Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This talk gives an introduction to tree-based methods, both from a theoretical and practical point of view. It covers decision trees, random forests and boosting estimators, along with concrete examples based on Scikit-Learn about how they work, when they work and why they work.