SlideShare a Scribd company logo
1 of 10
Download to read offline
Maximum Likelihood Estimator (MLE)
Suppose 1 2, ,..., nX X X are random samples with the joint probability density
function 1 2, ,..., / 1 2( , ,..., )nX X X nf x x x which depends on an unknown nonrandom
parameter  .
/ 1 2( , , ..., / )nf x x x X is called the likelihood function. If 1 2, ,..., nX X X are discrete,
then the likelihood function will be a joint probability mass function. We represent
the concerned random variables and their values in vector notation by
1 2[ ... ]nX X X X and 1 2[ ... ]nx x x x respectively. Note that
/( / ) ln ( / )L f   Xx x is the log likelihood function. As a function of the random
variables, the likelihood and log-likelihood functions are random variables.
The maximum likelihood estimator ˆ
MLE is such an estimator that
/ 1 2 / 1 2
ˆ( , ,..., / ) ( , ,..., / ),n MLE nf x x x f x x x    X X
If the likelihood function is differentiable with respect to  , then ˆ
MLE is given by
MLE
ˆ/ θ
( / ) 0f  




X x
or 0
θ
)|L(
MLEθˆ 

 x
Thus the MLE is given by the solution of the likelihood equation given above.
If we have k unknown parameters given by
1
2
k



 
 
 
 
 
 
θ
Then MLE is given by a set of conditions.
1 1 2 2
ˆ ˆ ˆ1 2
L( / ) L( / ) L( / )
.... 0
θ θ θ
MLE MLE k kMLE
k     
  
  
   
        
x x x
Sinceln( ( / ))L x is a monotonic function of the argument, it is convenient to express the MLE
conditions in terms of the log-likelihood function. The condition is now given by
1 1 2 2
ˆ ˆ ˆ1 2
(L( / )) (L( / )) (L( / ))
.... 0
θ θ θ
MLE MLE k kMLE
k
Ln Ln Ln
     
  
  
   
    
    
x x x
Example 10:
Let 1 2, ,..., nX X X are independent identically distributed sequence of 2
( , )N   distributed
random variables. Find MLE for  and 2
 .
2
2
1 2/ ,
( , ,..., / , )nf x x x 
 X
=
2
1
2
1
1
2
ix
n
i
e



 
  
 


2
2 2
/ ,
( / , ) ln ( / , )L f  
    X
x x
=
2
1
1
ln 2 ln -
2
n
i
i
x
n n

 

 
   
 

ˆ
1
0
ˆ( ) 0
MLE
n
i MLE
i
L
x





 
  
2
2
ˆ
2
2 4
0
ˆ( )
0
ˆ ˆ
MLE
MLEi
MLE MLE
L
xn


 
 
 

   

Solving we get
 
1
22
1
1
ˆ
1
ˆ ˆ
n
MLE i
i
n
MLE i MLE
i
x and
n
x
n

 



 


Example 11:
Let 1 2, ,..., nX X X are independent identically distributed random samples with
1/
1
( ) -
2
x
Xf x e x


 
    
Show that 1 2( , ,..., )nX X Xmedian is the MLE for .
1
1 2, ,...., / 1 2
1
( , ,...., )
2
n
i
i
n
x
X X X n n
f x x x e



 

/
1
( / ) ln ( )
ln2
n
i
i
L f
n x




   
Xx x
1
n
i
i
x 

 is minimized by 21, ,( ..., )nxmedian x x
21, ,ˆ ( ..., )MLE nxmedian x x 
Properties of MLE
(1) MLE may be biased or unbiased. In Example 4, ˆMLE is unbiased where as 2
ˆMLE is a
biased estimator.
(2) If an efficient estimator exists, the MLE estimator is the efficient estimator.
Supposes an efficient estimator θˆ exists . Then
ˆ( / ) ( )L x c  


 

at ˆ ,MLE 
ˆ
( / )
0
ˆ ˆ( ) 0
ˆ ˆθ
MLE
MLE
MLE
L x
c



 




  
 
(3) The MLE is asymptotically unbiased and efficient. Thus for large n, the MLE is
approximately efficient.
(4) Invariance Properties of MLE
It is a remarkable property of the MLE and not shaerd by other estimators. If ˆ
MLE is the
MLE of  and ( )h  is a function, then ˆ( )MLEh  is the MLE of ( )h  .
(5) ˆ
MLE is a consistent estimator of 
Proof:
Suppose 0 is the true value of 
Given the iid observations 1 2, 3, ,......, nX X X X the sample average of the log-likelihood
function is given by
   /
1
1
ln
n
n X i
i
L f X
n


 
ˆ
MLE maximizes  nL  .
    
   
0
0
/
/ /
Let ln
= ln i
X i
X i X i i
L E f X
f x f x dx
 
 





Note that the expectation is carried out with respect to true value 0
According to WLLN
    (1)p
nL L  
Now we show thjat
   0nL L 
Note that    0nL L 
     
 
 
 
 
 
 
 
   
0 0 0
0
0
0
0
0
0
/ /
/
/
/
/
/
/
/
0
ln ln
ln
1 log t t-1
= 1
1 1 0
0
X X
X
X
X
X
X
X
X
n
E f X E f X
f X
E
f X
f X
E
f X
f X
f x dx
f X
L L
   









 


 
 
  
 
 
 
   
 
 
 
 
 
 
  
  

In other words  L  is maximum at 0 
Now from (1)    p
nL L 
0
p
MLE  
Bayesean Estimators
We may have some prior information about  in a sense that some values of  are more likely
(a priori information). We can represent this prior information in the form of a prior density
function.
In the following we omit the suffix in density functions just for notational simplicity.
The likelihood function will now be the conditional density )./( xf
, /( , ) ( ) ( )Xf f f x    Xx
Also we have the Bayes rule
/
/
/
/
( ) ( / )
( / )
( )
( ) ( / )
( ) ( / )

 

 
  
 

 
 



D
f f
f
f
f f
f f d
X
X
X
X
X
x
x
x
x
x
where / ( )f  X is the a posteriori density function
Example: Let X be Gaussian random samples with unknown mean  and variance 1. Given
~ (0,1) N . Find the a posteriori PDF / ( / )f xX for a single observation x.
Solution: We have
21
2
( )
2




 
e
f ,
21
( )
2
/ ( / )
2



 
 
x
X
e
f x
Parameter 
with density
)(f
/
Obervation
( / )f  X
x
x
2 2
2
2
2 2
2 2
2
2
2
2
2
2 2
2
2
1 1
( )
2 2
1
2
1
( 2 )
2 4 2 4
1
( )1 1 22
2( 2 ) 2
1
2( 2 )
1 1
( )
2 2
/ 1
2( 2 )
(
( )
2 2
2 2
2 2
2 2 1
2
2
2 2
2 2( / )
2 2
 
 



 


 

 

 




 

  

   

    

 
 


  


 
 







 






x
X
x
x
x x
x x
x
x
x
x
X
x
x
e e
f x d
e e
d
e e
d
e e
d
e
e e
f x
e
e
2
)
2
1
2
2
 
The parameter  is a random variable and the estimator ˆ( )X is another random variable.
Estimation error .θˆ  
We associate a cost function or a loss function ),θˆ( C with every estimator .θˆ It represents
the positive penalty with each wrong estimation.
Thus ),θˆ( C is a non-negative function.
The three most popular cost functions are:
Quadratic cost function 2
)θˆ( 
Absolute cost function θˆ
ˆ( )   

2

ˆ( )   
Hit or miss cost function (also called uniform cost function)
minimising means minimising on an average)
Bayesean Risk function or average cost
,
ˆ ˆ( , )C EC θ,θ) C(θ θ) f ( ,θ d dθ
 

 
    X x x
The estimator seeks to minimize the Bayescan Risk.
Case I. Quadratic Cost Function and the Minimum Mean-square Error Estimator
2
θ)-θˆ()θˆ,(θ C
Estimation problem is
Minimize 2
,
ˆ( )θ θ) f ( ,θ d dθ
 

 
  X x x
with respect to θˆ .
This is equivalent to minimizing
 
 










df)dθf(θ)θθ
ddθ)ff(θ)θθ
xxx
xxx
)()|ˆ((
)(|ˆ(
2
2
Since )(xf is always +ve, the above integral will be minimum if the inner integral is minimum.
This results in the problem:
Minimize 


 )dθf(θ)θθ )|ˆ( 2
x
with respect to .ˆ
2
/
ˆ ) 0
ˆθ




  
  (θ θ) f (θ dθX
/
ˆ2 ) 0



    (θ θ) f (θ dθX
1
-
2

2
 
( )C 
/ /
ˆ ) )
 
 
 
  θ f (θ dθ θ f (θ dθX X
/
ˆ )



  θ θ f (θ dθX
θˆ is the conditional mean or mean of the a posteriori density. Since we are minimizing
quadratic cost it is also called minimum mean square error estimator (MMSE).
Salient Points
 Given a priori density function )f (θ and the conditional PDF / ( )fX x ,
 We have to determine a posteriori density / )f (θ X . This is determined form the Bayes
rule:
/
/
/
/
( ) ( )
( )
( )
( ) ( )
( ) ( )
D
f f
f
f
f f
f f d




 
 

 
 




X
X
X
X
X
x
x
x
x
Example Let 1 2, ,...., nX X X be samples of ~ ( ,1)X N  and unknown mean ~ (0,1)N . Find
ˆ
MMSE .
We are given
2
2
2
1
1
2
( )
2
/
1
( )
2
1
( )
2
1
/ )
2
1
( 2 )
















 




i
n
i
i
xn
i
x
n
f e
f ( e
e
X x
Also, /
/
( ) ( )
/ )
( )
 
 
X
f f
f (θ
f
X
X
x
x
x
where
 
 
2
2
1
2 2 2
1
/
( )1
2 2
1
2 2( 1)
( ) ( ) ( / )
2
2
n
i
i
n
i
i
X
x
n
x n x
n
n
f f f d
e
d
e


  






 


 



 








Xx x
 
 
2
2
1
2 2 2
1
2
( )1
2 2
1
/
2 2( 1)
1
2 1
2
/ )
2
1
2
1
ˆ ( / ( ))
1
n
i
i
n
i
i
x
n
x n x
n
n
n n
θ x
n
MMSE
e
f (θ
e
e
n
E
n
x
n









 


 

  
  
 

 




  


X x
X = x

More Related Content

What's hot

Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...
Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...
Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...mathsjournal
 
Applied numerical methods lec5
Applied numerical methods lec5Applied numerical methods lec5
Applied numerical methods lec5Yasser Ahmed
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equationsRifat Rahamatullah
 
01 Notes Introduction Analysis of Algorithms Notes
01 Notes Introduction Analysis of Algorithms Notes01 Notes Introduction Analysis of Algorithms Notes
01 Notes Introduction Analysis of Algorithms NotesAndres Mendez-Vazquez
 
Presentation on application of numerical method in our life
Presentation on application of numerical method in our lifePresentation on application of numerical method in our life
Presentation on application of numerical method in our lifeManish Kumar Singh
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statisticsArif Rahman
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical MethodsTeja Ande
 
The False-Position Method
The False-Position MethodThe False-Position Method
The False-Position MethodTayyaba Abbas
 
What is meaning of epsilon and delta in limits of a function by Arun Umrao
What is meaning of epsilon and delta in limits of a function by Arun UmraoWhat is meaning of epsilon and delta in limits of a function by Arun Umrao
What is meaning of epsilon and delta in limits of a function by Arun Umraossuserd6b1fd
 
Fault tolerant process control
Fault tolerant process controlFault tolerant process control
Fault tolerant process controlSpringer
 
PRML Chapter 4
PRML Chapter 4PRML Chapter 4
PRML Chapter 4Sunwoo Kim
 
Roots of equations
Roots of equationsRoots of equations
Roots of equationsgilandio
 

What's hot (20)

Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...
Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...
Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlin...
 
Applied numerical methods lec5
Applied numerical methods lec5Applied numerical methods lec5
Applied numerical methods lec5
 
Es272 ch4a
Es272 ch4aEs272 ch4a
Es272 ch4a
 
02 Notes Divide and Conquer
02 Notes Divide and Conquer02 Notes Divide and Conquer
02 Notes Divide and Conquer
 
03 notes
03 notes03 notes
03 notes
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
01 Notes Introduction Analysis of Algorithms Notes
01 Notes Introduction Analysis of Algorithms Notes01 Notes Introduction Analysis of Algorithms Notes
01 Notes Introduction Analysis of Algorithms Notes
 
Presentation on application of numerical method in our life
Presentation on application of numerical method in our lifePresentation on application of numerical method in our life
Presentation on application of numerical method in our life
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statistics
 
Unit4
Unit4Unit4
Unit4
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
numerical methods
numerical methodsnumerical methods
numerical methods
 
The False-Position Method
The False-Position MethodThe False-Position Method
The False-Position Method
 
Secant method
Secant methodSecant method
Secant method
 
Es272 ch2
Es272 ch2Es272 ch2
Es272 ch2
 
What is meaning of epsilon and delta in limits of a function by Arun Umrao
What is meaning of epsilon and delta in limits of a function by Arun UmraoWhat is meaning of epsilon and delta in limits of a function by Arun Umrao
What is meaning of epsilon and delta in limits of a function by Arun Umrao
 
Operations Research - Simplex Method Principles
Operations Research - Simplex Method PrinciplesOperations Research - Simplex Method Principles
Operations Research - Simplex Method Principles
 
Fault tolerant process control
Fault tolerant process controlFault tolerant process control
Fault tolerant process control
 
PRML Chapter 4
PRML Chapter 4PRML Chapter 4
PRML Chapter 4
 
Roots of equations
Roots of equationsRoots of equations
Roots of equations
 

Viewers also liked

Viewers also liked (6)

After quiz 2
After quiz 2After quiz 2
After quiz 2
 
Assignment for practice
Assignment for practiceAssignment for practice
Assignment for practice
 
Ee693 sept2014quizgt2
Ee693 sept2014quizgt2Ee693 sept2014quizgt2
Ee693 sept2014quizgt2
 
Ee693 sept2014quizgt1
Ee693 sept2014quizgt1Ee693 sept2014quizgt1
Ee693 sept2014quizgt1
 
Before quiz 2
Before quiz 2Before quiz 2
Before quiz 2
 
Trees gt(1)
Trees gt(1)Trees gt(1)
Trees gt(1)
 

Similar to Estimationtheory2

Bias-variance decomposition in Random Forests
Bias-variance decomposition in Random ForestsBias-variance decomposition in Random Forests
Bias-variance decomposition in Random ForestsGilles Louppe
 
A new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributionsA new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributionsFrank Nielsen
 
Tree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptionsTree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptionsGilles Louppe
 
Mit2 092 f09_lec23
Mit2 092 f09_lec23Mit2 092 f09_lec23
Mit2 092 f09_lec23Rahman Hakim
 
Kernels and Support Vector Machines
Kernels and Support Vector  MachinesKernels and Support Vector  Machines
Kernels and Support Vector MachinesEdgar Marca
 
Chapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxChapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxVimalMehta19
 
Chapter-4 combined.pptx
Chapter-4 combined.pptxChapter-4 combined.pptx
Chapter-4 combined.pptxHamzaHaji6
 
Basic Cal - Quarter 1 Week 1-2.pptx
Basic Cal - Quarter 1 Week 1-2.pptxBasic Cal - Quarter 1 Week 1-2.pptx
Basic Cal - Quarter 1 Week 1-2.pptxjamesvalenzuela6
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningzukun
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3MuhannadSaleh
 
Estimation Methods.pptx
Estimation Methods.pptxEstimation Methods.pptx
Estimation Methods.pptxssuser23a30e
 
Conditional Random Fields
Conditional Random FieldsConditional Random Fields
Conditional Random Fieldslswing
 
Chapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability DistributionsChapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability DistributionsJasonTagapanGulla
 
Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdfRajaSekaran923497
 
Lecture 1 maximum likelihood
Lecture 1 maximum likelihoodLecture 1 maximum likelihood
Lecture 1 maximum likelihoodAnant Dashpute
 

Similar to Estimationtheory2 (20)

SAS Homework Help
SAS Homework HelpSAS Homework Help
SAS Homework Help
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
Bias-variance decomposition in Random Forests
Bias-variance decomposition in Random ForestsBias-variance decomposition in Random Forests
Bias-variance decomposition in Random Forests
 
A new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributionsA new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributions
 
Tree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptionsTree models with Scikit-Learn: Great models with little assumptions
Tree models with Scikit-Learn: Great models with little assumptions
 
1 - Linear Regression
1 - Linear Regression1 - Linear Regression
1 - Linear Regression
 
Mit2 092 f09_lec23
Mit2 092 f09_lec23Mit2 092 f09_lec23
Mit2 092 f09_lec23
 
Kernels and Support Vector Machines
Kernels and Support Vector  MachinesKernels and Support Vector  Machines
Kernels and Support Vector Machines
 
Chapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxChapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptx
 
Chapter-4 combined.pptx
Chapter-4 combined.pptxChapter-4 combined.pptx
Chapter-4 combined.pptx
 
Basic Cal - Quarter 1 Week 1-2.pptx
Basic Cal - Quarter 1 Week 1-2.pptxBasic Cal - Quarter 1 Week 1-2.pptx
Basic Cal - Quarter 1 Week 1-2.pptx
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
Estimation Methods.pptx
Estimation Methods.pptxEstimation Methods.pptx
Estimation Methods.pptx
 
Stochastic Processes - part 6
Stochastic Processes - part 6Stochastic Processes - part 6
Stochastic Processes - part 6
 
Conditional Random Fields
Conditional Random FieldsConditional Random Fields
Conditional Random Fields
 
Chapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability DistributionsChapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability Distributions
 
Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdf
 
Lecture 1 maximum likelihood
Lecture 1 maximum likelihoodLecture 1 maximum likelihood
Lecture 1 maximum likelihood
 
pattern recognition
pattern recognition pattern recognition
pattern recognition
 

More from Gopi Saiteja

More from Gopi Saiteja (20)

Topic11 sortingandsearching
Topic11 sortingandsearchingTopic11 sortingandsearching
Topic11 sortingandsearching
 
Heapsort
HeapsortHeapsort
Heapsort
 
Hashing gt1
Hashing gt1Hashing gt1
Hashing gt1
 
Ee693 sept2014quiz1
Ee693 sept2014quiz1Ee693 sept2014quiz1
Ee693 sept2014quiz1
 
Ee693 sept2014midsem
Ee693 sept2014midsemEe693 sept2014midsem
Ee693 sept2014midsem
 
Ee693 questionshomework
Ee693 questionshomeworkEe693 questionshomework
Ee693 questionshomework
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
 
Cs105 l15-bucket radix
Cs105 l15-bucket radixCs105 l15-bucket radix
Cs105 l15-bucket radix
 
Chapter11 sorting algorithmsefficiency
Chapter11 sorting algorithmsefficiencyChapter11 sorting algorithmsefficiency
Chapter11 sorting algorithmsefficiency
 
Answers withexplanations
Answers withexplanationsAnswers withexplanations
Answers withexplanations
 
Sorting
SortingSorting
Sorting
 
Solution(1)
Solution(1)Solution(1)
Solution(1)
 
Pthread
PthreadPthread
Pthread
 
Open mp
Open mpOpen mp
Open mp
 
Introduction
IntroductionIntroduction
Introduction
 
Cuda
CudaCuda
Cuda
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
Statistical signal processing(1)
Statistical signal processing(1)Statistical signal processing(1)
Statistical signal processing(1)
 
Prob review
Prob reviewProb review
Prob review
 
1 slides
1 slides1 slides
1 slides
 

Recently uploaded

VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Unveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystUnveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystSamantha Rae Coolbeth
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxEmmanuel Dauda
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfgstagge
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdfHuman37
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...soniya singh
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubaihf8803863
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfSocial Samosa
 
Low Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service Bhilai
Low Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service BhilaiLow Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service Bhilai
Low Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service BhilaiSuhani Kapoor
 
Call Girls In Mahipalpur O9654467111 Escorts Service
Call Girls In Mahipalpur O9654467111  Escorts ServiceCall Girls In Mahipalpur O9654467111  Escorts Service
Call Girls In Mahipalpur O9654467111 Escorts ServiceSapana Sha
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiVIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiSuhani Kapoor
 

Recently uploaded (20)

VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
Unveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystUnveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data Analyst
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptx
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdf
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
 
Low Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service Bhilai
Low Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service BhilaiLow Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service Bhilai
Low Rate Call Girls Bhilai Anika 8250192130 Independent Escort Service Bhilai
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
Call Girls In Mahipalpur O9654467111 Escorts Service
Call Girls In Mahipalpur O9654467111  Escorts ServiceCall Girls In Mahipalpur O9654467111  Escorts Service
Call Girls In Mahipalpur O9654467111 Escorts Service
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiVIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
 

Estimationtheory2

  • 1. Maximum Likelihood Estimator (MLE) Suppose 1 2, ,..., nX X X are random samples with the joint probability density function 1 2, ,..., / 1 2( , ,..., )nX X X nf x x x which depends on an unknown nonrandom parameter  . / 1 2( , , ..., / )nf x x x X is called the likelihood function. If 1 2, ,..., nX X X are discrete, then the likelihood function will be a joint probability mass function. We represent the concerned random variables and their values in vector notation by 1 2[ ... ]nX X X X and 1 2[ ... ]nx x x x respectively. Note that /( / ) ln ( / )L f   Xx x is the log likelihood function. As a function of the random variables, the likelihood and log-likelihood functions are random variables. The maximum likelihood estimator ˆ MLE is such an estimator that / 1 2 / 1 2 ˆ( , ,..., / ) ( , ,..., / ),n MLE nf x x x f x x x    X X If the likelihood function is differentiable with respect to  , then ˆ MLE is given by MLE ˆ/ θ ( / ) 0f       X x or 0 θ )|L( MLEθˆ    x Thus the MLE is given by the solution of the likelihood equation given above. If we have k unknown parameters given by 1 2 k                θ Then MLE is given by a set of conditions. 1 1 2 2 ˆ ˆ ˆ1 2 L( / ) L( / ) L( / ) .... 0 θ θ θ MLE MLE k kMLE k                         x x x
  • 2. Sinceln( ( / ))L x is a monotonic function of the argument, it is convenient to express the MLE conditions in terms of the log-likelihood function. The condition is now given by 1 1 2 2 ˆ ˆ ˆ1 2 (L( / )) (L( / )) (L( / )) .... 0 θ θ θ MLE MLE k kMLE k Ln Ln Ln                           x x x Example 10: Let 1 2, ,..., nX X X are independent identically distributed sequence of 2 ( , )N   distributed random variables. Find MLE for  and 2  . 2 2 1 2/ , ( , ,..., / , )nf x x x   X = 2 1 2 1 1 2 ix n i e             2 2 2 / , ( / , ) ln ( / , )L f       X x x = 2 1 1 ln 2 ln - 2 n i i x n n              ˆ 1 0 ˆ( ) 0 MLE n i MLE i L x           2 2 ˆ 2 2 4 0 ˆ( ) 0 ˆ ˆ MLE MLEi MLE MLE L xn               Solving we get   1 22 1 1 ˆ 1 ˆ ˆ n MLE i i n MLE i MLE i x and n x n           Example 11: Let 1 2, ,..., nX X X are independent identically distributed random samples with
  • 3. 1/ 1 ( ) - 2 x Xf x e x          Show that 1 2( , ,..., )nX X Xmedian is the MLE for . 1 1 2, ,...., / 1 2 1 ( , ,...., ) 2 n i i n x X X X n n f x x x e       / 1 ( / ) ln ( ) ln2 n i i L f n x         Xx x 1 n i i x    is minimized by 21, ,( ..., )nxmedian x x 21, ,ˆ ( ..., )MLE nxmedian x x  Properties of MLE (1) MLE may be biased or unbiased. In Example 4, ˆMLE is unbiased where as 2 ˆMLE is a biased estimator. (2) If an efficient estimator exists, the MLE estimator is the efficient estimator. Supposes an efficient estimator θˆ exists . Then ˆ( / ) ( )L x c        at ˆ ,MLE  ˆ ( / ) 0 ˆ ˆ( ) 0 ˆ ˆθ MLE MLE MLE L x c               (3) The MLE is asymptotically unbiased and efficient. Thus for large n, the MLE is approximately efficient. (4) Invariance Properties of MLE It is a remarkable property of the MLE and not shaerd by other estimators. If ˆ MLE is the MLE of  and ( )h  is a function, then ˆ( )MLEh  is the MLE of ( )h  . (5) ˆ MLE is a consistent estimator of 
  • 4. Proof: Suppose 0 is the true value of  Given the iid observations 1 2, 3, ,......, nX X X X the sample average of the log-likelihood function is given by    / 1 1 ln n n X i i L f X n     ˆ MLE maximizes  nL  .          0 0 / / / Let ln = ln i X i X i X i i L E f X f x f x dx          Note that the expectation is carried out with respect to true value 0 According to WLLN     (1)p nL L   Now we show thjat    0nL L  Note that    0nL L                          0 0 0 0 0 0 0 0 0 / / / / / / / / / 0 ln ln ln 1 log t t-1 = 1 1 1 0 0 X X X X X X X X X n E f X E f X f X E f X f X E f X f X f x dx f X L L                                                      In other words  L  is maximum at 0  Now from (1)    p nL L 
  • 6. Bayesean Estimators We may have some prior information about  in a sense that some values of  are more likely (a priori information). We can represent this prior information in the form of a prior density function. In the following we omit the suffix in density functions just for notational simplicity. The likelihood function will now be the conditional density )./( xf , /( , ) ( ) ( )Xf f f x    Xx Also we have the Bayes rule / / / / ( ) ( / ) ( / ) ( ) ( ) ( / ) ( ) ( / )                    D f f f f f f f f d X X X X X x x x x x where / ( )f  X is the a posteriori density function Example: Let X be Gaussian random samples with unknown mean  and variance 1. Given ~ (0,1) N . Find the a posteriori PDF / ( / )f xX for a single observation x. Solution: We have 21 2 ( ) 2       e f , 21 ( ) 2 / ( / ) 2        x X e f x Parameter  with density )(f / Obervation ( / )f  X x x
  • 7. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 ( ) 2 2 1 2 1 ( 2 ) 2 4 2 4 1 ( )1 1 22 2( 2 ) 2 1 2( 2 ) 1 1 ( ) 2 2 / 1 2( 2 ) ( ( ) 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2( / ) 2 2                                                                        x X x x x x x x x x x x X x x e e f x d e e d e e d e e d e e e f x e e 2 ) 2 1 2 2   The parameter  is a random variable and the estimator ˆ( )X is another random variable. Estimation error .θˆ   We associate a cost function or a loss function ),θˆ( C with every estimator .θˆ It represents the positive penalty with each wrong estimation. Thus ),θˆ( C is a non-negative function. The three most popular cost functions are: Quadratic cost function 2 )θˆ(  Absolute cost function θˆ ˆ( )     2  ˆ( )   
  • 8. Hit or miss cost function (also called uniform cost function) minimising means minimising on an average) Bayesean Risk function or average cost , ˆ ˆ( , )C EC θ,θ) C(θ θ) f ( ,θ d dθ          X x x The estimator seeks to minimize the Bayescan Risk. Case I. Quadratic Cost Function and the Minimum Mean-square Error Estimator 2 θ)-θˆ()θˆ,(θ C Estimation problem is Minimize 2 , ˆ( )θ θ) f ( ,θ d dθ        X x x with respect to θˆ . This is equivalent to minimizing               df)dθf(θ)θθ ddθ)ff(θ)θθ xxx xxx )()|ˆ(( )(|ˆ( 2 2 Since )(xf is always +ve, the above integral will be minimum if the inner integral is minimum. This results in the problem: Minimize     )dθf(θ)θθ )|ˆ( 2 x with respect to .ˆ 2 / ˆ ) 0 ˆθ          (θ θ) f (θ dθX / ˆ2 ) 0        (θ θ) f (θ dθX 1 - 2  2   ( )C 
  • 9. / / ˆ ) )         θ f (θ dθ θ f (θ dθX X / ˆ )      θ θ f (θ dθX θˆ is the conditional mean or mean of the a posteriori density. Since we are minimizing quadratic cost it is also called minimum mean square error estimator (MMSE). Salient Points  Given a priori density function )f (θ and the conditional PDF / ( )fX x ,  We have to determine a posteriori density / )f (θ X . This is determined form the Bayes rule: / / / / ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) D f f f f f f f f d                  X X X X X x x x x Example Let 1 2, ,...., nX X X be samples of ~ ( ,1)X N  and unknown mean ~ (0,1)N . Find ˆ MMSE . We are given 2 2 2 1 1 2 ( ) 2 / 1 ( ) 2 1 ( ) 2 1 / ) 2 1 ( 2 )                       i n i i xn i x n f e f ( e e X x Also, / / ( ) ( ) / ) ( )     X f f f (θ f X X x x x where
  • 10.     2 2 1 2 2 2 1 / ( )1 2 2 1 2 2( 1) ( ) ( ) ( / ) 2 2 n i i n i i X x n x n x n n f f f d e d e                               Xx x     2 2 1 2 2 2 1 2 ( )1 2 2 1 / 2 2( 1) 1 2 1 2 / ) 2 1 2 1 ˆ ( / ( )) 1 n i i n i i x n x n x n n n n θ x n MMSE e f (θ e e n E n x n                                     X x X = x