𝑏 𝑠𝑐𝑁𝑐𝑐𝑒 + π‘π‘žΟƒβ€²π‘ž (π‘π‘œπ‘Ÿπ‘’π‘‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠) Ab=cross-sectional area of the base of the pile -Bearing resistance (Drained condition, granular soil, free draining) 𝑄𝑏 = 𝐴𝑏 π‘π‘žΟƒβ€²π‘ž (π‘π‘œπ‘Ÿπ‘’π‘‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠) 𝑠𝑐𝑁𝑐 = 9.0 π‘“π‘œπ‘Ÿ π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ π‘œπ‘Ÿ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ 𝑝𝑖𝑙𝑒 may be neglected (Nq=1)
  • 29. Deep Foundations-Pile Axial Load Capacity -Bearing resistance (Drained condition, granular soil, free draining) 𝑄𝑏 = 𝐴𝑏 π‘π‘žΟƒβ€²π‘ž Ο† Nq 20.00 12.40 21.00 13.80 22.00 15.50 23.00 17.90 24.00 21.40 25.00 26.00 26.00 29.50 27.00 34.00 28.00 39.70 29.00 46.50 30.00 56.70 31.00 68.20 32.00 81.00 33.00 96.00 34.00 115.00 35.00 143.00 36.00 168.00 37.00 194.00 38.00 231.00 39.00 276.00 40.00 346.00 41.00 420.00 42.00 525.00 43.00 650.00 44.00 780.00 45.00 930.00 𝐷 𝐡 π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘π‘  𝐿𝑝𝑖𝑙𝑒 𝐡 π‘€π‘’π‘¦π‘’π‘Ÿβ„Žπ‘œπ‘“
  • 30. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Undrained condition, clayey soil, non-free draining)  Ξ±-method (π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠) 𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 As= shaft area of the of the pile Ξ±= adhesion factor and f(slenderness, shear strength) πΉπ‘œπ‘Ÿ 𝑐𝑒 σ′𝑣0 ≀ 1; Ξ± = 0.5Fp 𝑐𝑒 σ′𝑣0 βˆ’0.5 ≀ 1 πΉπ‘œπ‘Ÿ 𝑐𝑒 σ′𝑣0 β‰₯ 1; Ξ± = 0.5Fp 𝑐𝑒 σ′𝑣0 βˆ’0.25 Fp = 1.0 if 𝐿𝑝 𝐡 ≀ 50 = 0.7if 𝐿𝑝 𝐡 β‰₯ 120
  • 31. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Undrained condition, clayey soil, non-free draining)  Ξ±-method (π‘π‘œπ‘Ÿπ‘’π‘‘ 𝑝𝑖𝑙𝑒𝑠) 𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 As= shaft area of the of the pile Ξ±= adhesion factor and f(shear strength) Ξ± = 1.0 π‘“π‘œπ‘Ÿ 𝑐𝑒 ≀ 30 Ξ± = 1. 16 βˆ’ 𝑐𝑒 185 π‘“π‘œπ‘Ÿ 30 < 𝑐𝑒 ≀ 150 Ξ± = 0.35 π‘“π‘œπ‘Ÿ 𝑐𝑒 > 150
  • 32. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Drained condition, granular soil, free draining) 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 (π‘π‘œπ‘Ÿπ‘’π‘‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠) As= shaft area of the of the pile Ks= coefficient of horizontal soil stress Ξ΄'= the angle of friction b/w pile and soil Ξ΄β€² = Ο• = 0.75Ο•β€² 𝐾0 = 1 βˆ’ 𝑠𝑖𝑛ϕ′
  • 33. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Drained condition, granular soil, free draining) 𝑄𝑠 = βσ′𝑣0𝐴𝑠 Ξ²=0.18+0.65Dr Dr=relative density in decimal form  Ξ²-method (π‘‘π‘Ÿπ‘–π‘£π‘’π‘› 𝑝𝑖𝑙𝑒𝑠) 𝑄𝑠 = βσ′𝑣0𝐴𝑠 Ξ²=1.5-0.245 𝑧 z= depth to the mid-layer (m)  Ξ²-method (π‘π‘œπ‘Ÿπ‘’π‘‘ 𝑝𝑖𝑙𝑒𝑠)
  • 34. Ex1: A bridge pier is to be supported by 1.0 π‘š diameter driven-cast in place concrete piles. The design load per pile is determined as 700 π‘˜π‘ by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand Ξ³=17 kN/m3 Ο•'=36˚ Clay Ξ³=20 kN/m3 cu=100 kPa σ𝑣0 (π‘˜π‘ƒπ‘Ž) 𝑒 (π‘˜π‘ƒπ‘Ž) σ′𝑣0 (π‘˜π‘ƒπ‘Ž) 51 102 102 + 20β„Žπ‘π‘™π‘Žπ‘¦ 10β„Žπ‘π‘™π‘Žπ‘¦ 51 102 102 + 10β„Žπ‘π‘™π‘Žπ‘¦
  • 35. Ex1: A bridge pier is to be supported by 1.0 π‘š diameter driven-cast in place concrete piles. The design load per pile is determined as 700 π‘˜π‘ by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand Ξ³=17 kN/m3 Ο•'=36˚ Clay Ξ³=20 kN/m3 cu=100 kPa β€’ 𝐿𝑝 𝐡 β‰₯ 12, π‘‘β„Žπ‘’π‘  𝐿𝑝,π‘šπ‘–π‘› β‰₯ 12 π‘š 𝑻𝒐𝒕𝒂𝒍 π’„π’‚π’‘π’‚π’„π’Šπ’•π’š 𝑄𝑒𝑙𝑑 = βˆ‘π‘„π‘  + 𝑄𝑏 β€’ πΉπ‘œπ‘Ÿ π‘ π‘Žπ‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 𝐾𝑠 = 0.41 1.5 = 0.62 Ξ΄β€² = Ο• = 0.75 Ο•β€² = 27˚ 𝐾0 = 1 βˆ’ 𝑠𝑖𝑛ϕ′ = 0.41
  • 36. Ex1 (cont.) Deep Foundations- Single Pile Capacity 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² (Ο€π·π‘™π‘ π‘Žπ‘›π‘‘) σ′𝑣0 @𝑧=3π‘š = 3 17 = 51 kPa 𝑄𝑠,1 = 0.62 54 tan 27 Ο€ 1 6 = 303.7 π‘˜π‘ β€’ 𝑭𝒐𝒓 π’„π’π’‚π’š π’π’‚π’šπ’†π’“ 𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 πΉπ‘œπ‘Ÿ 𝑐𝑒 σ′𝑣0 ≀ 1; Ξ± = 0.5Fp 𝑐𝑒 σ′𝑣0 βˆ’0.5 ≀ 1 Fp = 1.0 if 𝐿𝑝 𝐡 ≀ 50 = 0.7if 𝐿𝑝 𝐡 β‰₯ 120 σ′𝑣0 @𝑧=6π‘š = 6 17 = 102 kPa 𝑐𝑒 σ′𝑣0 = 100 102 < 1 Ξ± = 0.5Fp 𝑐𝑒 σ′𝑣0 βˆ’0.5 = 0.5 100 102 + 20 βˆ’ 10 π‘™π‘π‘™π‘Žπ‘¦ βˆ’0.5 𝑄𝑏 = 𝐴𝑏 𝑠𝑐𝑁𝑐𝑐𝑒 = Ο€ 0.5 2 9 100 = 706.9 π‘˜π‘ 𝐴𝑠 = π𝐡(2π‘™π‘π‘™π‘Žπ‘¦) 𝑄𝑠,2 = 0.5 100 102 + 10 π‘™π‘π‘™π‘Žπ‘¦ βˆ’0.5 100 Ο€(1)(2π‘™π‘π‘™π‘Žπ‘¦) β€’ 𝑭𝒐𝒓 𝒔𝒂𝒏𝒅 π’π’‚π’šπ’†π’“ Sand Ξ³=17 kN/m3 Ο•'=36˚ Clay Ξ³=20 kN/m3 cu=100 kPa 2π‘™π‘π‘™π‘Žπ‘¦
  • 37. Ex1 (cont.) Deep Foundations- Single Pile Capacity β€’ 𝑄𝑒𝑙𝑑 = 𝑄𝑠,1 + 𝑄𝑠,2 + 𝑄𝑏 βˆ’ π‘Š 𝑝 303.7 + 𝑄𝑠,2 + 706.9 = Ο€ 0.5 2 25 βˆ— 6 + 15 βˆ— 2π‘™π‘π‘™π‘Žπ‘¦ + 700(3) π‘‡π‘Ÿπ‘–π‘Žπ‘™ π‘Žπ‘›π‘‘ π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ π‘œπ‘Ÿ π‘’π‘žπ‘› π‘ π‘œπ‘™π‘£π‘–π‘›π‘” β€’ π‘„π‘Žπ‘™π‘™π‘œπ‘€ = 𝑄𝑠,1+𝑄𝑠,2+𝑄𝑏 𝐹𝑆 βˆ’ π‘Š 𝑝 = 700 1010.6 + 314.2 100 102 + 10 π‘™π‘π‘™π‘Žπ‘¦ βˆ’0.5 π‘™π‘π‘™π‘Žπ‘¦ = 117.8 + 23.6 π‘™π‘π‘™π‘Žπ‘¦ + 700(3) 1010.6 + 314.2 100 102 + 10 π‘™π‘π‘™π‘Žπ‘¦ βˆ’0.5 π‘™π‘π‘™π‘Žπ‘¦ = 2217.8 + 70.8π‘™π‘π‘™π‘Žπ‘¦ π‘™π‘šπ‘–π‘‘ π‘π‘™π‘Žπ‘¦ = 4 π‘š 𝐿𝑝 = 6 + 2 βˆ— 4 = πŸπŸ” π’Ž Eqn is written wrt. Midpoint of clay layer Ξ³π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’β€² = 25 βˆ’ 10 Ξ³π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ = 25 π‘˜π‘/π‘š3 π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘œπ‘“ π‘ π‘Žπ‘“π‘’π‘‘π‘¦
  • 38. Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The design load per pile is determined as 2000 π‘˜π‘ by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand Ξ³=17 kN/m3 Ο•'=28˚ Clay Ξ³=18 kN/m3 cu=30 kPa σ𝑣0 (π‘˜π‘ƒπ‘Ž) 𝑒 (π‘˜π‘ƒπ‘Ž) σ′𝑣0 (π‘˜π‘ƒπ‘Ž) 51 102 210 60 Sand Ξ³=19 kN/m3 Ο•' =38˚ Clay Ξ³=18 kN/m3 cu=150 kPa 6 m 6 m 120 324 51 102 150 204
  • 39. Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The design load per pile is determined as 2000 π‘˜π‘ by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand Ξ³=17 kN/m3 Ο•'=28˚ Clay Ξ³=18 kN/m3 cu=30 kPa σ𝑣0 (π‘˜π‘ƒπ‘Ž) 𝑒 (π‘˜π‘ƒπ‘Ž) σ′𝑣0 (π‘˜π‘ƒπ‘Ž) 51 102 210 60 Sand Ξ³=19 kN/m3 Ο•' =38˚ Clay Ξ³=18 kN/m3 cu=150 kPa 6 m 6 m 120 324 51 102 150 204 β€’ 𝐸𝐢7 σ𝑝𝑖𝑙𝑒 π‘π‘œπ‘šπ‘ = 𝑄𝑝𝑖𝑙𝑒 𝐴𝑏 ≀ σ𝑐,π‘˜ 4 σ𝑝𝑖𝑙𝑒 π‘π‘œπ‘šπ‘ ≀ 30 4 = 7.5 π‘€π‘ƒπ‘Ž 𝑄𝑝𝑖𝑙𝑒 𝐴𝑏 = 2000000 𝐴𝑏 = 7.5 𝑃𝑖𝑙𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ β‡’ 𝐡 = 600π‘šπ‘š
  • 40. Ex2 (cont.) Deep Foundations- Single Pile Capacity 6 m Sand Ξ³=17 kN/m3 Ο•'=28˚ Clay Ξ³=18 kN/m3 cu=30 kPa Sand Ξ³=19 kN/m3 Ο•' =38˚ Clay Ξ³=18 kN/m3 cu=150 kPa 6 m 6 m β€’ Embedment length>3 m or 5B= 3m L=12+3=15 m β€’ 𝐿𝑝 𝐡 = 15 0.6 = 25 β‰₯ 12 <50 β€’ πΉπ‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘ π‘Žπ‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘‘π‘œπ‘ 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 Ο• = 0.75Ο•β€² = 21.8˚ 𝐾0 = 1 βˆ’ 𝑠𝑖𝑛ϕ′ = 0.53 π‘Žπ‘›π‘‘ 𝐾𝑠 = 𝐾0 0.85 = 0.45 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 = 0.45 51 tan 21.8 Ο€(0.6)6 = 103.8 π‘˜π‘ β€’ 𝑄𝑒𝑙𝑑 = 𝑄𝑠,π‘ π‘Žπ‘›π‘‘1 + 𝑄𝑠,π‘π‘™π‘Žπ‘¦ + 𝑄𝑠,π‘ π‘Žπ‘›π‘‘2 + 𝑄𝑏 βˆ’ π‘Š 𝑝
  • 41. Ex2 (cont.) Deep Foundations- Single Pile Capacity 6 m Sand Ξ³=17 kN/m3 Ο•'=28˚ Clay Ξ³=18 kN/m3 cu=30 kPa Sand Ξ³=19 kN/m3 Ο•' =38˚ Clay Ξ³=18 kN/m3 cu=150 kPa 6 m 6 m L=15 m β€’ 𝑄𝑒𝑙𝑑 = 𝑄𝑠,π‘ π‘Žπ‘›π‘‘1 + 𝑄𝑠,π‘π‘™π‘Žπ‘¦ + 𝑄𝑠,π‘ π‘Žπ‘›π‘‘2 + 𝑄𝑏 βˆ’ π‘Š 𝑝 𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 Ξ± = 1.0 π‘“π‘œπ‘Ÿ 𝑐𝑒 ≀ 30 𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 = 1 30 Ο€ 0.6 6 = 339.3 π‘˜π‘ β€’ For clay layer β€’ πΉπ‘œπ‘Ÿ π‘ π‘Žπ‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘π‘œπ‘‘π‘‘π‘œπ‘š 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 𝑄𝑠 = 𝐾𝑠σ′𝑣0 tan Ξ΄β€² 𝐴𝑠 = 0.33 163.5 tan 28.5 Ο€ 0.6 3 = 165.7 π‘˜π‘ 𝑄𝑏 = 𝐴𝑏 π‘π‘žΟƒβ€²π‘ž = Ο€0.32 120 177 = 6005.5 kN β€’ π‘Š 𝑝 = Ο€ 0.3 2 6 25 + 9 15 = 80.6 π‘˜π‘ 𝑄𝑒𝑙𝑑 = 103.8 + 339.3 + 165.7 + 6005.5 βˆ’ 80.6 = 6533.7 π‘˜π‘ π‘„π‘Žπ‘™π‘™ = βˆ‘π‘„π‘  + 𝑄𝑏 3 βˆ’ π‘Š 𝑝 = 2124.2 β‰₯ 2000 π‘˜π‘ 120 Ξ³π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’β€² = 25 βˆ’ 10
  • 42. -Load vs settlement: Load controlled test, to obtain ultimate load  Load increment= 25% of working load  Ultimate load= 200% of working load Deep Foundations- Pile Load Test (Davisson Approach) 1) Clayey soil 2) Granular soil Total settlement Elastic settlement Net settlement=Total settlement- pile elastic settlement δ𝑝𝑖𝑙𝑒 π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ = (𝑄𝑀𝑝+0.6𝑄𝑀𝑠)𝐿𝑝 𝐴𝑏𝐸𝑝𝑖𝑙𝑒 𝑄𝑀𝑝 = π‘€π‘œπ‘Ÿπ‘˜π‘–π‘›π‘” π‘™π‘œπ‘Žπ‘‘ 𝑄𝑀𝑠 = π‘ β„Žπ‘Žπ‘“π‘‘ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘–π‘›π‘” π‘™π‘œπ‘Žπ‘‘ @π‘€π‘œπ‘Ÿπ‘˜π‘–π‘›π‘”
  • 43. -Load vs settlement  Use net settlement values Deep Foundations- Pile Axial Load Test δ𝑒𝑙𝑑 = 0.012 π΅π‘Ÿπ‘’π‘“ + 0.1 𝐡 π΅π‘Ÿπ‘’π‘“ + 𝑄𝑒𝐿𝑝 𝐴𝑏𝐸𝑝 K M K M Net settlement (mm) 𝑄𝑒𝑙𝑑 = π‘ˆπ‘™π‘‘π‘–π‘šπ‘Žπ‘‘π‘’ π‘™π‘œπ‘Žπ‘‘ (π‘˜π‘) 𝐡 = 𝑃𝑖𝑙𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ (π‘šπ‘š) π΅π‘Ÿπ‘’π‘“ = π‘…π‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ 𝑝𝑖𝑙𝑒 π‘€π‘–π‘‘π‘‘β„Ž π‘šπ‘š = 300 mm 𝐿𝑝 = 𝑃𝑖𝑙𝑒 π‘™π‘’π‘›π‘”π‘‘β„Ž (π‘šπ‘š) 𝐴𝑏 = 𝐸𝑛𝑑 π‘π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘Žπ‘Ÿπ‘’π‘Ž π‘šπ‘š2 𝐸𝑝 = 𝑃𝑖𝑙𝑒 π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  (πΊπ‘ƒπ‘Ž) δ𝑒𝑙𝑑 𝑄𝑒𝑙𝑑
  • 44. -Ex3: Lp= 20 m, BxB=406x406 mm, Ep=30 GPa (C30 concrete), Qult ? Deep Foundations- Pile Axial Load Test δ𝑒𝑙𝑑 = 0.012 π΅π‘Ÿπ‘’π‘“ + 0.1 𝐡 π΅π‘Ÿπ‘’π‘“ + 𝑄𝑒𝐿𝑝 𝐴𝑏𝐸𝑝 K=3.735 Net settlement (mm) δ𝑒𝑙𝑑 = 0.012 300 + 0.1 406 300 + 𝑄𝑒20000 (406)(406)(30) 𝑄𝑒𝑙𝑑 = 1460 π‘˜π‘
  • 45. -Downdrag force acting on pile: force exerted by settling soil on pile (Ξ΄soil> Ξ΄pile) Deep Foundations- Negative Skin Friction  Placement of fill (granular) settlement of the fill by selfweight additional consolidation of soft clayey layers beneath fill  Lowering of GWT Οƒ' and settlement increases additional settlement for the pile
  • 46. -Downdrag force acting on pile Deep Foundations- Negative Skin Friction β€’ 𝑄𝑝 = 𝑃0 + 𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 0.25 σ′𝑣(Ο€π΅π‘™π‘π‘™π‘Žπ‘¦ π‘™π‘Žπ‘¦π‘’π‘Ÿ) β€’ For clay layer upon consolidation β€’ For sand layer upon settling π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 𝐾0σ′𝑣 tan Ξ΄β€² (Ο€π΅π‘™π‘ π‘Žπ‘›π‘‘) Ξ΄β€² = (0.6)Ο•β€² Resistance Load Force P0 Qb 𝐹𝑆 = 𝑄𝑠 + 𝑄𝑏 𝑃0 + 𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” β‰₯ 2.0 𝑄𝑠 + 𝑄𝑏
  • 47. Ex2 (cont.): 2 m height of a very large fill (Ξ³=20 kN/m3) will be placed next to the pile on the behalf of approach fill. Check whether adequate FS exists or not? Deep Foundations- Negative Skin Friction 6 m Sand Ξ³=17 kN/m3 Ο•'=28˚ 6 m 6 m Clay Ξ³=18 kN/m3 cu=30 kPa Sand Ξ³=19 kN/m3 Ο•' =38˚ Clay Ξ³=18 kN/m3 cu=150 kPa β€’ 𝐹𝑆 = 𝑄𝑠+𝑄𝑝 𝑃0+𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘+π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” β‰₯ 2.0 𝐹𝑆 = 6614.3 2000 + 80.6 + π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 0.25 σ′𝑣(Ο€π·π‘™π‘π‘™π‘Žπ‘¦ π‘™π‘Žπ‘¦π‘’π‘Ÿ) σ′𝑣0 = 102 + 150 2 + (2)(20) = 166 π‘˜π‘ƒπ‘Ž Fill π‘„π‘‘π‘œπ‘€π‘›π‘‘π‘Ÿπ‘Žπ‘” = 0.25 166 Ο€ 0.6 6 = 469 π‘˜π‘ 𝐹𝑆 = 6614.3 2000 + 80.6 + 469 = 2.59
  • 48. Piles working under tension: Deep Foundations- Uplift Capacity β€’ 𝐹𝑆 = 𝑄𝑠+𝑄𝑠𝑒𝑙𝑓 π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘„π‘’π‘π‘€π‘Žπ‘Ÿπ‘‘ β‰₯ 3.0~6.0  Ship building docks  Wind turbines, chimneys or any structures exposed to lateral loads
  • 49. -Group action: zone of soil or rock which is stressed by the entire group extends to a much greater width and depth than the zone beneath the single pile. Spacing (s) between adjacent piles should be increased (>5B) Deep Foundations- Piles in Group  (# of piles) x Qult (single pile) > Qult (group) under same displacement  Even though loading tests made on a single pile have indicated satisfactory performance, failure or excessive settlement may take place Friction pile (clayey soil, adhesion) End bearing pile (granular soils)
  • 50. -Group capacity: Deep Foundations- Piles in Group Group Efficiency Approach Qult, group = (Ξ·) x (# of piles) x Qult (single pile) Ξ· (efficiency)=1βˆ’Οˆ [ π‘š βˆ’ 1 𝑛 + 𝑛 βˆ’ 1 π‘š] 90(π‘š)(𝑛) ψ in degrees = tanβˆ’1 𝐡 𝑠 B B B B B π‘š = π‘›π‘œ π‘œπ‘“ π‘Ÿπ‘œπ‘€π‘  𝑛 = π‘›π‘œ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›π‘  s = spacing b/w piles measured from center to center
  • 51. -Group capacity: Deep Foundations- Piles in Group Terzaghi-Peck Block Approach  shallow spread foundation  Crucial for soil profiles consisting of soft clay layers (low cu values)  𝑄𝑒𝑙𝑑 = βˆ‘π‘„π‘  + 𝑄𝑏 𝑄𝑠 = 2 πΏπ‘π‘™π‘œπ‘π‘˜ + π΅π‘π‘™π‘œπ‘π‘˜ βˆ‘π·π‘–Ξ±(𝑐𝑒) or 𝑄𝑠 = 2 πΏπ‘π‘™π‘œπ‘π‘˜ + π΅π‘π‘™π‘œπ‘π‘˜ βˆ‘π·π‘–πΎπ‘ Οƒβ€²π‘£0 tan Ξ΄β€² clayey soil granular soil 𝑄𝑏 = (πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜) 𝑠𝑐𝑁𝑐𝑐𝑒 𝑄𝑏 = (πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜) π‘π‘žΟƒβ€²π‘žπ‘ π‘ž clayey soil granular soil 𝐷 = 𝐿𝑝
  • 52. -Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find Qult, group? B=0.6 m Deep Foundations- Piles in Group πΊπ‘Ÿπ‘œπ‘’π‘ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž s=1.8 m β€’ 𝑄𝑒𝑙𝑑,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏 σ′𝑣0 (π‘˜π‘ƒπ‘Ž) 114 228 𝑄𝑏 = 𝐴𝑏 𝑠𝑐𝑁𝑐𝑐𝑒 = Ο€ 0.3 2 9 60 = 152.7 π‘˜π‘ 𝑄𝑠 = Ξ±(𝑐𝑒)𝐴𝑠 = 1.16 βˆ’ 60 185 60 Ο€ 0.6 12 = 1134.2 π‘˜π‘ Ξ± = 1. 16 βˆ’ 𝑐𝑒 185 π‘“π‘œπ‘Ÿ 30 < 𝑐𝑒 ≀ 150 Pile layout s=1.8 m
  • 53. -Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find Qult, group? B=0.6 m Deep Foundations- Piles in Group Pile layout s=1.8 m β€’ Q𝑒𝑙𝑑,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏 = 152.7 + 1134.2 = 1286.9 π‘˜π‘ β€’ Qult, group = (Ξ·) x (# of piles) x Qult (single pile) Ξ· (efficiency)=1βˆ’Οˆ [ π‘š βˆ’ 1 𝑛 + 𝑛 βˆ’ 1 π‘š] 90(π‘š)(𝑛) ψ in degrees = tanβˆ’1 𝐡 𝑠 = tanβˆ’1 0.6 1.8 = 18.4˚ Ξ· =1βˆ’18.4 [ 3 βˆ’ 1 4 + 4 βˆ’ 1 3] 90(4)(3) = 0.71 π‘š = 3 𝑛 = 4 β€’ Qult, group = (0.71)(12)(1286.9)=10964.4 kN s=1.8 m
  • 54. -Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find Qult, group? B=0.6 m Deep Foundations- Piles in Group Pile layout s=1.8 m s=1.8 m Terzaghiβˆ’Peck Block π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž 𝑄𝑠 = 2 πΏπ‘π‘™π‘œπ‘π‘˜ + π΅π‘π‘™π‘œπ‘π‘˜ Ξ±(𝑐𝑒)  𝑄𝑒𝑙𝑑,π‘π‘™π‘œπ‘π‘˜ = 𝑄𝑠 + 𝑄𝑏 𝑄𝑠 = 2[ 1.8 3 + 1.8 2 12 0.84 60 = 10886.4 kN Ξ± = 1. 16 βˆ’ 𝑐𝑒 185 π‘“π‘œπ‘Ÿ 30 < 𝑐𝑒 ≀ 150 𝑄𝑏 = πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜ 𝑠𝑐𝑁𝑐𝑐𝑒 = πΏπ‘π‘™π‘œπ‘π‘˜π΅π‘π‘™π‘œπ‘π‘˜ 9𝑐𝑒 𝑄𝑏 = 5.4 3.6 9 60 = 10497.6π‘˜π‘  𝑄𝑒𝑙𝑑,π‘π‘™π‘œπ‘π‘˜ = 𝑄𝑠 + 𝑄𝑏 = 10886.4 + 10497.6 = 21384 π‘˜π‘  𝑄𝑒𝑙𝑑,π‘π‘™π‘œπ‘π‘˜ = min πΊπ‘Ÿπ‘œπ‘’π‘ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž, π‘‡π‘’π‘Ÿπ‘§π‘Žπ‘”β„Žπ‘– βˆ’ π‘ƒπ‘’π‘π‘˜ π‘π‘™π‘œπ‘π‘˜ π‘Žπ‘π‘π‘Ÿπ‘œπ‘Žπ‘β„Ž = 10694.4 π‘˜π‘