SlideShare a Scribd company logo
1 of 21
Chapter 3
Random Variables and Probability Distributions
3.1 Concept of a Random Variable:
· In a statistical experiment, it is often very important to
allocate numerical values to the outcomes.
Example:
· Experiment: testing two components. (D=defective,
N=non-defective)
· Sample space: S={DD,DN,ND,NN}
· Let X = number of defective components when two
components are tested.
· Assigned numerical values to the outcomes are:
Sample point
(Outcome)
Assigned
Numerical Value (x)
DD 2
DN 1
ND 1
NN 0
Notice that, the set of all possible values of the random
variable X is {0, 1, 2}.
Definition 3.1:
A random variable X is a function that associates each element
in the sample space with a real number (i.e., X : S  R.)
Notation: " X " denotes the random variable .
" x " denotes a value of the random variable X.
Types of Random Variables:
· A random variable X is called a discrete random
variable if its set of possible values is countable, i.e.,
.x  {x1, x2, …, xn} or x  {x1, x2, …}
· A random variable X is called a continuous random
variable if it can take values on a continuous scale, i.e.,
.x  {x: a < x < b; a, b R}
· In most practical problems:
o A discrete random variable represents count data, such
as the number of defectives in a sample of k items.
o A continuous random variable represents measured
data, such as height.
3.2 Discrete Probability Distributions
· A discrete random variable X assumes each of its values
with a certain probability.
Example:
· Experiment: tossing a non-balance coin 2 times
independently.
· H= head , T=tail
· Sample space: S={HH, HT, TH, TT}
· Suppose P(H)=½P(T)  P(H)=1/3 and P(T)=2/3
· Let X= number of heads
Sample point
(Outcome)
Probability Value of X
(x)
HH P(HH)=P(H) P(H)=1/31/3 = 1/9 2
HT P(HT)=P(H) P(T)=1/32/3 = 2/9 1
TH P(TH)=P(T) P(H)=2/31/3 = 2/9 1
TT P(TT)=P(T) P(T)=2/32/3 = 4/9 0
· The possible values of X are: 0, 1, and 2.
· X is a discrete random variable.
· Define the following events:
Event (X=x) Probability = P(X=x)
(X=0)={TT} P(X=0) = P(TT)=4/9
(X=1)={HT,TH} P(X=1) =P(HT)+P(TH)=2/9+2/9=4/9
(X=2)={HH} P(X=2) = P(HH)= 1/9
· The possible values of X with their probabilities are:
X 0 1 2 Total
P(X=x)=f(x) 4/9 4/9 1/9 1.00
The function f(x)=P(X=x) is called the probability function
(probability distribution) of the discrete random variable X.
Definition 3.4:
The function f(x) is a probability function of a discrete random
variable X if, for each possible values x, we have:
1) f(x)  0
2)
3) f(x)= P(X=x)
1
)
( 

x
all
x
f
Note:

 





A
x
all
A
x
all
)
x
X
(
P
)
x
(
f
)
A
P(X
Example:
For the previous example, we have:
1/9
4/9
4/9
f(x)= P(X=x)
Total
2
1
0
X
1
)
(
2
0



x
x
f
P(X<1) = P(X=0)=4/9
P(X1) = P(X=0) + P(X=1) = 4/9+4/9 = 8/9
P(X0.5) = P(X=1) + P(X=2) = 4/9+1/9 = 5/9
P(X>8) = P() = 0
P(X<10) = P(X=0) + P(X=1) + P(X=2) = P(S) = 1
Example 3.3:
A shipment of 8 similar microcomputers
to a retail outlet contains 3 that are
defective and 5 are non-defective.
If a school makes a random purchase of 2
of these computers, find the probability
distribution of the number of defectives.
Solution:
We need to find the probability distribution of the random
variable: X = the number of defective computers purchased.
Experiment: selecting 2 computers at random out of 8
n(S) = equally likely outcomes








2
8
The possible values of X are: x=0, 1, 2.
Consider the events:






















2
5
0
3
0)
n(X
2N}
and
{0D
0)
(X






















1
5
1
3
1)
n(X
1N}
and
{1D
1)
(X






















0
5
2
3
2)
n(X
0N}
and
{2D
2)
(X
28
10
2
8
2
5
0
3
)
S
(
n
)
0
X
(
n
)
0
X
(
P
)
0
(
f 






























28
15
2
8
1
5
1
3
)
S
(
n
)
1
X
(
n
)
1
X
(
P
)
1
(
f 






























28
3
2
8
0
5
2
3
)
S
(
n
)
2
X
(
n
)
2
X
(
P
)
2
(
f 






























In general, for x=0,1, 2, we have:































2
8
x
2
5
x
3
)
S
(
n
)
x
X
(
n
)
x
X
(
P
)
x
(
f
The probability distribution of X is:
x 0 1 2 Total
f(x)= P(X=x)
28
10
28
15
28
3







































otherwise
x
x
x
x
X
P
x
f
;
0
2
,
1
,
0
;
2
8
2
5
3
)
(
)
( Hypergeometric
Distribution
Definition 3.5:
The cumulative distribution function (CDF), F(x), of a discrete
random variable X with the probability function f(x) is given by:
;
)
t
X
(
P
)
t
(
f
)
x
P(X
F(x)
x
t
x
t

 






 for <x<
1.00
Example:
Find the CDF of the random variable X with the probability
function:
X 0 1 2
F(x)
28
10
28
15
28
3
Solution:
F(x)=P(Xx) for <x<
For x<0: F(x)=0
For 0x<1: F(x)=P(X=0)=
28
10
28
25
28
15
28
10


For 1x<2: F(x)=P(X=0)+P(X=1)=
For x2: F(x)=P(X=0)+P(X=1)+P(X=2)= 1
28
3
28
15
28
10



The CDF of the random variable X is:


















2
;
1
2
1
;
28
25
1
0
;
28
10
0
;
0
)
(
)
(
x
x
x
x
x
X
P
x
F
Note:
F(0.5) = P(X0.5)=0
F(1.5)=P(X1.5)=F(1) =
F(3.8) =P(X3.8)=F(2)= 1
28
25
Result:
P(a < X  b) = P(X  b)  P(X  a) = F(b)  F(a)
P(a  X  b) = P(a < X  b) + P(X=a) = F(b)  F(a) + f(a)
P(a < X < b) = P(a < X  b)  P(X=b) = F(b)  F(a)  f(b)
Result:
Suppose that the probability function of X is:
x x1 x2 x3 … xn
F(x) f(x1) f(x2) f(x3) … f(xn)
Where x1< x2< … < xn. Then:
F(xi) = f(x1) + f(x2) + … + f(xi) ; i=1, 2, …, n
F(xi) = F(xi 1 ) + f(xi) ; i=2, …, n
f(xi) = F(xi)  F(xi 1 )
Example:
In the previous example,
P(0.5 < X  1.5) = F(1.5)  F(0.5) =
P(1 < X  2) = F(2)  F(1) =
28
15
28
10
28
25


28
3
28
25
1 

3.3. Continuous Probability Distributions
For any continuous random variable, X, there exists a non-
negative function f(x), called the probability density function
(p.d.f) through which we can find probabilities of events
expressed in term of X.
f: R  [0, )
P(a < X < b) =
= area under the curve
of f(x) and over the
interval (a,b)
P(XA) =
= area under the curve
of f(x) and over the
region A

b
a
dx
f(x)

A
dx
f(x)
Definition 3.6:
The function f(x) is a probability density function (pdf) for a
continuous random variable X, defined on the set of real
numbers, if:
1. f(x)  0  x R
2.
3. P(a  X  b) =  a, b R; ab
1
dx
f(x)
-





b
a
dx
f(x)
Note:
For a continuous random variable X, we have:
1. f(x)  P(X=x) (in general)
2. P(X=a) = 0 for any aR
3. P(a  X  b)= P(a < X  b)= P(a  X < b)= P(a < X < b)
4. P(XA) =

A
dx
f(x)


1  


d
x x f a
r
e
a T
o
t
a
l  
 





b
a
dx
x
f
b
X
a
P
area
 
 





b
dx
x
f
b
X
P
area  
 
 




a
dx
x
f
a
X
P
area
Example 3.6:
Suppose that the error in the reaction temperature, in oC, for a
controlled laboratory experiment is a continuous random
variable X having the following probability density function:









elsewhere
x
x
x
f
;
0
2
1
;
3
1
)
(
2
1. Verify that (a) f(x)  0 and (b)
2. Find P(0<X1)
1
dx
f(x)
-




Solution:
X = the error in the reaction
temperature in oC.
X is continuous r. v.









elsewhere
x
x
x
f
;
0
2
1
;
3
1
)
(
2
1. (a) f(x)  0 because f(x) is a quadratic function.
(b) 











2
2
1
-
2
1
-
-
dx
0
dx
x
3
1
dx
0
dx
f(x)










  1
x
2
x
x
9
1
dx
x
3
1 3
2
1
-
2
1
))
1
(
8
(
9
1




2. P(0<X1) = 


1
0
2
1
0
dx
3
1
dx
f(x) x









0
x
1
x
x
9
1 3
))
0
(
1
(
9
1


9
1

Definition 3.7:
The cumulative distribution function (CDF), F(x), of a continuous
random variable X with probability density function f(x) is given
by:
F(x) = P(Xx)= for <x<
;
dt
f(t)
x
-


Result:
P(a < X  b) = P(X  b)  P(X  a) = F(b)  F(a)
Example:
in Example 3.6,
1.Find the CDF
2.Using the CDF, find P(0<X1).
Solution:









elsewhere
x
x
x
f
;
0
2
1
;
3
1
)
(
2
For x< 1:
F(x) = 0
dt
0
dt
f(t)
-
-






x
x
For 1x<2:
F(x) = 







x
x
t
1
-
2
1
-
-
dt
3
1
dt
0
dt
f(t)


x
1
-
2
dt
t
3
1
)
1
x
(
9
1
))
1
(
x
(
9
1
1
t
x
t
t
9
1 3
3
3















For x2:
F(x) = =
dt
0
dt
t
3
1
dt
0
dt
f(t)
x
2
2
1
-
2
1
-
x
-



 





1
dt
t
3
1
2
1
-
2


Therefore, the CDF is:

















2
;
1
2
1
;
)
1
(
9
1
1
;
0
)
(
)
( 3
x
x
x
x
x
X
P
x
F
2. Using the CDF,
P(0<X1) = F(1)  F(0) =
9
1
9
1
9
2



More Related Content

Similar to Chapter 3 – Random Variables and Probability Distributions

Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notesRohan Bhatkar
 
Chapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxChapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxVimalMehta19
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...IOSR Journals
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementationQuasar Chunawala
 
random variables-descriptive and contincuous
random variables-descriptive and contincuousrandom variables-descriptive and contincuous
random variables-descriptive and contincuousar9530
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfCarlosLazo45
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Propertyinventionjournals
 
Multivriada ppt ms
Multivriada   ppt msMultivriada   ppt ms
Multivriada ppt msFaeco Bot
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statisticsArif Rahman
 
somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013Somenath Bandyopadhyay
 
Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdfRajaSekaran923497
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...OctavianPostavaru
 

Similar to Chapter 3 – Random Variables and Probability Distributions (20)

Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notes
 
Chapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxChapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptx
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
 
Distributions
DistributionsDistributions
Distributions
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
random variables-descriptive and contincuous
random variables-descriptive and contincuousrandom variables-descriptive and contincuous
random variables-descriptive and contincuous
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
 
Multivriada ppt ms
Multivriada   ppt msMultivriada   ppt ms
Multivriada ppt ms
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statistics
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
Random Variable
Random Variable Random Variable
Random Variable
 
somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013
 
U unit7 ssb
U unit7 ssbU unit7 ssb
U unit7 ssb
 
Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdf
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...
 

Recently uploaded

Call Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts ServiceCall Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts ServiceSapana Sha
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfBoston Institute of Analytics
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 217djon017
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfSocial Samosa
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectBoston Institute of Analytics
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxEmmanuel Dauda
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPTBoston Institute of Analytics
 
MK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxMK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxUnduhUnggah1
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfgstagge
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfchwongval
 
Defining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryDefining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryJeremy Anderson
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptSonatrach
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)jennyeacort
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 

Recently uploaded (20)

Call Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts ServiceCall Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts Service
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2Easter Eggs From Star Wars and in cars 1 and 2
Easter Eggs From Star Wars and in cars 1 and 2
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis Project
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptx
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
 
MK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxMK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docx
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdf
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdf
 
Defining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryDefining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data Story
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 

Chapter 3 – Random Variables and Probability Distributions

  • 1. Chapter 3 Random Variables and Probability Distributions 3.1 Concept of a Random Variable: · In a statistical experiment, it is often very important to allocate numerical values to the outcomes. Example: · Experiment: testing two components. (D=defective, N=non-defective) · Sample space: S={DD,DN,ND,NN} · Let X = number of defective components when two components are tested. · Assigned numerical values to the outcomes are:
  • 2. Sample point (Outcome) Assigned Numerical Value (x) DD 2 DN 1 ND 1 NN 0 Notice that, the set of all possible values of the random variable X is {0, 1, 2}. Definition 3.1: A random variable X is a function that associates each element in the sample space with a real number (i.e., X : S  R.) Notation: " X " denotes the random variable . " x " denotes a value of the random variable X.
  • 3. Types of Random Variables: · A random variable X is called a discrete random variable if its set of possible values is countable, i.e., .x  {x1, x2, …, xn} or x  {x1, x2, …} · A random variable X is called a continuous random variable if it can take values on a continuous scale, i.e., .x  {x: a < x < b; a, b R} · In most practical problems: o A discrete random variable represents count data, such as the number of defectives in a sample of k items. o A continuous random variable represents measured data, such as height.
  • 4. 3.2 Discrete Probability Distributions · A discrete random variable X assumes each of its values with a certain probability. Example: · Experiment: tossing a non-balance coin 2 times independently. · H= head , T=tail · Sample space: S={HH, HT, TH, TT} · Suppose P(H)=½P(T)  P(H)=1/3 and P(T)=2/3 · Let X= number of heads Sample point (Outcome) Probability Value of X (x) HH P(HH)=P(H) P(H)=1/31/3 = 1/9 2 HT P(HT)=P(H) P(T)=1/32/3 = 2/9 1 TH P(TH)=P(T) P(H)=2/31/3 = 2/9 1 TT P(TT)=P(T) P(T)=2/32/3 = 4/9 0
  • 5. · The possible values of X are: 0, 1, and 2. · X is a discrete random variable. · Define the following events: Event (X=x) Probability = P(X=x) (X=0)={TT} P(X=0) = P(TT)=4/9 (X=1)={HT,TH} P(X=1) =P(HT)+P(TH)=2/9+2/9=4/9 (X=2)={HH} P(X=2) = P(HH)= 1/9 · The possible values of X with their probabilities are: X 0 1 2 Total P(X=x)=f(x) 4/9 4/9 1/9 1.00 The function f(x)=P(X=x) is called the probability function (probability distribution) of the discrete random variable X.
  • 6. Definition 3.4: The function f(x) is a probability function of a discrete random variable X if, for each possible values x, we have: 1) f(x)  0 2) 3) f(x)= P(X=x) 1 ) (   x all x f Note:         A x all A x all ) x X ( P ) x ( f ) A P(X Example: For the previous example, we have: 1/9 4/9 4/9 f(x)= P(X=x) Total 2 1 0 X 1 ) ( 2 0    x x f
  • 7. P(X<1) = P(X=0)=4/9 P(X1) = P(X=0) + P(X=1) = 4/9+4/9 = 8/9 P(X0.5) = P(X=1) + P(X=2) = 4/9+1/9 = 5/9 P(X>8) = P() = 0 P(X<10) = P(X=0) + P(X=1) + P(X=2) = P(S) = 1 Example 3.3: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective. If a school makes a random purchase of 2 of these computers, find the probability distribution of the number of defectives. Solution: We need to find the probability distribution of the random variable: X = the number of defective computers purchased. Experiment: selecting 2 computers at random out of 8 n(S) = equally likely outcomes         2 8
  • 8. The possible values of X are: x=0, 1, 2. Consider the events:                       2 5 0 3 0) n(X 2N} and {0D 0) (X                       1 5 1 3 1) n(X 1N} and {1D 1) (X                       0 5 2 3 2) n(X 0N} and {2D 2) (X 28 10 2 8 2 5 0 3 ) S ( n ) 0 X ( n ) 0 X ( P ) 0 ( f                               
  • 10. The probability distribution of X is: x 0 1 2 Total f(x)= P(X=x) 28 10 28 15 28 3                                        otherwise x x x x X P x f ; 0 2 , 1 , 0 ; 2 8 2 5 3 ) ( ) ( Hypergeometric Distribution Definition 3.5: The cumulative distribution function (CDF), F(x), of a discrete random variable X with the probability function f(x) is given by: ; ) t X ( P ) t ( f ) x P(X F(x) x t x t           for <x< 1.00
  • 11. Example: Find the CDF of the random variable X with the probability function: X 0 1 2 F(x) 28 10 28 15 28 3 Solution: F(x)=P(Xx) for <x< For x<0: F(x)=0 For 0x<1: F(x)=P(X=0)= 28 10 28 25 28 15 28 10   For 1x<2: F(x)=P(X=0)+P(X=1)= For x2: F(x)=P(X=0)+P(X=1)+P(X=2)= 1 28 3 28 15 28 10   
  • 12. The CDF of the random variable X is:                   2 ; 1 2 1 ; 28 25 1 0 ; 28 10 0 ; 0 ) ( ) ( x x x x x X P x F Note: F(0.5) = P(X0.5)=0 F(1.5)=P(X1.5)=F(1) = F(3.8) =P(X3.8)=F(2)= 1 28 25 Result: P(a < X  b) = P(X  b)  P(X  a) = F(b)  F(a) P(a  X  b) = P(a < X  b) + P(X=a) = F(b)  F(a) + f(a) P(a < X < b) = P(a < X  b)  P(X=b) = F(b)  F(a)  f(b)
  • 13. Result: Suppose that the probability function of X is: x x1 x2 x3 … xn F(x) f(x1) f(x2) f(x3) … f(xn) Where x1< x2< … < xn. Then: F(xi) = f(x1) + f(x2) + … + f(xi) ; i=1, 2, …, n F(xi) = F(xi 1 ) + f(xi) ; i=2, …, n f(xi) = F(xi)  F(xi 1 ) Example: In the previous example, P(0.5 < X  1.5) = F(1.5)  F(0.5) = P(1 < X  2) = F(2)  F(1) = 28 15 28 10 28 25   28 3 28 25 1  
  • 14. 3.3. Continuous Probability Distributions For any continuous random variable, X, there exists a non- negative function f(x), called the probability density function (p.d.f) through which we can find probabilities of events expressed in term of X. f: R  [0, ) P(a < X < b) = = area under the curve of f(x) and over the interval (a,b) P(XA) = = area under the curve of f(x) and over the region A  b a dx f(x)  A dx f(x)
  • 15. Definition 3.6: The function f(x) is a probability density function (pdf) for a continuous random variable X, defined on the set of real numbers, if: 1. f(x)  0  x R 2. 3. P(a  X  b) =  a, b R; ab 1 dx f(x) -      b a dx f(x) Note: For a continuous random variable X, we have: 1. f(x)  P(X=x) (in general) 2. P(X=a) = 0 for any aR 3. P(a  X  b)= P(a < X  b)= P(a  X < b)= P(a < X < b) 4. P(XA) =  A dx f(x)
  • 16.   1     d x x f a r e a T o t a l          b a dx x f b X a P area          b dx x f b X P area           a dx x f a X P area
  • 17. Example 3.6: Suppose that the error in the reaction temperature, in oC, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:          elsewhere x x x f ; 0 2 1 ; 3 1 ) ( 2 1. Verify that (a) f(x)  0 and (b) 2. Find P(0<X1) 1 dx f(x) -     Solution: X = the error in the reaction temperature in oC. X is continuous r. v.          elsewhere x x x f ; 0 2 1 ; 3 1 ) ( 2
  • 18. 1. (a) f(x)  0 because f(x) is a quadratic function. (b)             2 2 1 - 2 1 - - dx 0 dx x 3 1 dx 0 dx f(x)             1 x 2 x x 9 1 dx x 3 1 3 2 1 - 2 1 )) 1 ( 8 ( 9 1     2. P(0<X1) =    1 0 2 1 0 dx 3 1 dx f(x) x          0 x 1 x x 9 1 3 )) 0 ( 1 ( 9 1   9 1 
  • 19. Definition 3.7: The cumulative distribution function (CDF), F(x), of a continuous random variable X with probability density function f(x) is given by: F(x) = P(Xx)= for <x< ; dt f(t) x -   Result: P(a < X  b) = P(X  b)  P(X  a) = F(b)  F(a) Example: in Example 3.6, 1.Find the CDF 2.Using the CDF, find P(0<X1).
  • 20. Solution:          elsewhere x x x f ; 0 2 1 ; 3 1 ) ( 2 For x< 1: F(x) = 0 dt 0 dt f(t) - -       x x For 1x<2: F(x) =         x x t 1 - 2 1 - - dt 3 1 dt 0 dt f(t)   x 1 - 2 dt t 3 1 ) 1 x ( 9 1 )) 1 ( x ( 9 1 1 t x t t 9 1 3 3 3               
  • 21. For x2: F(x) = = dt 0 dt t 3 1 dt 0 dt f(t) x 2 2 1 - 2 1 - x -           1 dt t 3 1 2 1 - 2   Therefore, the CDF is:                  2 ; 1 2 1 ; ) 1 ( 9 1 1 ; 0 ) ( ) ( 3 x x x x x X P x F 2. Using the CDF, P(0<X1) = F(1)  F(0) = 9 1 9 1 9 2  