SlideShare a Scribd company logo
1 of 33
1
8. One Function of Two Random
Variables
Given two random variables X and Y and a function g(x,y),
we form a new random variable Z as
Given the joint p.d.f how does one obtain
the p.d.f of Z ? Problems of this type are of interest from a
practical standpoint. For example, a receiver output signal
usually consists of the desired signal buried in noise, and
the above formulation in that case reduces to Z = X + Y.
).
,
( Y
X
g
Z 
),
,
( y
x
fXY ),
(z
fZ
(8-1)
PILLAI
2
It is important to know the statistics of the incoming signal
for proper receiver design. In this context, we shall analyze
problems of the following type:
Referring back to (8-1), to start with
)
,
( Y
X
g
Z 
Y
X 
)
/
(
tan 1
Y
X

Y
X 
XY
Y
X /
)
,
max( Y
X
)
,
min( Y
X
2
2
Y
X 
     
  







z
D
y
x
XY
z
Z
dxdy
y
x
f
D
Y
X
P
z
Y
X
g
P
z
Z
P
z
F
,
,
)
,
(
)
,
(
)
,
(
)
(
)
( 
(8-2)
(8-3)
PILLAI
3
where in the XY plane represents the region such
that is satisfied. Note that need not be simply
connected (Fig. 8.1). From (8-3), to determine it is
enough to find the region for every z, and then evaluate
the integral there.
We shall illustrate this method through various examples.
z
D
z
y
x
g 
)
,
(
)
(z
FZ
z
D
z
D
X
Y
z
D
z
D
Fig. 8.1
PILLAI
4
Example 8.1: Z = X + Y. Find
Solution:
since the region of the xy plane where is the
shaded area in Fig. 8.2 to the left of the line
Integrating over the horizontal strip along the x-axis first
(inner integral) followed by sliding that strip along the y-axis
from to (outer integral) we cover the entire shaded
area.
   










 ,
)
,
(
)
(
y
y
z
x
XY
Z dxdy
y
x
f
z
Y
X
P
z
F (8-4)
z
D z
y
x 

.
z
y
x 


 

y
z
x 

x
y
Fig. 8.2
).
(z
fZ
PILLAI
5
We can find by differentiating directly. In this
context, it is useful to recall the differentiation rule in (7-
15) - (7-16) due to Leibnitz. Suppose
Then
Using (8-6) in (8-4) we get
Alternatively, the integration in (8-4) can be carried out first
along the y-axis followed by the x-axis as in Fig. 8.3.
)
(z
FZ
)
(z
fZ


)
(
)
(
.
)
,
(
)
(
z
b
z
a
dx
z
x
h
z
H (8-5)
     




)
(
)
(
.
)
,
(
),
(
)
(
),
(
)
(
)
( z
b
z
a
dx
z
z
x
h
z
z
a
h
dz
z
da
z
z
b
h
dz
z
db
dz
z
dH
(8-6)
( , )
( ) ( , ) ( , ) 0
( , ) .
z y z y
XY
Z XY XY
XY
f x y
f z f x y dx dy f z y y dy
z z
f z y y dy
   
   



  
 
    
   
 
   
 
   
 (8-7)
PILLAI
6
In that case
and differentiation of (8-8)
gives
 







 ,
)
,
(
)
(
x
x
z
y
XY
Z dxdy
y
x
f
z
F (8-8)

 























.
)
,
(
)
,
(
)
(
)
(
x
XY
x
x
z
y
XY
Z
Z
dx
x
z
x
f
dx
dy
y
x
f
z
dz
z
dF
z
f
(8-9)
If X and Y are independent, then
and inserting (8-10) into (8-8) and (8-9), we get
)
(
)
(
)
,
( y
f
x
f
y
x
f Y
X
XY 
.
)
(
)
(
)
(
)
(
)
( 













x
Y
X
y
Y
X
Z dx
x
z
f
x
f
dy
y
f
y
z
f
z
f
(8-10)
(8-11)
x
z
y 

x
y
Fig. 8.3
PILLAI
7
The above integral is the standard convolution of the
functions and expressed two different ways. We
thus reach the following conclusion: If two r.vs are
independent, then the density of their sum equals the
convolution of their density functions.
As a special case, suppose that for and
for then we can make use of Fig. 8.4 to determine the
new limits for
)
(z
fX )
(z
fY
0
)
( 
x
fX 0

x 0
)
( 
y
fY
,
0

y
.
z
D
Fig. 8.4
y
z
x 

x
y
)
0
,
(z
)
,
0
( z
PILLAI
8
In that case
or
On the other hand, by considering vertical strips first in
Fig. 8.4, we get
or
if X and Y are independent random variables.
 




z
y
y
z
x
XY
Z dxdy
y
x
f
z
F
0 0
)
,
(
)
(

















 
 



.
0
,
0
,
0
,
)
,
(
)
,
(
)
( 0
0 0
z
z
dy
y
y
z
f
dy
dx
y
x
f
z
z
f
z
XY
z
y
y
z
x
XY
Z (8-12)










 
 

,
0
,
0
,
0
,
)
(
)
(
)
,
(
)
( 0
0
z
z
dx
x
z
f
x
f
dx
x
z
x
f
z
f
z
y
Y
X
z
x
XY
Z
 




z
x
x
z
y
XY
Z dydx
y
x
f
z
F
0 0
)
,
(
)
(
(8-13)
PILLAI
9
Example 8.2: Suppose X and Y are independent exponential
r.vs with common parameter , and let Z = X + Y.
Determine
Solution: We have
and we can make use of (13) to obtain the p.d.f of Z = X + Y.
As the next example shows, care should be taken in using
the convolution formula for r.vs with finite range.
Example 8.3: X and Y are independent uniform r.vs in the
common interval (0,1). Determine where Z = X + Y.
Solution: Clearly, here, and as Fig. 8.5
shows there are two cases of z for which the shaded areas are
quite different in shape and they should be considered
separately.
),
(
)
(
),
(
)
( y
U
e
y
f
x
U
e
x
f y
Y
x
X



 


 (8-14)
2
0 



 z
Y
X
Z
),
(z
fZ
).
(
)
( 2
0
2
0
)
(
2
z
U
e
z
dx
e
dx
e
e
z
f z
z
z
z
x
z
x
Z






 






 
 (8-15)
).
(z
fZ
PILLAI
10
x
y
y
z
x 

1
0
)
( 
 z
a
x
y
y
z
x 

2
1
)
( 
 z
b
Fig. 8.5
For
For notice that it is easy to deal with the unshaded
region. In that case
,
1
0 
 z
,
2
1 
 z
.
1
0
,
2
)
(
1
)
(
2
0
0 0





 
  



z
z
dy
y
z
dxdy
z
F
z
y
z
y
y
z
x
Z
(8-16)
 
.
2
1
,
2
)
2
(
1
)
1
(
1
1
1
1
)
(
2
1
1
z
1
1
1















 



 

z
z
dy
y
z
dxdy
z
Z
P
z
F
y
z
y y
z
x
Z
(8-17)
PILLAI
11
Using (8-16) - (8-17), we obtain
By direct convolution of and we obtain the
same result as above. In fact, for (Fig. 8.6(a))
and for (Fig. 8.6(b))
Fig 8.6 (c) shows which agrees with the convolution
of two rectangular waveforms as well.










.
2
1
,
2
,
1
0
)
(
)
(
z
z
z
z
dz
z
dF
z
f Z
Z (8-18)
)
(x
fX ),
( y
fY
1
0 
 z
2
1 
 z
.
1
)
(
)
(
)
(
0
z
dx
dx
x
f
x
z
f
z
f
z
Y
X
Z 


  
.
2
1
)
(
1
1
z
dx
z
f
z
Z 

  
(8-19)
(8-20)
)
(z
fZ
PILLAI
12
)
(x
fY
x
1
)
( x
z
fX 
x
z
)
(
)
( x
f
x
z
f Y
X 
x
z
1

z
1
0
)
( 
 z
a
)
(x
fY
x
1
)
( x
z
fX 
x
)
(
)
( x
f
x
z
f Y
X 
x
1
1

z z
1

z
2
1
)
( 
 z
b
Fig. 8.6 (c)
)
(z
fZ
z
2
0 1
PILLAI
13
Example 8.3: Let Determine its p.d.f
Solution: From (8-3) and Fig. 8.7
and hence
If X and Y are independent, then the above formula reduces
to
which represents the convolution of with
.
Y
X
Z 

   










 )
,
(
)
(
y
y
z
x
XY
Z dxdy
y
x
f
z
Y
X
P
z
F
( )
( ) ( , ) ( , ) .
z y
Z
Z XY XY
y x
dF z
f z f x y dx dy f y z y dy
dz z
  
  

 
   
 

 
   (8-21)
( ) ( ) ( ) ( ) ( ),
Z X Y X Y
f z f z y f y dy f z f y


    
 (8-22)
)
( z
fX  ).
(z
fY
Fig. 8.7
y
x
z
y
x 

z
y
x 

y
).
(z
fZ
PILLAI
14
As a special case, suppose
In this case, Z can be negative as well as positive, and that
gives rise to two situations that should be analyzed
separately, since the region of integration for and
are quite different. For from Fig. 8.8 (a)
and for from Fig 8.8 (b)
After differentiation, this gives
 






0 0
)
,
(
)
(
y
y
z
x
XY
Z dxdy
y
x
f
z
F
 







0
)
,
(
)
(
z
y
y
z
x
XY
Z dxdy
y
x
f
z
F
.
0
,
0
)
(
and
,
0
,
0
)
( 


 y
y
f
x
x
f Y
X
0

z 0

z
,
0

z
,
0

z

















.
0
,
)
,
(
,
0
,
)
,
(
)
( 0
z
dy
y
y
z
f
z
dy
y
y
z
f
z
f
z
XY
XY
Z (8-23) Fig. 8.8 (b)
y
x
y
z
x 

z

y
x
y
z
x 

z
z

(a)
PILLAI
15
Example 8.4: Given Z = X / Y, obtain its density function.
Solution: We have
The inequality can be rewritten as if
and if Hence the event in (8-24) need
to be conditioned by the event and its compliment
Since by the partition theorem, we have
and hence by the mutually exclusive property of the later
two events
Fig. 8.9(a) shows the area corresponding to the first term,
and Fig. 8.9(b) shows that corresponding to the second term
in (8-25).
 .
/
)
( z
Y
X
P
z
FZ 
 (8-24)
z
Y
X 
/ Yz
X  ,
0

Y
Yz
X  .
0

Y  
z
Y
X 
/
 
0

 Y
A .
__
A
__
,
A A
  
     
   .
0
,
0
,
0
,
/
0
,
/
/













Y
Yz
X
P
Y
Yz
X
P
Y
z
Y
X
P
Y
z
Y
X
P
z
Y
X
P
(8-25)
Fig. 8.9
y
x
yz
x 
(a)
y
x
yz
x 
(b)
       
A
z
Y
X
A
z
Y
X
A
A
z
Y
X
z
Y
X 









 )
/
(
)
/
(
)
(
)
/
(
/
PILLAI
16
Integrating over these two regions, we get
Differentiation with respect to z gives
Note that if X and Y are nonnegative random variables, then
the area of integration reduces to that shown in Fig. 8.10.
.
)
,
(
)
,
(
)
(
0
0  
  





 



y yz
x
XY
y
yz
x
XY
Z dxdy
y
x
f
dxdy
y
x
f
z
F (8-26)
.
,
)
,
(
|
|
)
,
(
)
(
)
,
(
)
(
0
0




















z
dy
y
yz
f
y
dy
y
yz
f
y
dy
y
yz
yf
z
f
XY
XY
XY
Z
(8-27)
y
x
yz
x 
Fig. 8.10
PILLAI
17
This gives
or
Example 8.5: X and Y are jointly normal random variables
with zero mean so that
Show that the ratio Z = X / Y has a Cauchy density function
centered at
Solution: Inserting (8-29) into (8-27) and using the fact
that we obtain
 

 

0 0
)
,
(
)
(
y
yz
x
XY
Z dxdy
y
x
f
z
F




 
 


otherwise.
,
0
,
0
,
)
,
(
)
( 0
z
dy
y
yz
f
y
z
f XY
Z (8-28)
.
1
2
1
)
,
(
2
2
2
2
1
2
1
2
2
2
)
1
(
2
1
2
2
1




















y
rxy
x
r
XY e
r
y
x
f (8-29)
.
/ 2
1 

r
,
1
)
(
1
2
2
)
(
2
2
1
2
0
0
2
/
2
2
1
2
0
2
r
z
dy
ye
r
z
f y
Z



 








),
,
(
)
,
( y
x
f
y
x
f XY
XY 


PILLAI
18
where
Thus
which represents a Cauchy r.v centered at Integrating
(8-30) from to z, we obtain the corresponding
distribution function to be
Example 8.6: Obtain
Solution: We have
.
1
2
1
)
(
2
2
2
1
2
1
2
2
2
0









rz
z
r
z
,
)
1
(
)
/
(
/
1
)
( 2
2
1
2
2
1
2
2
2
2
1
r
r
z
r
z
fZ












(8-30)
.
/ 2
1 

r


.
1
arctan
1
2
1
)
(
2
1
1
2
r
r
z
z
FZ








(8-31)
  .
)
,
(
)
( 2
2
2
2
  





z
Y
X
XY
Z dxdy
y
x
f
z
Y
X
P
z
F
.
2
2
Y
X
Z 

(8-32)
).
(z
fZ
PILLAI
19
But, represents the area of a circle with radius
and hence from Fig. 8.11,
This gives after repeated differentiation
As an illustration, consider the next example.
z
Y
X 
 2
2
,
z
.
)
,
(
)
(
2
2
 







z
z
y
y
z
y
z
x
XY
Z dxdy
y
x
f
z
F (8-33)
  .
)
,
(
)
,
(
2
1
)
( 2
2
2
 







z
z
y
XY
XY
Z dy
y
y
z
f
y
y
z
f
y
z
z
f (8-34)
Fig. 8.11
x
y
z
z
Y
X 
 2
2
z
z

PILLAI
20
Example 8.7 : X and Y are independent normal r.vs with zero
Mean and common variance Determine for
Solution: Direct substitution of (8-29) with
Into (8-34) gives
where we have used the substitution From (8-35)
we have the following result: If X and Y are independent zero
mean Gaussian r.vs with common variance then
is an exponential r.vs with parameter
Example 8.8 : Let Find
Solution: From Fig. 8.11, the present case corresponds to a
circle with radius Thus
)
(z
fZ .
2
2
Y
X
Z 

.
2



 

 2
1
,
0
r
2
2 2 2
2
2
/ 2
( ) / 2
2 2
2 2
0
/ 2
/2
/ 2
2 2
0
1 1 1
( ) 2
2
2
cos 1
( ),
2
cos
z
z z
z y y
Z
y z
z
z
e
f z e dy dy
z y z y
e z
d e U z
z


 

 


 


  



 
  
 
 
 
 
 
 (8-35)
.
sin 
z
y 
,
2

2
2
Y
X  .
2 2

.
2
2
Y
X
Z 
 ).
(z
fZ
.
2
z PILLAI
21
  .
)
,
(
)
,
(
)
( 2
2
2
2
2
2







z
z
XY
XY
Z dy
y
y
z
f
y
y
z
f
y
z
z
z
f
.
)
,
(
)
(
2
2
2
2
 







z
z
y
y
z
y
z
x
XY
Z dxdy
y
x
f
z
F
),
(
cos
cos
2
1
2
2
1
2
)
(
2
2
2
2
2
2
2
2
2
2
2
/
2
/2
0
2
/
2
0 2
2
2
/
2
0
2
/
)
(
2
2
2
z
U
e
z
d
z
z
e
z
dy
y
z
e
z
dy
e
y
z
z
z
f
z
z
z
z
z
y
y
z
Z


























And by repeated differentiation, we obtain
Now suppose X and Y are independent Gaussian as in
Example 8.7. In that case, (8-36) simplifies to
which represents a Rayleigh distribution. Thus, if
where X and Y are real, independent normal r.vs with zero
mean and equal variance, then the r.v has a
Rayleigh density. W is said to be a complex Gaussian r.v
with zero mean, whose real and imaginary parts are
independent r.vs. From (8-37), we have seen that its
magnitude has Rayleigh distribution.
(8-36)
(8-37)
,
iY
X
W 

2
2
Y
X
W 

PILLAI
22
What about its phase
Clearly, the principal value of  lies in the interval
If we let then from example 8.5, U has a
Cauchy distribution with (see (8-30) with )
As a result
To summarize, the magnitude and phase of a zero mean
complex Gaussian r.v has Rayleigh and uniform distributions
respectively. Interestingly, as we will show later, these two
derived r.vs are also independent of each other!
?
tan 1






 
Y
X
 (8-38)
.
,
1
/
1
)
( 2






 u
u
u
fU
 (8-39)
).
2
/
,
2
/
( 


tan / ,
U X Y

 
0
,
2
1 
 r




 






.
otherwise
,
0
,
2
/
2
/
,
/
1
1
tan
/
1
)
sec
/
1
(
1
)
(tan
|
/
|
1
)
( 2
2










 U
f
du
d
f (8-40)
PILLAI
23
Let us reconsider example 8.8 where X and Y have nonzero
means and respectively. Then is said to
be a Rician r.v. Such a scene arises in fading multipath
situation where there is a dominant constant component
(mean) in addition to a zero mean Gaussian r.v. The constant
component may be the line of sight signal and the zero mean
Gaussian r.v part could be due to random multipath
components adding up incoherently (see diagram below).
The envelope of such a signal is said to have a Rician p.d.f.
Example 8.9: Redo example 8.8, where X and Y have
nonzero means and respectively.
Solution: Since
substituting this into (8-36) and letting
X
 Y
 2
2
Y
X
Z 

X
 Y

,
2
1
)
,
(
2
2
2
2
/
]
)
(
)
[(
2




Y
X y
x
XY e
y
x
f 



 Rician
Output
Line of sight
signal (constant)
a
Multipath/Gaussian
noise

PILLAI
24
we get the Rician probability density function to be
where
is the modified Bessel function of the first kind and zeroth
order.
Example 8.10: Determine
Solution: The functions max and min are nonlinear
2 2
cos , sin , , cos , sin ,
X Y X Y
x z y z
          
     
 
,
2
2
2
)
(
2
0
2
2
/
)
(
/2
3
/2
/
)
cos(
/2
/2
/
)
cos(
2
2
/
)
(
/2
/2
/
)
cos(
/
)
cos(
2
2
/
)
(
2
2
2
2
2
2
2
2
2
2
2
2
2












 























































z
I
ze
d
e
d
e
ze
d
e
e
ze
z
f
z
z
z
z
z
z
z
Z

 
 












0
cos
2
0
)
cos(
0
1
2
1
)
( d
e
d
e
I
(8-41)
).
,
min(
),
,
max( Y
X
W
Y
X
Z 


).
(z
fZ
(8-42)
PILLAI
25
operators and represent special cases of the more general
order statistics. In general, given any n-tuple
we can arrange them in an increasing order of magnitude
such that
where and is the second smallest
value among and finally
If represent r.vs, the function that takes on
the value in each possible sequence is
known as the k-th order statistic. represent
the set of order statistics among n random variables. In this
context
represents the range, and when n = 2, we have the max and
min statistics.
,
,
,
, 2
1 n
X
X
X 
,
)
(
)
2
(
)
1
( n
X
X
X 

 
 ,
,
,
,
min 2
1
)
1
( n
X
X
X
X 
 )
2
(
X
,
,
,
, 2
1 n
X
X
X   .
,
,
,
max 2
1
)
( n
n X
X
X
X 

n
X
X
X ,
,
, 2
1  )
(k
X
)
(k
x  
n
x
x
x ,
,
, 2
1 
)
1
(
)
( X
X
R n 
 (8-44)
(8-43)
PILLAI
(1) (2) ( )
( , , , )
n
X X X
26
Returning back to that problem, since
we have (see also (8-25))
since and are mutually exclusive sets that
form a partition. Figs 8.12 (a)-(b) show the regions
satisfying the corresponding inequalities in each term
above.







,
,
,
,
)
,
max(
Y
X
Y
Y
X
X
Y
X
Z (8-45)
     
 
   ,
,
,
,
,
)
,
max(
)
(
Y
X
z
Y
P
Y
X
z
X
P
Y
X
z
Y
Y
X
z
X
P
z
Y
X
P
z
FZ














)
( Y
X  )
( Y
X 
x
y
z
x  y
x 
z
X 
Y
X 
)
,
(
)
( Y
X
z
X
P
a 

Fig. 8.12
x
y
z
Y 
Y
X 
y
x 
z
y 
)
,
(
)
( Y
X
z
Y
P
b 

x
y
)
,
( z
z
)
(c
 
PILLAI
27
(8-46)
Fig. 8.12 (c) represents the total region, and from there
If X and Y are independent, then
and hence
Similarly
Thus
  ).
,
(
,
)
( z
z
F
z
Y
z
X
P
z
F XY
Z 



)
(
)
(
)
( y
F
x
F
z
F Y
X
Z 
).
(
)
(
)
(
)
(
)
( z
F
z
f
z
f
z
F
z
f Y
X
Y
X
Z 
 (8-47)







.
,
,
,
)
,
min(
Y
X
X
Y
X
Y
Y
X
W (8-48)
     
 .
,
,
)
,
min(
)
( Y
X
w
X
Y
X
w
Y
P
w
Y
X
P
w
FW 







PILLAI
28
Once again, the shaded areas in Fig. 8.13 (a)-(b) show the
regions satisfying the above inequalities and Fig 8.13 (c)
shows the overall region.
From Fig. 8.13 (c),
where we have made use of (7-5) and (7-12) with
and
   
,
)
,
(
)
(
)
(
,
1
1
)
(
w
w
F
w
F
w
F
w
Y
w
X
P
w
W
P
w
F
XY
Y
X
W










(8-49)
,
2
2 

 y
x
.
1
1 w
y
x 

x
y
y
x 
w
y 
(a)
Fig. 8.13
x
y
y
x 
w
x 
(b)
x
y
)
,
( w
w
(c)
PILLAI
29
Example 8.11: Let X and Y be independent exponential r.vs
with common parameter . Define Find
Solution: From (8-49)
and hence
But and so that
Thus min ( X, Y ) is also exponential with parameter 2.
Example 8.12: Suppose X and Y are as give in the above
example. Define Determine
).
,
min( Y
X
W  ?
)
(w
fW
)
(
)
(
)
(
)
(
)
( w
F
w
F
w
F
w
F
w
F Y
X
Y
X
W 


).
(
)
(
)
(
)
(
)
(
)
(
)
( w
f
w
F
w
F
w
f
w
f
w
f
w
f Y
X
Y
X
Y
X
W 



,
)
(
)
( w
Y
X e
w
f
w
f 
 

 ,
1
)
(
)
( w
Y
X e
w
F
w
F 




).
(
2
)
1
(
2
2
)
( 2
w
U
e
e
e
e
w
f w
w
w
w
W






 





 (8-50)
 .
)
,
max(
/
)
,
min( Y
X
Y
X
Z  ).
(z
fZ
PILLAI
30
Solution: Although represents a complicated
function, by partitioning the whole space as before, it is
possible to simplify this function. In fact
As before, this gives
Since X and Y are both positive random variables in this case,
we have The shaded regions in Figs 8.14 (a)-(b)
represent the two terms in the above sum.
Fig. 8.14
)
max(
/
)
min( 







.
,
/
,
,
/
Y
X
X
Y
Y
X
Y
X
Z (8-51)
     
   
( ) / , / ,
, , .
Z
F z P Z z P X Y z X Y P Y X z X Y
P X Yz X Y P Y Xz X Y
       
     
.
1
0 
 z
x
y
y
x 
yz
x 
(a)
x
y
y
x 
xz
y 
(b)
(8-52)
PILLAI
31
From Fig. 8.14
Hence
Example 8.13 (Discrete Case): Let X and Y be independent
Poisson random variables with parameters and
respectively. Let Determine the p.m.f of Z.
.
)
,
(
)
,
(
)
(
0
z
0
0 0  
 






x
y
XY
yz
x
XY
Z dydx
y
x
f
dxdy
y
x
f
z
F
 
 





































.
otherwise
,
0
,
1
0
,
)
1
(
2
)
1
(
2
2
)
,
(
)
,
(
)
,
(
)
,
(
)
(
2
0
2
0
)
1
(
2
0
)
(
)
(
2
0
0
0
z
z
dy
ue
z
dy
ye
dy
e
e
y
dy
yz
y
f
y
yz
f
y
dx
xz
x
f
x
dy
y
yz
f
y
z
f
u
y
z
yz
y
y
yz
XY
XY
XY
XY
Z





(8-54)
1
 2

.
Y
X
Z 

(8-53)
)
(z
fZ
z
Fig. 8.15
1
2
PILLAI
32
Solution: Since X and Y both take integer values
the same is true for Z. For any gives
only a finite number of options for X and Y. In fact, if X = 0,
then Y must be n; if X = 1, then Y must be n-1, etc. Thus the
event is the union of (n + 1) mutually exclusive
events given by
As a result
If X and Y are also independent, then
and hence
 ,
,
2
,
1
,
0 
n
Y
X
n 

 ,
,
2
,
1
,
0 
 
.
)
,
(
,
)
(
)
(
0
0























n
k
n
k
k
n
Y
k
X
P
k
n
Y
k
X
P
n
Y
X
P
n
Z
P 
(8-55)
 
, ,
k
A X k Y n k
   
  )
(
)
(
, k
n
Y
P
k
X
P
k
n
Y
k
X
P 






(8-56)
}
{ n
Y
X 

k
A
.
,
,
2
,
1
,
0 n
k 

PILLAI
33
Thus Z represents a Poisson random variable with
parameter indicating that sum of independent Poisson
random variables is also a Poisson random variable whose
parameter is the sum of the parameters of the original
random variables.
As the last example illustrates, the above procedure for
determining the p.m.f of functions of discrete random
variables is somewhat tedious. As we shall see in Lecture 10,
the joint characteristic function can be used in this context
to solve problems of this type in an easier fashion.
,
2
1 
 
.
,
,
2
,
1
,
0
,
!
)
(
)!
(
!
!
!
)!
(
!
)
,
(
)
(
2
1
)
(
0
2
1
)
(
2
0
1
0
2
1
2
1
2
1




























n
n
e
k
n
k
n
n
e
k
n
e
k
e
k
n
Y
k
X
P
n
Z
P
n
n
k
k
n
k
k
n
n
k
k
n
k












(8-57)
PILLAI

More Related Content

Similar to One function of two Random variable a.ppt

Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
mocr84810
 
fourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdffourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdf
diehardgamer1
 

Similar to One function of two Random variable a.ppt (20)

Prob review
Prob reviewProb review
Prob review
 
Contra  * Continuous Functions in Topological Spaces
Contra   * Continuous Functions in Topological SpacesContra   * Continuous Functions in Topological Spaces
Contra  * Continuous Functions in Topological Spaces
 
Conditional density function ectr11a.ppt
Conditional density function ectr11a.pptConditional density function ectr11a.ppt
Conditional density function ectr11a.ppt
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
fourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdffourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdf
 
Calculusseveralvariables.ppt
Calculusseveralvariables.pptCalculusseveralvariables.ppt
Calculusseveralvariables.ppt
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
Stability criterion of periodic oscillations in a (2)
Stability criterion of periodic oscillations in a (2)Stability criterion of periodic oscillations in a (2)
Stability criterion of periodic oscillations in a (2)
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Fuzzy rules and fuzzy reasoning
Fuzzy rules and fuzzy reasoningFuzzy rules and fuzzy reasoning
Fuzzy rules and fuzzy reasoning
 
Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
cmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdfcmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdf
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 

More from sadafshahbaz7777

More from sadafshahbaz7777 (20)

ITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.pptITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.ppt
 
IOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptxIOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptx
 
Ch5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.pptCh5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.ppt
 
Lecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .pptLecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .ppt
 
social_media_for_research 234664445.pptx
social_media_for_research 234664445.pptxsocial_media_for_research 234664445.pptx
social_media_for_research 234664445.pptx
 
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
 
Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888
 
160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx
 
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.pptC3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
 
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
 
373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf
 
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdfChoudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
 
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptxAdverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
 
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
 
Lecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555pptLecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555ppt
 
First financial management 23566432245556
First financial management 23566432245556First financial management 23566432245556
First financial management 23566432245556
 
lecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptlecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.ppt
 
CECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptxCECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptx
 
functionsoflocalgovernment-160425164745.pdf
functionsoflocalgovernment-160425164745.pdffunctionsoflocalgovernment-160425164745.pdf
functionsoflocalgovernment-160425164745.pdf
 
Gender_Equality_in_Education_-_National_HST.PPTX
Gender_Equality_in_Education_-_National_HST.PPTXGender_Equality_in_Education_-_National_HST.PPTX
Gender_Equality_in_Education_-_National_HST.PPTX
 

Recently uploaded

internship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamrainternship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamra
AllTops
 
The Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard BrownThe Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard Brown
SandaliGurusinghe2
 
Beyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable developmentBeyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable development
Nimot Muili
 
Agile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptxAgile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptx
alinstan901
 
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTECAbortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Riyadh +966572737505 get cytotec
 

Recently uploaded (17)

How Software Developers Destroy Business Value.pptx
How Software Developers Destroy Business Value.pptxHow Software Developers Destroy Business Value.pptx
How Software Developers Destroy Business Value.pptx
 
Leaders enhance communication by actively listening, providing constructive f...
Leaders enhance communication by actively listening, providing constructive f...Leaders enhance communication by actively listening, providing constructive f...
Leaders enhance communication by actively listening, providing constructive f...
 
digital Human resource management presentation.pdf
digital Human resource management presentation.pdfdigital Human resource management presentation.pdf
digital Human resource management presentation.pdf
 
Independent Escorts Vikaspuri / 9899900591 High Profile Escort Service in Delhi
Independent Escorts Vikaspuri  / 9899900591 High Profile Escort Service in DelhiIndependent Escorts Vikaspuri  / 9899900591 High Profile Escort Service in Delhi
Independent Escorts Vikaspuri / 9899900591 High Profile Escort Service in Delhi
 
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professionalW.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
 
Dealing with Poor Performance - get the full picture from 3C Performance Mana...
Dealing with Poor Performance - get the full picture from 3C Performance Mana...Dealing with Poor Performance - get the full picture from 3C Performance Mana...
Dealing with Poor Performance - get the full picture from 3C Performance Mana...
 
internship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamrainternship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamra
 
The Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard BrownThe Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard Brown
 
Strategic Management, Vision Mission, Internal Analsysis
Strategic Management, Vision Mission, Internal AnalsysisStrategic Management, Vision Mission, Internal Analsysis
Strategic Management, Vision Mission, Internal Analsysis
 
Safety T fire missions army field Artillery
Safety T fire missions army field ArtillerySafety T fire missions army field Artillery
Safety T fire missions army field Artillery
 
International Ocean Transportation p.pdf
International Ocean Transportation p.pdfInternational Ocean Transportation p.pdf
International Ocean Transportation p.pdf
 
Marketing Management 16th edition by Philip Kotler test bank.docx
Marketing Management 16th edition by Philip Kotler test bank.docxMarketing Management 16th edition by Philip Kotler test bank.docx
Marketing Management 16th edition by Philip Kotler test bank.docx
 
Reviewing and summarization of university ranking system to.pptx
Reviewing and summarization of university ranking system  to.pptxReviewing and summarization of university ranking system  to.pptx
Reviewing and summarization of university ranking system to.pptx
 
Intro_University_Ranking_Introduction.pptx
Intro_University_Ranking_Introduction.pptxIntro_University_Ranking_Introduction.pptx
Intro_University_Ranking_Introduction.pptx
 
Beyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable developmentBeyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable development
 
Agile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptxAgile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptx
 
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTECAbortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
 

One function of two Random variable a.ppt

  • 1. 1 8. One Function of Two Random Variables Given two random variables X and Y and a function g(x,y), we form a new random variable Z as Given the joint p.d.f how does one obtain the p.d.f of Z ? Problems of this type are of interest from a practical standpoint. For example, a receiver output signal usually consists of the desired signal buried in noise, and the above formulation in that case reduces to Z = X + Y. ). , ( Y X g Z  ), , ( y x fXY ), (z fZ (8-1) PILLAI
  • 2. 2 It is important to know the statistics of the incoming signal for proper receiver design. In this context, we shall analyze problems of the following type: Referring back to (8-1), to start with ) , ( Y X g Z  Y X  ) / ( tan 1 Y X  Y X  XY Y X / ) , max( Y X ) , min( Y X 2 2 Y X                  z D y x XY z Z dxdy y x f D Y X P z Y X g P z Z P z F , , ) , ( ) , ( ) , ( ) ( ) (  (8-2) (8-3) PILLAI
  • 3. 3 where in the XY plane represents the region such that is satisfied. Note that need not be simply connected (Fig. 8.1). From (8-3), to determine it is enough to find the region for every z, and then evaluate the integral there. We shall illustrate this method through various examples. z D z y x g  ) , ( ) (z FZ z D z D X Y z D z D Fig. 8.1 PILLAI
  • 4. 4 Example 8.1: Z = X + Y. Find Solution: since the region of the xy plane where is the shaded area in Fig. 8.2 to the left of the line Integrating over the horizontal strip along the x-axis first (inner integral) followed by sliding that strip along the y-axis from to (outer integral) we cover the entire shaded area.                , ) , ( ) ( y y z x XY Z dxdy y x f z Y X P z F (8-4) z D z y x   . z y x       y z x   x y Fig. 8.2 ). (z fZ PILLAI
  • 5. 5 We can find by differentiating directly. In this context, it is useful to recall the differentiation rule in (7- 15) - (7-16) due to Leibnitz. Suppose Then Using (8-6) in (8-4) we get Alternatively, the integration in (8-4) can be carried out first along the y-axis followed by the x-axis as in Fig. 8.3. ) (z FZ ) (z fZ   ) ( ) ( . ) , ( ) ( z b z a dx z x h z H (8-5)           ) ( ) ( . ) , ( ), ( ) ( ), ( ) ( ) ( z b z a dx z z x h z z a h dz z da z z b h dz z db dz z dH (8-6) ( , ) ( ) ( , ) ( , ) 0 ( , ) . z y z y XY Z XY XY XY f x y f z f x y dx dy f z y y dy z z f z y y dy                                       (8-7) PILLAI
  • 6. 6 In that case and differentiation of (8-8) gives           , ) , ( ) ( x x z y XY Z dxdy y x f z F (8-8)                           . ) , ( ) , ( ) ( ) ( x XY x x z y XY Z Z dx x z x f dx dy y x f z dz z dF z f (8-9) If X and Y are independent, then and inserting (8-10) into (8-8) and (8-9), we get ) ( ) ( ) , ( y f x f y x f Y X XY  . ) ( ) ( ) ( ) ( ) (               x Y X y Y X Z dx x z f x f dy y f y z f z f (8-10) (8-11) x z y   x y Fig. 8.3 PILLAI
  • 7. 7 The above integral is the standard convolution of the functions and expressed two different ways. We thus reach the following conclusion: If two r.vs are independent, then the density of their sum equals the convolution of their density functions. As a special case, suppose that for and for then we can make use of Fig. 8.4 to determine the new limits for ) (z fX ) (z fY 0 ) (  x fX 0  x 0 ) (  y fY , 0  y . z D Fig. 8.4 y z x   x y ) 0 , (z ) , 0 ( z PILLAI
  • 8. 8 In that case or On the other hand, by considering vertical strips first in Fig. 8.4, we get or if X and Y are independent random variables.       z y y z x XY Z dxdy y x f z F 0 0 ) , ( ) (                         . 0 , 0 , 0 , ) , ( ) , ( ) ( 0 0 0 z z dy y y z f dy dx y x f z z f z XY z y y z x XY Z (8-12)                , 0 , 0 , 0 , ) ( ) ( ) , ( ) ( 0 0 z z dx x z f x f dx x z x f z f z y Y X z x XY Z       z x x z y XY Z dydx y x f z F 0 0 ) , ( ) ( (8-13) PILLAI
  • 9. 9 Example 8.2: Suppose X and Y are independent exponential r.vs with common parameter , and let Z = X + Y. Determine Solution: We have and we can make use of (13) to obtain the p.d.f of Z = X + Y. As the next example shows, care should be taken in using the convolution formula for r.vs with finite range. Example 8.3: X and Y are independent uniform r.vs in the common interval (0,1). Determine where Z = X + Y. Solution: Clearly, here, and as Fig. 8.5 shows there are two cases of z for which the shaded areas are quite different in shape and they should be considered separately. ), ( ) ( ), ( ) ( y U e y f x U e x f y Y x X         (8-14) 2 0      z Y X Z ), (z fZ ). ( ) ( 2 0 2 0 ) ( 2 z U e z dx e dx e e z f z z z z x z x Z                  (8-15) ). (z fZ PILLAI
  • 10. 10 x y y z x   1 0 ) (   z a x y y z x   2 1 ) (   z b Fig. 8.5 For For notice that it is easy to deal with the unshaded region. In that case , 1 0   z , 2 1   z . 1 0 , 2 ) ( 1 ) ( 2 0 0 0              z z dy y z dxdy z F z y z y y z x Z (8-16)   . 2 1 , 2 ) 2 ( 1 ) 1 ( 1 1 1 1 ) ( 2 1 1 z 1 1 1                        z z dy y z dxdy z Z P z F y z y y z x Z (8-17) PILLAI
  • 11. 11 Using (8-16) - (8-17), we obtain By direct convolution of and we obtain the same result as above. In fact, for (Fig. 8.6(a)) and for (Fig. 8.6(b)) Fig 8.6 (c) shows which agrees with the convolution of two rectangular waveforms as well.           . 2 1 , 2 , 1 0 ) ( ) ( z z z z dz z dF z f Z Z (8-18) ) (x fX ), ( y fY 1 0   z 2 1   z . 1 ) ( ) ( ) ( 0 z dx dx x f x z f z f z Y X Z       . 2 1 ) ( 1 1 z dx z f z Z      (8-19) (8-20) ) (z fZ PILLAI
  • 12. 12 ) (x fY x 1 ) ( x z fX  x z ) ( ) ( x f x z f Y X  x z 1  z 1 0 ) (   z a ) (x fY x 1 ) ( x z fX  x ) ( ) ( x f x z f Y X  x 1 1  z z 1  z 2 1 ) (   z b Fig. 8.6 (c) ) (z fZ z 2 0 1 PILLAI
  • 13. 13 Example 8.3: Let Determine its p.d.f Solution: From (8-3) and Fig. 8.7 and hence If X and Y are independent, then the above formula reduces to which represents the convolution of with . Y X Z                  ) , ( ) ( y y z x XY Z dxdy y x f z Y X P z F ( ) ( ) ( , ) ( , ) . z y Z Z XY XY y x dF z f z f x y dx dy f y z y dy dz z                      (8-21) ( ) ( ) ( ) ( ) ( ), Z X Y X Y f z f z y f y dy f z f y         (8-22) ) ( z fX  ). (z fY Fig. 8.7 y x z y x   z y x   y ). (z fZ PILLAI
  • 14. 14 As a special case, suppose In this case, Z can be negative as well as positive, and that gives rise to two situations that should be analyzed separately, since the region of integration for and are quite different. For from Fig. 8.8 (a) and for from Fig 8.8 (b) After differentiation, this gives         0 0 ) , ( ) ( y y z x XY Z dxdy y x f z F          0 ) , ( ) ( z y y z x XY Z dxdy y x f z F . 0 , 0 ) ( and , 0 , 0 ) (     y y f x x f Y X 0  z 0  z , 0  z , 0  z                  . 0 , ) , ( , 0 , ) , ( ) ( 0 z dy y y z f z dy y y z f z f z XY XY Z (8-23) Fig. 8.8 (b) y x y z x   z  y x y z x   z z  (a) PILLAI
  • 15. 15 Example 8.4: Given Z = X / Y, obtain its density function. Solution: We have The inequality can be rewritten as if and if Hence the event in (8-24) need to be conditioned by the event and its compliment Since by the partition theorem, we have and hence by the mutually exclusive property of the later two events Fig. 8.9(a) shows the area corresponding to the first term, and Fig. 8.9(b) shows that corresponding to the second term in (8-25).  . / ) ( z Y X P z FZ   (8-24) z Y X  / Yz X  , 0  Y Yz X  . 0  Y   z Y X  /   0   Y A . __ A __ , A A             . 0 , 0 , 0 , / 0 , / /              Y Yz X P Y Yz X P Y z Y X P Y z Y X P z Y X P (8-25) Fig. 8.9 y x yz x  (a) y x yz x  (b)         A z Y X A z Y X A A z Y X z Y X            ) / ( ) / ( ) ( ) / ( / PILLAI
  • 16. 16 Integrating over these two regions, we get Differentiation with respect to z gives Note that if X and Y are nonnegative random variables, then the area of integration reduces to that shown in Fig. 8.10. . ) , ( ) , ( ) ( 0 0                y yz x XY y yz x XY Z dxdy y x f dxdy y x f z F (8-26) . , ) , ( | | ) , ( ) ( ) , ( ) ( 0 0                     z dy y yz f y dy y yz f y dy y yz yf z f XY XY XY Z (8-27) y x yz x  Fig. 8.10 PILLAI
  • 17. 17 This gives or Example 8.5: X and Y are jointly normal random variables with zero mean so that Show that the ratio Z = X / Y has a Cauchy density function centered at Solution: Inserting (8-29) into (8-27) and using the fact that we obtain       0 0 ) , ( ) ( y yz x XY Z dxdy y x f z F           otherwise. , 0 , 0 , ) , ( ) ( 0 z dy y yz f y z f XY Z (8-28) . 1 2 1 ) , ( 2 2 2 2 1 2 1 2 2 2 ) 1 ( 2 1 2 2 1                     y rxy x r XY e r y x f (8-29) . / 2 1   r , 1 ) ( 1 2 2 ) ( 2 2 1 2 0 0 2 / 2 2 1 2 0 2 r z dy ye r z f y Z              ), , ( ) , ( y x f y x f XY XY    PILLAI
  • 18. 18 where Thus which represents a Cauchy r.v centered at Integrating (8-30) from to z, we obtain the corresponding distribution function to be Example 8.6: Obtain Solution: We have . 1 2 1 ) ( 2 2 2 1 2 1 2 2 2 0          rz z r z , ) 1 ( ) / ( / 1 ) ( 2 2 1 2 2 1 2 2 2 2 1 r r z r z fZ             (8-30) . / 2 1   r   . 1 arctan 1 2 1 ) ( 2 1 1 2 r r z z FZ         (8-31)   . ) , ( ) ( 2 2 2 2         z Y X XY Z dxdy y x f z Y X P z F . 2 2 Y X Z   (8-32) ). (z fZ PILLAI
  • 19. 19 But, represents the area of a circle with radius and hence from Fig. 8.11, This gives after repeated differentiation As an illustration, consider the next example. z Y X   2 2 , z . ) , ( ) ( 2 2          z z y y z y z x XY Z dxdy y x f z F (8-33)   . ) , ( ) , ( 2 1 ) ( 2 2 2          z z y XY XY Z dy y y z f y y z f y z z f (8-34) Fig. 8.11 x y z z Y X   2 2 z z  PILLAI
  • 20. 20 Example 8.7 : X and Y are independent normal r.vs with zero Mean and common variance Determine for Solution: Direct substitution of (8-29) with Into (8-34) gives where we have used the substitution From (8-35) we have the following result: If X and Y are independent zero mean Gaussian r.vs with common variance then is an exponential r.vs with parameter Example 8.8 : Let Find Solution: From Fig. 8.11, the present case corresponds to a circle with radius Thus ) (z fZ . 2 2 Y X Z   . 2        2 1 , 0 r 2 2 2 2 2 2 / 2 ( ) / 2 2 2 2 2 0 / 2 /2 / 2 2 2 0 1 1 1 ( ) 2 2 2 cos 1 ( ), 2 cos z z z z y y Z y z z z e f z e dy dy z y z y e z d e U z z                                    (8-35) . sin  z y  , 2  2 2 Y X  . 2 2  . 2 2 Y X Z   ). (z fZ . 2 z PILLAI
  • 21. 21   . ) , ( ) , ( ) ( 2 2 2 2 2 2        z z XY XY Z dy y y z f y y z f y z z z f . ) , ( ) ( 2 2 2 2          z z y y z y z x XY Z dxdy y x f z F ), ( cos cos 2 1 2 2 1 2 ) ( 2 2 2 2 2 2 2 2 2 2 2 / 2 /2 0 2 / 2 0 2 2 2 / 2 0 2 / ) ( 2 2 2 z U e z d z z e z dy y z e z dy e y z z z f z z z z z y y z Z                           And by repeated differentiation, we obtain Now suppose X and Y are independent Gaussian as in Example 8.7. In that case, (8-36) simplifies to which represents a Rayleigh distribution. Thus, if where X and Y are real, independent normal r.vs with zero mean and equal variance, then the r.v has a Rayleigh density. W is said to be a complex Gaussian r.v with zero mean, whose real and imaginary parts are independent r.vs. From (8-37), we have seen that its magnitude has Rayleigh distribution. (8-36) (8-37) , iY X W   2 2 Y X W   PILLAI
  • 22. 22 What about its phase Clearly, the principal value of  lies in the interval If we let then from example 8.5, U has a Cauchy distribution with (see (8-30) with ) As a result To summarize, the magnitude and phase of a zero mean complex Gaussian r.v has Rayleigh and uniform distributions respectively. Interestingly, as we will show later, these two derived r.vs are also independent of each other! ? tan 1         Y X  (8-38) . , 1 / 1 ) ( 2        u u u fU  (8-39) ). 2 / , 2 / (    tan / , U X Y    0 , 2 1   r             . otherwise , 0 , 2 / 2 / , / 1 1 tan / 1 ) sec / 1 ( 1 ) (tan | / | 1 ) ( 2 2            U f du d f (8-40) PILLAI
  • 23. 23 Let us reconsider example 8.8 where X and Y have nonzero means and respectively. Then is said to be a Rician r.v. Such a scene arises in fading multipath situation where there is a dominant constant component (mean) in addition to a zero mean Gaussian r.v. The constant component may be the line of sight signal and the zero mean Gaussian r.v part could be due to random multipath components adding up incoherently (see diagram below). The envelope of such a signal is said to have a Rician p.d.f. Example 8.9: Redo example 8.8, where X and Y have nonzero means and respectively. Solution: Since substituting this into (8-36) and letting X  Y  2 2 Y X Z   X  Y  , 2 1 ) , ( 2 2 2 2 / ] ) ( ) [( 2     Y X y x XY e y x f      Rician Output Line of sight signal (constant) a Multipath/Gaussian noise  PILLAI
  • 24. 24 we get the Rician probability density function to be where is the modified Bessel function of the first kind and zeroth order. Example 8.10: Determine Solution: The functions max and min are nonlinear 2 2 cos , sin , , cos , sin , X Y X Y x z y z                    , 2 2 2 ) ( 2 0 2 2 / ) ( /2 3 /2 / ) cos( /2 /2 / ) cos( 2 2 / ) ( /2 /2 / ) cos( / ) cos( 2 2 / ) ( 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                      z I ze d e d e ze d e e ze z f z z z z z z z Z                  0 cos 2 0 ) cos( 0 1 2 1 ) ( d e d e I (8-41) ). , min( ), , max( Y X W Y X Z    ). (z fZ (8-42) PILLAI
  • 25. 25 operators and represent special cases of the more general order statistics. In general, given any n-tuple we can arrange them in an increasing order of magnitude such that where and is the second smallest value among and finally If represent r.vs, the function that takes on the value in each possible sequence is known as the k-th order statistic. represent the set of order statistics among n random variables. In this context represents the range, and when n = 2, we have the max and min statistics. , , , , 2 1 n X X X  , ) ( ) 2 ( ) 1 ( n X X X      , , , , min 2 1 ) 1 ( n X X X X   ) 2 ( X , , , , 2 1 n X X X   . , , , max 2 1 ) ( n n X X X X   n X X X , , , 2 1  ) (k X ) (k x   n x x x , , , 2 1  ) 1 ( ) ( X X R n   (8-44) (8-43) PILLAI (1) (2) ( ) ( , , , ) n X X X
  • 26. 26 Returning back to that problem, since we have (see also (8-25)) since and are mutually exclusive sets that form a partition. Figs 8.12 (a)-(b) show the regions satisfying the corresponding inequalities in each term above.        , , , , ) , max( Y X Y Y X X Y X Z (8-45)            , , , , , ) , max( ) ( Y X z Y P Y X z X P Y X z Y Y X z X P z Y X P z FZ               ) ( Y X  ) ( Y X  x y z x  y x  z X  Y X  ) , ( ) ( Y X z X P a   Fig. 8.12 x y z Y  Y X  y x  z y  ) , ( ) ( Y X z Y P b   x y ) , ( z z ) (c   PILLAI
  • 27. 27 (8-46) Fig. 8.12 (c) represents the total region, and from there If X and Y are independent, then and hence Similarly Thus   ). , ( , ) ( z z F z Y z X P z F XY Z     ) ( ) ( ) ( y F x F z F Y X Z  ). ( ) ( ) ( ) ( ) ( z F z f z f z F z f Y X Y X Z   (8-47)        . , , , ) , min( Y X X Y X Y Y X W (8-48)        . , , ) , min( ) ( Y X w X Y X w Y P w Y X P w FW         PILLAI
  • 28. 28 Once again, the shaded areas in Fig. 8.13 (a)-(b) show the regions satisfying the above inequalities and Fig 8.13 (c) shows the overall region. From Fig. 8.13 (c), where we have made use of (7-5) and (7-12) with and     , ) , ( ) ( ) ( , 1 1 ) ( w w F w F w F w Y w X P w W P w F XY Y X W           (8-49) , 2 2    y x . 1 1 w y x   x y y x  w y  (a) Fig. 8.13 x y y x  w x  (b) x y ) , ( w w (c) PILLAI
  • 29. 29 Example 8.11: Let X and Y be independent exponential r.vs with common parameter . Define Find Solution: From (8-49) and hence But and so that Thus min ( X, Y ) is also exponential with parameter 2. Example 8.12: Suppose X and Y are as give in the above example. Define Determine ). , min( Y X W  ? ) (w fW ) ( ) ( ) ( ) ( ) ( w F w F w F w F w F Y X Y X W    ). ( ) ( ) ( ) ( ) ( ) ( ) ( w f w F w F w f w f w f w f Y X Y X Y X W     , ) ( ) ( w Y X e w f w f      , 1 ) ( ) ( w Y X e w F w F      ). ( 2 ) 1 ( 2 2 ) ( 2 w U e e e e w f w w w w W               (8-50)  . ) , max( / ) , min( Y X Y X Z  ). (z fZ PILLAI
  • 30. 30 Solution: Although represents a complicated function, by partitioning the whole space as before, it is possible to simplify this function. In fact As before, this gives Since X and Y are both positive random variables in this case, we have The shaded regions in Figs 8.14 (a)-(b) represent the two terms in the above sum. Fig. 8.14 ) max( / ) min(         . , / , , / Y X X Y Y X Y X Z (8-51)           ( ) / , / , , , . Z F z P Z z P X Y z X Y P Y X z X Y P X Yz X Y P Y Xz X Y               . 1 0   z x y y x  yz x  (a) x y y x  xz y  (b) (8-52) PILLAI
  • 31. 31 From Fig. 8.14 Hence Example 8.13 (Discrete Case): Let X and Y be independent Poisson random variables with parameters and respectively. Let Determine the p.m.f of Z. . ) , ( ) , ( ) ( 0 z 0 0 0           x y XY yz x XY Z dydx y x f dxdy y x f z F                                          . otherwise , 0 , 1 0 , ) 1 ( 2 ) 1 ( 2 2 ) , ( ) , ( ) , ( ) , ( ) ( 2 0 2 0 ) 1 ( 2 0 ) ( ) ( 2 0 0 0 z z dy ue z dy ye dy e e y dy yz y f y yz f y dx xz x f x dy y yz f y z f u y z yz y y yz XY XY XY XY Z      (8-54) 1  2  . Y X Z   (8-53) ) (z fZ z Fig. 8.15 1 2 PILLAI
  • 32. 32 Solution: Since X and Y both take integer values the same is true for Z. For any gives only a finite number of options for X and Y. In fact, if X = 0, then Y must be n; if X = 1, then Y must be n-1, etc. Thus the event is the union of (n + 1) mutually exclusive events given by As a result If X and Y are also independent, then and hence  , , 2 , 1 , 0  n Y X n    , , 2 , 1 , 0    . ) , ( , ) ( ) ( 0 0                        n k n k k n Y k X P k n Y k X P n Y X P n Z P  (8-55)   , , k A X k Y n k       ) ( ) ( , k n Y P k X P k n Y k X P        (8-56) } { n Y X   k A . , , 2 , 1 , 0 n k   PILLAI
  • 33. 33 Thus Z represents a Poisson random variable with parameter indicating that sum of independent Poisson random variables is also a Poisson random variable whose parameter is the sum of the parameters of the original random variables. As the last example illustrates, the above procedure for determining the p.m.f of functions of discrete random variables is somewhat tedious. As we shall see in Lecture 10, the joint characteristic function can be used in this context to solve problems of this type in an easier fashion. , 2 1    . , , 2 , 1 , 0 , ! ) ( )! ( ! ! ! )! ( ! ) , ( ) ( 2 1 ) ( 0 2 1 ) ( 2 0 1 0 2 1 2 1 2 1                             n n e k n k n n e k n e k e k n Y k X P n Z P n n k k n k k n n k k n k             (8-57) PILLAI