SlideShare a Scribd company logo
Nature Astronomy
natureastronomy
https://doi.org/10.1038/s41550-023-02056-z
Article
Strongandweakpulsarradioemissiondueto
thunderstormsandraindropsofparticlesin
themagnetosphere
X. Chen1,2
, Y. Yan1,2
, J. L. Han 1,2,3
, C. Wang1,2,3
, P. F. Wang1,2,3
, W. C. Jing 1,2
,
K. J. Lee 4,5
, B. Zhang 6,7
, R. X. Xu4,5
, T. Wang 1,2
, Z. L. Yang 1,2
, W. Q. Su1,2
,
N. N. Cai1,2
, W. Y. Wang2,4,5
, G. J. Qiao2,4
, J. Xu1,3
& D. J. Zhou 1,2
Pulsarsradiateradiosignalswhentheyrotate.However,someold pulsars
oftenstopradiatingforsomeperiods.Theunderlyingmechanismremains
unknown,asthemagnetosphereduringnullingphasesishardtoprobedue
totheabsenceofemissionmeasurements.Herewereportthedetection
andaccuratepolarizationmeasurementsofsporadic,weak,narrowdwarf
pulsesdetectedintheordinarynullingstateofpulsarB2111+46viathe
Five-Hundred-MeterApertureSphericalradioTelescope.Furtheranalysis
showsthattheirpolarizationanglesfollowtheaveragepolarization
anglecurveofnormalpulses,suggestingnochangeofthemagnetic-field
structureintheemissionregioninthetwoemissionstates.Whereasradio
emissionofnormalindividualpulsesisradiatedbya‘thunderstorm’of
particlesproducedbycopiousdischargesinregularlyformedgaps,dwarf
pulsesareproducedbyoneorafew‘raindrops’ofparticlesgeneratedbypair
productioninafragilegapofthisnear-deathpulsar.
Howandwhypulsarsradiatehasremainedelusivesincetheirdiscovery
over 50 years ago. In general, a pulsar radiates pulses continuously
in every rotation period. The averaged pulse profiles often occupy a
small fraction of the rotation longitude, which defines the emission
window1
.Analysisofthepulsepolarizationpropertiessuggestedthat
radio emission is generated by highly relativistic particles streaming
in the open magnetic-field lines footed on the polar cap2,3
, and the
polarization angles reflect the magnetic-field geometry of the emis-
sion region sweeping across the line of sight4
. Although the averaged
pulse profile of a pulsar is generally stable, individual pulses in each
periodshowdiversevariations.Somerelativelyoldpulsarsoftencease
radiating for some periods, which is called ‘nulling’5,6
.
The magnetosphere of an active pulsar is believed to be filled
with a continuously replenished electron–positron plasma7
. Recent
particle-in-cellsimulations8–11
haveshownthatgaps,electricdischarge
andpairproductioncanoccurinseveralpreferableregionsinthepul-
sarmagnetosphere.Radioemissionofapulsarcanquenchduetotwo
possibilities.Thefirstisthestandardpictureofpaircascadedepletion
due to the inadequate electric potential in the gap. The second is that
agapisfloodedbyapairplasmaproducedandinjectedfromelsewhere
inthemagnetosphere.Themagnetosphereshouldbeinaverydifferent
physical state when the emission ceases. A clear hint comes from
the much smaller spin-down rates of a few pulsars12–14
during their
long-term nulling state, compared with those in the emission-on
state, indicating an interplay between the pulsar braking and
outer-flowing particles in the magnetosphere. However, it is almost
impossible to probe the magnetosphere state when emission
completelyceases.
Received: 15 September 2022
Accepted: 14 June 2023
Published online: xx xx xxxx
Check for updates
1
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China. 2
School of Astronomy and Space Sciences, University of Chinese
Academy of Sciences, Beijing, China. 3
CAS Key laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China.
4
Department of Astronomy, Peking University, Beijing, China. 5
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China. 6
Nevada
Center for Astrophysics, University of Nevada, Las Vegas, NV, USA. 7
Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, USA.
e-mail: hjl@bao.ac.cn
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
interference (RFI) is removed and the data are calibrated, the polari-
zation profiles for each individual period and the mean profiles for
each session are obtained (Fig. 1 and Extended Data Figs. 1–4). Owing
to the high sensitivity of FAST, we detected a large number of dwarf
pulses(Fig.1andExtendedDataFigs.1–5)emergingoccasionallyfrom
ordinarynullingperiods,andtheirpolarizationpropertiesarealsowell
measured. Such dwarf pulses are rare, and only a few have previously
beendetectedfromPSR J1107−590722
,andnofurtherinformationwas
previously available for further physical studies. The dwarf pulses of
PSR B2111+46 are generally undetectable in low-sensitivity and/or
low time-resolution observations, and hence these periods with
dwarf pulses are usually thought to be in the nulling state. Therefore,
these distinctive dwarf pulses are nice probes for physical processes
and the emission region in most asymptotic quenched states of the
magnetosphere.
DwarfpulsesofPSR B2111+46distinguishthemselvesfromnormal
pulsesbytheirdistinctlysmallenergies(Fig.2).Formanypulsars,the
energydistributionofindividualpulsesfollowsalog-normaldistribu-
tion23
. The emission of PSR B2111+46 in the normal state also follows
suchadistribution.However,thedwarfpulseswedetectareveryweak
andnarrow.Therefore,theyarefarawayfromthenormalpulseenergy
distribution(Fig.3).Insharpcontrasttothegiantpulsesobservedfrom
someyoungpulsars,mostdwarfpulseshavelowerpeakfluxdensities
thanregularpulses,whilegiantpulseshavefluxdensitiestypicallymore
thanoneorderofmagnitudehigherthannormalpulses23,24
.
In addition to small energies, the dwarf pulses detected from
PSR B2111+46 have very narrow pulse widths (see the distribution of
WinFig.3).Withasamplingtimeof49.152 μsforeachdatabinduring
observationsofPSR B2111+46,FASTcanmeasuretheradioemissionof
We detected a number of sporadic dwarf pulses (Fig. 1), that is,
thenarrow,weakpulses,inthemostlyasymptoticemission-quenched
stateofPSR B2111+46usingtheFive-Hundred-MeterApertureSpherical
radioTelescope(FAST).Detailedanalysesofthesedwarfpulses,suchas
theenergydistribution(Fig.2),emergingphaseinrotationlongitudes
andthepolarizationproperties,shedlightonthelong-standingenigma
of pulsar nulling and mode switching, offering understanding of the
physicalprocessesinpulsarmagnetospheres.
PSR B2111+46isastrongpulsarwithaperiod15
of1.0146848 sand
a dispersion measure of 141.40 rad m−2
, discovered at Jodrell Bank
Observatory16
.Itsradioemissionshowstwoknownstates.Inthenormal
emissionstate,themeanpulseprofileshowsthreedominantcompo-
nents17
: a central core component coming from the emission beam
centre and two shoulders from the conal emission. Two additional
hidden components were revealed by model fitting18,19
. These promi-
nent strong components in total occupy a longitude range of about a
quarteroftherotationperiodaccordingtothemeanprofileofprevious
observations. Analyses of the polarization profiles suggest that the
magneticaxisisclosetotherotationaxis,andthelineofsightcutsthe
emissionbeamalongalargearc.Thepulsedemissionisgeneratedfrom
aregionatseveralhundredstomorethanathousandkilometresabove
the neutron star surface17–19
. The nulling state of PSR B2111+46 is very
impressive(ExtendedDataFigs.1–4),whichoccursforabout10–20%
of the total periods6,20
depending on the observational frequencies.
Intheperiodsofnulling,thepulsarsuddenlybecomesundetectable.
PSR B2111+46wasserendipitouslyobservedbyFASTinthreeses-
sionsinAugustandSeptember2020(Table1)duringtheFASTGalactic
Plane Pulsar Snapshot survey21
, and the verification observations for
the dwarf pulses were made in March 2022. After radio frequency
255
a b
c
d
252
249
246
243
Period
number
and
intensity
240
237
234
231
100 8 March 2022
Period 233
8 March 2022
Period 237
8 March 2022
Period 248
50
0
–90
0
90
PA
(°)
I/σ
bin
50
0
–90
0
90
PA
(°)
I/σ
bin
50
100
0
–90
150
0
90
PA
(°)
I/σ
bin
228
225
–50 0
Longitude (°)
50
–20
–40 0
Longitude (°)
20 40
I
L
V
I
L
V
–20
–40 0
Longitude (°)
20 40
11 12 13 14
Longitude (°)
15
I
L
V
Fig.1|FASTdetectionofadwarfpulseinaseriespulsesofPSR B2111+46.
a,AsegmentofpulsetrainsofPSR B2111+46observedinthesessionon8March
2022byFAST,showingsomeemissionandnullingperiods.b–d,Polarization
profilesofthreeindividualpulses:period248(b),period237(c)andperiod233
(d).InthelowersubpanelsthetotalintensityI,linearpolarizationLandcircular
polarizationV(withpositivevaluesfortheleft-handsense)areplottedinthe
originaltimeresolution(49.152 μs)oftheFASTobservations,andthePAsare
plottedintheuppersubpanels.Thedwarfpulseintheperiod237hasonlyone
resolvedemissioncell,almostfullylinearlypolarizedwithawidthofabout0.1°.
Manynotchesoftheothertwopulseprofilesaresensitivesignificantdetection
ofrealintensityfluctuationscausedbyemissioncellswithdifferentstrengths.
TheerrorbarforPAis±1σ.Theintensityisscaledwiththeoff-pulsefluctuations
expressedbyσbin.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
morethan8,870samplesinsidetheemissionbeam(seethelongitude
rangedefinedbytheprofileinFig.4)ofPSR B2111+46amongthetotal
20,643datapointseveryperiod.Thenormalindividualpulsesmostly
havepulsewidthsintherangeof60° < W < 100°withdiverseintensity
fluctuationsalonglongitudes,asthoughinthe‘thunderstormmode’,
composited by a large number of emission ‘cells’ (see Fig. 1 and also
twomoreexamplesinExtendedDataFig.5),whereasthedwarfpulses
consist of only one (see period 237 in Fig. 1) or a few resolved peaks
(ExtendedDataFig.5)asthoughonlyoneorafewraindropsintheclear
sky,witheachelementarypulseabout0.1°(about0.3 ms).Suchatime-
scaleismuchshorterthantheclassicsubpulsesbutmuchlongerthan
micropulsesthathaveatimescaleofnanosecondsormicroseconds25,26
.
Thedwarfpulsescanappearacrossawiderangeofphasesforboththe
core and conal components and in between, with a preference in the
trailingcomponent(ExtendedDataFig.6).
Polarization measurements provide a physical link between the
detectedemissionandthemagnetic-fieldlinesintheemissionregion4
.
PSR B2111+46 has an S-shape polarization angle (PA) curve for the
mean linear polarization profile, which has been used to estimate the
emissionheightandsweepbackofmagnetic-fieldlinesforthecentral
emission components17
. From our sensitive observations, we found a
muchextendedleadingwingandtheorthogonalmodeforweakconal
emissionwingsinbothleadingandtrailinglongitudes(Fig.4).Insome
periods, radio emission was detected for only one or two of the three
main components (Extended Data Figs. 1–4), which corresponds to
partial nulling20
. The most intriguing fact is that the PAs of the dwarf
a b 140
24 August 2020 26 August 2020
60
40
20
0
0 20
0 25 50 75 100 125 150
E/σE
E/σE
0 50 100 150 200
E/σE
0 25 75
50 100 125 150
E/σE
0 25 50 75 100 125 150
E/σE
40
120
100
80
Number
Number
60
Number
1,200
1,000
800
600
400
200
0
40
20
0
140
160
120
100
80
Number
60
40
20
0
140
120
100
80
Number
60
40
20
0
c d
60
40
20
0
0 20
E/σE
40
Number
17 September 2020 8 March 2022
80
60
40
20
0
0 20
E/σE
40
Number
1,500
1,000
500
0
0 25
E/σE
75
50
Number
Fig.2|Dwarfpulsesdetectedinthenullingperiodswithverylowenergy.
a–d,Theenergydistributionof822(a),886(b),885(c)and7,097(d)individual
pulsesofPSR B2111+46observedinfourFASTobservationsessions.Thepulse
energyE(that,isthefluence)foreveryperiodisthesumoftheenergyofan
individualpulseoverthefullpulse-onwindowdefinedbythemeanprofile.To
expressthedataqualityoftheobservations,thedistributionisscaledbythe
standarddeviationsσE ofthestochasticenergyinthesamesizebutpulse-off
window,ratherthantheaveragedenergy〈E〉asinliterature,whichistoohigh
forFAST-detecteddwarfpulses.Theemissionstateandthenullstateshowtwo
mainpeaksinthehistogram.Theorangepartoverlappingonthenullingstate
indicatesdwarfpulses.Thegreencurveisthebestlog-normalfittingforthe
normalemissionenergydistribution.
Table 1 | Details of FAST observations of PSRB2111+46
Observation date Target name Beam name Offset (′) Observation
time (min)
Number of
periods
Number of
dwarf periods
Number of
nulling periods
Number of periods
removed
24 August 2020 J2113+4642 P1M01 2.2 15 886 11 182 64
26 August 2020 J2113+4645 P1M01 2.4 15 886 7 180 0
17 September 2020 J2114+4655 P1M12 2.4 15 885 8 177 0
8 March 2022 B2111+46 P1M01 0.0 120 7,098 149 1,563 1
The table includes observation date, observation target name, FAST beam name for the pulsar detection, the offset of the pulsar location from the beam centre, observation time, number of
pulsar periods, number of periods with dwarf pulses detected, number of nulling periods recognized and number of periods removed due to RFI.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
pulses, together with the partially nulling pulses, all nearly follow
thePAcurveofthemeanprofileorattherespectiveorthogonalmode
(Fig.4).Thedetectionofdwarfpulsesintheordinarynullingstatefrom
PSR B2111+46thatstillkeepthesamepolarizationpropertiesasnormal
pulsessuggeststhatthemagnetic-fieldconfigurationdoesnotchange
atthetransitionphasetothecompletelynullingphase.
Howandwherearethesedwarfpulsesgeneratedinsuchordinary
nulling periods? Why does the radio emission of PSR B2111+46 often
cease?Thenullingstatereflectsadeficitofouter-flowingparticlesfor
radiation,orthefailureofthecoherenceconditionforparticles,orthe
quenched gaps by flooding pairs formed in other parts in the pulsar
magnetosphere.PSR B2111+46hasacharacteristicageof2.25 × 107
yr
andasurfacemagneticfieldof8.62 × 1011
Gandislocatedinthedeath
valley in the pulsar period and period derivative diagram (i.e. the
P– ̇
P diagram in Extended Data Fig. 7). The pair creation of such a
pulsar can operate effectively only above the magnetic polar cap9,10
throughtheγ−Bprocesswherethefieldisstrongenough.Forsuchan
old pulsar with a weak magnetic field, the gap voltage is often barely
enough to ignite electron–positron discharges, so a pulsar may fail
toradiatefromtimetotime.
Ifdwarfpulsesaregeneratedbyoneorafewraindropsofstream-
ingparticlesfromtheotherwisenullingstate,thismeansthatonlyone
orafewlightningsigniteabovethepolarcapsothatabarelyformedgap
is very quickly discharged. Our observations shown in Fig. 5 indicate
that the spectra (i.e. the flux density S changes agaist frequency ν in
the form of S ≈ να
) of some distinguishable emission components are
variable,withapossiblespectralindexαfrom−5totheunexpected+5,
and that the dwarf pulses are more likely to have a reversed spectrum
(ExtendedDataFig.8).Normalindividualpulseswithmanydistinguish-
able peaks, revealed by the FAST observations in Fig. 1 and Extended
Data Fig. 5, indicate that the lightning, pair-creation cascades and
relatedphysicalprocessesoccurinaverywideareaofthepolarcap,as
though the emission is produced by a thunderstorm of particles. The
phase-resolvedspectraaremorelikelytobeflatterorevenreversedin
thetwo-sideconalphaseranges(ExtendedDataFig.9).
The plasma properties in the magnetosphere can be examined
bythepropagationeffects27–29
,suchasadiabaticwalkingandpolariza-
tion limiting radius. The plasma density changes in the nulling state
could cause the PA curve to shift to an earlier or later rotation phase
withtheextentdependingonthebackgroundplasmapropertiesand
magnetic-field strength. The longitude shift of the PA curves of the
dwarfpulsesfromthatofthenormalpulsesisfoundtobe−0.77° ± 0.25°
(ExtendedDataFig.10)fromourFASTmeasurementsforPSR B2111+46,
which is marginally significant and implies not only no change to the
magnetic-field configuration in the emission region but also only a
slight change or no change (22 ± 7%) of the density of the magneto-
spheric background plasma in the nulling state, compared with that
forthenormalemissionstate.
In addition to PSR B2111+46, dwarf pulses have also been
detected from some nearly-nulling periods of several other pulsars
by FAST observations, such as PSR J0540+3207, PSR J1851−0053 and
PSR J1946+1805.Asmallnumberofnarrowpulsespreviouslydetected
a
100
4
4
5
2
0
0 10 20
Partial nulling
Normal
pulses
Dwarf
pulses
Partial
nulling
Normal
pulses
Dwarf
pulses
24 August 2020: 640 + 26 August 2020: 706 + 17 September 2020: 708 = 2,054 8 March 2022: 5,534
24 August 2020: 640 + 26 August 2020: 706 + 17 September 2020: 708 = 2,054 8 March 2022: 5,534
80
60
E
(Jy
ms)
2.0
1.5
1.0
0.5
0
S
peak
(Jy)
2.0
1.5
1.0
0.5
0
S
peak
(Jy)
40
20
0
0 20 40 60
W (°)
80 100 0 20 40 60
W (°)
80 100 120 140
0 20 40 60
W (°)
80 100 0 20 40 60
W (°)
80 100 120 140
100
80
60
E
(Jy
ms)
40
20
0
b
c d
4
2
0
0 10 20
4
1
5
6
7
3
2
4
5
3
4
5
6
2
1
4
3
3
5
8
4
Partial
nulling
Normal
pulses
Dwarf
pulses
0.3
0.2
0.1
0
0 10 20
Partial
nulling
Normal
pulses
Dwarf
pulses
0.3
0.2
0.1
0
0 10 20
5
6
7
7
5
7
6
3
4
2
5 6
8
9
3
4
4
3
5 7
9
5
3
1
4
2
6
8
7
Fig.3|DwarfpulsesofPSR B2111+46asadistinctpopulationfromthepartial
nullingandnormalpulses.Pulsewidthismeasuredatthemostouterprofile
atthe3σdetectionlevel.a,b,Pulsefluenceintegratedovereachpulse,E,against
pulsewidth,W.Thedensitydistributionofthedataisshownincolourandalso
incontoursatlevelsof1/2−n
ofthemaximumdensity(n = 1–8).Moresensitive
observationson8March2022shownin(b)givealargerwidthrangefornormal
pulses.Theinsetsshowthedataislandofdwarfpulsesforclarity.Normalpulses
areconcentratedaroundthemainpeak,withafluenceintherangeof10 Jy ms
toabout50 Jy msandapulsewidthof60° < W < 100°.Thedwarfpulsesare
concentratedonanotherpeak,withafluenceoflessthan1 Jy msandapulse
widthoflessthan15°(thatis,40 ms).Inbetweenarepartiallynullingpulses
(see‘NullingandPartialNulling’inMethods).c,d,Thesameasinaandbbutfor
thepeakfluxdensitySpeak againstthepulsewidthW.a,c,Forindividualpulses
obtainedinthethreesessionsin2020.b,d,Forpulsesdetectedinthelonger
verificationobservationsessionon8March2022.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
from PSR B1237+2530
are similar to the dwarf pulses presented here.
Dwarf pulses are probably a common phenomena for old nulling pul-
sars,adistinct,veryweak,emissionmode31
standingoutmoreclearly
inobservationswithahighersensitivity.Detailedhigh-time-resolution
polarizationobservationsofdwarfpulses,asinthispaper,canpromote
furtherourunderstandingoftheradiationmechanismofradiopulsars.
Methods
FAST observations of PSR B2111+46
PSR B2111+46wasserendipitouslydetectedin1ofthe19beamsofthe
L-band 19-beam receiver on 24 August, 26 August and 17 September
2020 while FAST was tracking other objects for verification of pulsar
candidates from the FAST Galactic Plane Pulsar Snapshot survey21
.
Each tracking observation lasted for 15 min (see Table 1 for details),
thatis,885/886periodsofPSR B2111+46.On8March2022,thecentral
beam of the L-band 19-beam receiver of FAST was focused on
PSR B2111+46 for 2 h, without beam offset, to verify the detection of
dwarfpulses.
Inallobservations,thesignalsfromtheXandYpolarizationchan-
nelsintheradiofrequencyrangeof1.0 GHzto1.5 GHzwereamplified
and then transferred to the digital room via optical fibres. Radio fre-
quencysignalswererecoveredandsampled,andthenchannelizedto
2,048 channels in the digital backend and composited to 4 polariza-
tions for each channel, XX, YY and X*Y and XY* (see details in ref. 21).
These polarization data were collected every 49.152 μs (the sample
rateforthe4polarizationchannels)andrecordedintoasetoffitsfiles.
For each session, we have 2 min observations before the session with
calibration signals of an amplitude of 1 K switching on–off every 1 s.
This part of the data were processed to form a calibration reference
file,whichwasusedtocalibratethepolarizationchannels.
Dataprocessing
The raw data of FAST observations of PSR B2111+46 were all saved
in a search mode, with the 4 polarization channels recorded every
49.152 μs. On the basis of the pulsar ephemeris obtained from the
Australia Telescope National Facility (ATNF) pulsar catalogue32
,
180
a b
c d
120
Dwarf
Average
PA
(°)
60
0
–60
1.0
0.8
0.6
Normalized
intensity
0.4
0.2
0
–0.2
–50 –25 0
Longitude (°)
25 50
I
L
24 August 2020
N = 2
20
60
120
V
180
120
Dwarf
Average
PA
(°)
60
0
–60
1.0
0.8
0.6
Normalized
intensity
0.4
0.2
0
–0.2
–50 –25 0
Longitude (°)
25 50
I
L
26 August 2020
N = 2
20
60
120
V
180
120
Dwarf
Average
PA
(°)
60
0
–60
1.0
0.8
0.6
Normalized
intensity
0.4
0.2
0
–0.2
–50 –25 0
Longitude (°)
25 50
I
L
17 September 2020
N = 2
20
60
120
V
180
120
Dwarf
Average
PA
(°) 60
0
–60
0.02
0.01
Normalized
intensity
0
–0.01
–0.02
–100 –75 –50 –25 0
Longitude (°)
25 50 75
I
L
8 March 2022
N = 2
20
100
360
V
Fig.4|PAdistributionofdwarfpulsescomparedwiththedataofnormal
pulses.a–d,ThePAdataofeachbinofdwarfpulses(orange)areplotted
againstthoseofnormalpulses(green,darknessscaledtothedatanumberN)
andthemeanpolarizationprofilesforthefourFASTobservationsessions:
24August2020(a),26August2020(b),17September2020(c)and8March2022(d).
Theorthogonalmodesaremostlypredominantinthewingsoftheconal
components.Themagnifiedpolarizationprofilesfor8March2022showthe
newlydetectedmuchextendedleadingweakprofilewing.Theerrorbarfor
PAis±1σ.Theintensityisscaledwiththepeakvalue.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
we processed the pulsar data using the package DSPSR33
. The data
were de-dispersed according to the dispersion measure (DM) value
DM = 141.26 pc cm−3
initially15
, and were then folded according to
the period P = 1.0146848 s. A better DM value DM = 141.378 pc cm−3
was found using our high-time-resolution data for the sharp peaks
of individual pulses. The polarization leakages were calibrated34
,
and the band distortion was corrected according to the calibration
refe­rence file obtained from the 2 min calibration on–off data. Some
frequency channels with strong RFI were weighted to zero using the
softwarePSRZAP35
.Thepolarizationdatafromallchannelswerethen
rotation-measure-correctedaccordingtotheknownrotationmeasure
(RM)valueofRM = −218.7 rad m−2
(ref.36)usingthepulsarprocessing
program PAM in the package PSRCHIVE35
. After the data from all fre-
quencychannelswereintegrated,thefourStokesparameters(I,Q,U,V)
were then saved for 512 bins each period for the normal detection of
nullingpulses.Wealsodeterminedtheprofileswith1,024,2,048,4,096
and 20,643 bins, and found that those with 512 bins were the best for
detectingdwarfpulses.
Pulseprofilesandpolarization
For each session, the mean profile of PSR B2111+46 was obtained
(ExtendedDataFigs.1–4)afterindividualpulsesfromallperiodswere
a b
c d
1,500
0 5
1,350
1,200
Frequency
(MHz)
PA
(°)
Spectral
index
PA
(°)
Spectral
index
PA
(°)
Spectral
index
PA
(°)
Spectral
index
I/σ
bin
I/σoff
0 4
I/σoff
0 6 12
I/σoff
0 4
I/σoff
1,050
5
0
–5
60
0
–60
8 March 2022
Period 2,453
50
0
1,500
1,350
1,200
Frequency
(MHz)
I/σ
bin
1,050
3
0
–3
60
0
–60
50
100
0
–40 –20 0
Longitude (°)
20 40 60 –40 –30
Longitude (°)
–20 –10 0
V
L
I
1,500
1,350
1,200
Frequency
(MHz)
I/σ
bin
1,050
3
0
–3
60
0
–60
40
20
0
1,500
1,350
1,200
Frequency
(MHz)
I/σ
bin
1,050
3
0
–3
60
0
–60
40
20
0
8 March 2022
Period 3,766
8 March 2022
Period 237
8 March 2022
Period 369
V
L
I
V
L
I
V
L
I
12.0 12.5 13.0
Longitude (°)
13.5 14.0 14.5 23 24
Longitude (°)
25 26 27
Fig.5|Phase-resolvedspectralindexfortwoindividualpulsesandtwodwarf
pulsesobservedon8March2022byFAST. a–d,Waterfallplotfortheindividual
pulseintensityonthephase–frequencyplane(uppersubpanels;thefrequency
channelscontainingRFIshavebeenremoved)fortwonormalpulsesinperiod
2453(a)andperiod3766(b)andtwodwarfpulsesinperiod237(c)and369(d),
clearlyshowingthevariationofthephase-resolvedspectralindexforindividual
pulses(seconduppersubpanels).ThepolarizationprofilesofthepulseandthePA
values(green)togetherwiththemeanPAcurve(grey)areplottedinthebottom
subpanelsandthesecondbottomsubpanels,respectively.Theobservationdate
andtheperiodnumberoftheindividualpulsearemarkedinthebottompanel.
ThePAcurvesarefittedwiththerotatingvectormodel2
.TheerrorbarforPAis
±1σ.Theintensityisscaledwiththeoff-pulsefluctuationsexpressedbyσbin.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
averaged.Nocleardifferencewasfoundbetweenthethreepolarization
profiles(seeFig.4forthe2020sessions)andtheywereconsistentwith
theresultsat610 MHzand1,408 MHz(refs.37,38)and1,500 MHz(ref.39)
after the opposite definition of circular polarization is considered.
However, much more extended profile wings were detected in the
targeted verification observations on 8 March 2022 that have a much
better sensitivity owing to the targeted good pointing. These results
indicate the excellent performance of polarization measurements
fortheL-band19-beamreceiver,evenwhentheobjectiswelloffofthe
beamcentre.Intheresults,anumberofperiodsoccasionallyhaveRFI
(see Table 1) and these were cleaned and marked with a dashed line in
thepulsestacksofindividualpulses,suchasperiods683,684,694and
695inthe24August2020session(seeExtendedDataFig.1).
The mean pulse profiles show triple components for both cone
and core emission, with a strong linear polarization for almost all
longitudes except for these in the two edges. The Gaussian fittings
to the mean profile always give five components18
. The observations
on 8 March 2022 show two highly polarized prefix mean profile com-
ponents (Fig. 4), so that the mean profile has a wide longitude range
of more than 155°. The reversed sense of circular polarization at the
centre of the mean profiles indicates the core nature of the central
component37,40
. The PA curves follow an S shape17,39
, which can be well
interpreted by the rotating vector model2
. The orthogonal modes of
the PA distributions are revealed by our FAST observations from the
conalandtwonewlydetectedprefixwingemissioncomponentsshown
in Fig. 4. The smoothly changing PA curve extends in the two sides of
mean profiles and smoothly varies for more than 220°. Our fitting to
the PA curve suggests that PSR B2111+46 is an aligned rotator, that is,
with a small inclination angle of only 6.3° between the magnetic axis
fromtherotationaxis,andthelineofsightimpactstheradioemission
beam only 0.7° below the magnetic axis. The line of sight impacts the
emission beam in about 40% of a period, and FAST obtains more than
8,750 independent samples of the emission beam among the 20,643
datapointseveryperiod.
The polarization profiles of individual pulses at high-temporal
resolution (Extended Data Fig. 5) can reveal many details about emis-
sion.OwingtotheextremesensitivityofFASTobservations,individual
pulses frequently contain numerous peaks, indicating real variations
in emission. These fine subpulses are considered to be elementary
emission cells and have a much smaller width than conventional sub-
pulses. An example of a highly isolated elementary pulse can be seen
in period 237 in Fig. 1, which is a dwarf pulse and exhibits nearly 100%
polarization.ThePAsofsuchdwarfpulsesmostlyfollowthePAcurveof
meanprofile,asseeninFig.4.ThePAvaluesofmostelementarypulses
of normal individual pulses also conform to the PA curve of the mean
profile, with deviations occasionally observed at various longitudes,
probably owing to the overlaps of orthogonal modes. More intrigu-
ing is the sense change of circular polarization for some elementary
pulses not near the centre of the core component but in some other
longitudes, even of the conal components (for example, periods 700
and 679 in Extended Data Fig. 1, period 354 in Extended Data Fig. 2,
period 137 in Extended Data Fig. 3 and period 1,551 in Extended Data
Fig.5).Thischallengesthesimplegeometricalexplanationforcircular
polarization41–43
.
Nullingandpartialnulling
Thenullingphenomenonisoftenobservedforpulsarsnearthedeath-
lineintheP– ̇
P diagram44,45
.PSR B2111+46islocatedinthedeathvalley
(Extended Data Fig. 7). Nulling of PSR B2111+46 has previously been
observed, and the nulling fraction is 12.5% at 408 MHz (ref. 6) and
increasesto21%at610 MHz(ref.20).ThestatisticsfromTable1forour
FASTobservationsgiveanullingfactorofabout20%at1,250 MHz.
The nulling fraction varies from component to component20
.
Partial nulling of PSR B2111+46 has previously been suggested20
,
and our high-quality FAST data clearly manifest the phenomenology
(seeexamplesinExtendedDataFigs.1–4).Thepartialnullingphenom-
enon means that only one or two mean profile emission components
existwithouttheothercomponents.Onthebasisofourverysensitive
FAST observations, we find that many individual pulses have normal
emission for only one or two components, and clearly lack emission
for the other mean profile components, for example, period 679 in
Extended Data Fig. 1, periods 365 and 371 in Extended Data Fig. 2 and
periods 137 and 140 in Extended Data Fig. 3. These partially nulling
pulses, if they appear, have a peak flux density comparable to the
normalpulses.ThePAvaluesofeachbinfollowthemeanPAcurvewell.
There is no question that partial nulling pulses have a smaller pulse
widththannormalpulses,typically10° < W < 60°.
Dwarfpulsesandpulseenergydistribution
The most fascinating features observed are the ‘dwarf’ pulses, which
areweakandnarrowinnature(ExtendedDataFigs.1–4).Thesedwarf
pulses appear across a wide range of phases for both the core and
conal components and in between, with a preference in the trailing
component (as seen in Extended Data Fig. 6). To describe the narrow
width of these weak pulses, the pulse width in this study is measured
at a level of 3σbin, which is slightly different each period due to differ-
entRFIcleaning;therefore,amuchlargerthantraditionalpulsewidth
measured at a level of 50% or 10% of the peak, which is suitable for
single Gaussian components rather than the complicated combina-
tions of many strong and weak pulses for PSR B2111+46. The start and
end phases of the on-pulse region are defined as the left-most and
right-most sides with three successive data points higher than 3σbin.
By counting the consecutive points over 3σbin, we obtain the width of
a pulse. It is possible that some narrow pulses have only one or two
bins, which are selected as real detection of a pulse only if the peak
flux density is larger than 8σbin. Most dwarf pulses can be resolved in
high-samplingFASTobservations,asshowninExtendedDataFig.5,and
therefore they are composited by a few elementary pulses, probably
generated by several ‘raindrops’ of particles streaming in the pulsar
magnetosphere,insteadofthe‘thunderstorm’ofparticlesfornormal
individualpulsesoverawidelongitude.
Incontrasttogiantpulsesdetectedfromsomepulsars23,46
,which
are strong pulses with a few tens or even hundreds times of the peak
fluxdensityofnormalpulses,thedwarfpulseshaveapeakfluxdensity
that is, in general, much less than that for normal pulses. We checked
andfoundthatPSR B2111+46hasnogiantpulses,thatis,anarrowpulse
withapeakfluxdensityafewtimeshigherthantheaverage.According
toExtendedDataFig.6,mostdwarfpulseshaveapeakfluxdensityless
than50 mJy,morethan5timesweakerthantheaveragepeak,exceptfor
afewverynarrowpulses(forexample,period237inFig.5)whichhave
a high peak. We tried to define the dwarf pulse as a peak flux density
lessthan,forexample,20%ofthepeakintheaverageprofile,butfound
thatthepeakisbin-numberdependent.
When the fluence of an individual pulse is counted by the area
underneatheachpulseprofile,thenormalpulseshaveanenergyfollow-
ing the log-normal distribution, similar to other pulsars23
. The partial
nulling pulses have less energy, mainly because of their lack of some
emission components. The dwarf pulses have the smallest energy, as
showninFig.2,sotheyarehiddenintheenergydistributionpeaksfor
nulling,butdistinctlystandawayfromthelog-normaldistributionof
normalpulses.Ifobservationsweremadewithabettersensitivity,that
is,withamuchsmallerσE inFig.2,thesedwarfpulseswouldstandout
clearly from the histogram peak for nulling periods. Although some
dwarf pulses have previously been detected from PSR J1107−590722
,
theFASTdatahereforPSR B2111+46showthedwarfpulsesasadistinct
population.Theirdistinctivedistributioninthetwo-dimensionalplot
of pulse width and pulse energy in Fig. 3 suggest that they belong to a
newclassofpulsesfortheweakemissionmode31
.
Combining the energy and width information, dwarf pulses
have a pulse width narrower than 15° and a fluence E < 2 Jy ms (Fig. 3),
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
and reside at the lowest ends of the distribution in a separate island
from the main pulses. This differs from the general mode-changing
pulses23
thathaveasimilarpulse-widthdistributionasthemainpulses
or the sparse pulses in the rotating radio transient PSR J0941−3947
and PSR B0826−3448
, which have similar peak flux densities to the
normalpulses.
Possiblephysicalprocessesfordifferentemissionmodes
PSR B2111+46 shows four emission modes: the normal pulse mode
consisting of many small, distinct elementary emission cells and
somewide,undistinguishedemissioncomponents;thepartialnulling
modethatlacksemissioninsomecomponents;thedwarfpulsemode
characterized by only one or a few emission cells; and the completely
nulling mode. The four modes of radio emission should respond to
differentphysicalstatesinthemagnetosphere.
Intheconventionalpicture,a‘gap’withchargedensitybelowthe
Goldreich–Julian density49
is believed to be produced near the polar
capregion,eitherintheformofavacuumgap3
orspace-charge-limited
floe50
, or formed in the outer magnetosphere beyond the null-charge
surface51
or in the annular region52
extending from the surface to
outer magnetosphere in the form of a slot gap53
. Pulsar radio emis-
sioniscoherentlyproducedbyabunchofparticles,asindicatedbyits
extremely high brightness temperature, and the coherency must be
realizedbyorderingparticlesinphasebythelongitudinalelectrostatic
wavesorbythe‘antennamechanism’.Aclumpofrelativisticparticles
streaming along a bunch of magnetic-field lines can produce visible
radioemissionatagivenfrequencybandfromfiniteheightregions.The
lowerfrequencyemissionisgenerallygeneratedfromahigher-altitude
regioninthepulsarmagnetosphere.
The most probable region of gap formation for this old pulsar
with such a weak magnetic field, however, should be above the polar
cap, as shown by recent simulations9,10
, which converges to the con-
ventional concepts for the inner gap and the cascades of pairs via
γ–Bprecess3,7
.Theelectron–positrondischargenearthepulsarpolar
cap is non-stationary8,10
, which leads to large amplitude fluctuations
of the electric field and collective plasma motions. Any break of the
non-stationary nature will lead to incoherency for the radiation, and
then the emission would be very weak even though the particles are
stillflowingoutalongthefieldlines.
Thenullingstateofpulsaremissiondemonstrateseitheradeficit
of outer-flowing particles for radiation, or a lost of coherence
forparticlesorthefailureofgapformation.Anotherpossibilityisthat
thepolargapisfloodedwiththepairplasmacreatedfromothergaps,
sothatthegapandradioemissionarescreened11
.Currentobservations
seem to support the former possibility, especially when the pulsar is
oldandneartheradiodeathline44,45
.
For the emission state of PSR B2111+46, the accurate measure-
ments of the polarization properties and the fine fluctuations for the
well-resolved normal pulses in Extended Data Fig. 5 and the dwarf
pulsesinFigs.1and5clearlyshowthatnormalpulsaremissioniscom-
posited by the radiation from the thunderstorm of particles over a
widely distributed area above the polar cap, with a very large multi-
plicityofcascadesandalsoahigherplasmadensity.Thedwarfpulses
of PSR B2111+46 are produced by one or a few raindrops of particles
producedbythepairdischarges,withamuchlowermultiplicity.
In principle, the gap voltage for the normal pulse emission
state is higher than that for dwarf pulses, so that the pair-production
multiplicity is large and that the energy distributions of the created
particlesmayalsobedifferent.Tofindhintsoftheseprobablechanges,
wethenexaminethespectraofphase-resolvedemissionofindividual
pulses. As shown in Fig. 5, the spectra (S ≈ να
) of some distinguishable
emission components are variable, with a possible index α from −5 to
the unexpected +5. In the phase range for the positive spectral index,
the PA values firmly follow the average PA curve. For a given dwarf
pulse, the spectra do not vary along the pulse phase in such a narrow
phase range. The distributions of mean spectral indexes for three
kinds of individual pulses, normal pulse, partial nulling pulses and
dwarf pulses, are shown in Extended Data Fig. 8. Dwarf pulses most
likely have a reversed spectrum with a positive index, which means
the primary particles in the gap may be responsible for dwarf pulses.
Recent numerical simulations9,10
have shown that the core and conal
components of pulsar radio emission may be preferably produced in
someanglesbetweenthepair-productionfrontsandthebackground
magneticfields.This,inprinciple,shouldinduceahigherprobability
for elementary emission in the beam centre and beam edge, which
is consistent with the mean profile of PSR B2111+46. The emission of
the much extended phase range should be caused by the curvature
of magnetic fields in the edge of the emission beam. We examine the
phase-resolvedspectraforallnormalpulses,andfoundthatingeneral
thespectrabetweenthephaserangeof±(20°−25°)areflatterthanthose
atotherphasesandevenmorelikelyreversed(ExtendedDataFig.9).
Plasmamultiplicityandpropagationeffectsinthepulsar
magnetosphere
Whenpulsaremissionisceased,eitherduetothefailureofgapforma-
tion or the loss of coherence of emission particles, the pulsar magne-
tosphere should always have a pair plasma filled but with a different
multiplicity. The propagation effects of radio emission in the pulsar
magnetosphere should be affected, which can be probed by the
changesofthepolarizationproperties28,29
.Forexample,thePAfollows
thedirectionofthelocalmagneticfieldduetoadiabaticwalking27
until
the polarization limiting radius, after which the natural wave mode
evolution becomes non-adiabatic and the PA angle is frozen. In this
case, the PA curve should be shifted to an earlier rotation phase (see
equation5.88inref.28)
ϕshift ≈ −10.5∘
(η/100)
1/3
(γ/100)
−1
, (1)
hereη = N/NGJ istheplasmamultiplicityinthepulsarmagnetosphere,
N is the charged particle density and NGJ is the density enviseaged by
Goldreich and Julian49
, and γ is the Lorentz factor of the background
plasmastream.Inprinciple,thephaseshiftϕshift canbedirectlydeter-
mined by the phase difference between the steepest position of PA
curve and the centre of the emission profile determined by the whole
openfieldlineemissionregion.However,itisdifficulttodeterminethe
central phase of the profile as the edges of emission region cannot be
determinedclearly,andthereforewecannotobtaintheplasmamulti­
plicity. Nevertheless, we can compare the PA curves of dwarf pulses
to the mean PA curve of normal pulses, and obtain the difference of
phaseshiftsasbeingΔϕshift = ϕshift,dwarf-pulse − ϕshift,normal-pulse.Becauseradio
emissionatthetwostatescomesfromalmostthesameregionwiththe
samefieldgeometry,thechangeofplasmadensitycanbelimitedby
Δη/η ≈ −0.3(Δϕshift/1∘
)(η/100)
−1/3
(γ/100), (2)
foragivenLorentzfactorγ.
Theaccuratepolarizationmeasurementsofdwarfpulsesbysensi­
tive FAST observations provide a chance to probe the decrease of
plasma density in such an emission-almost-quenched pulsar magne-
tosphere. The PA values of dwarf pulses almost follow the mean PA
curve. The phase shift of PA for each dwarf pulse is obtained from the
differencebetweenthephaseofthedwarfpulseandthephaseforthe
same PA value in the mean PA curve. Taking all phase-shift values for
all dwarf pulses, we fit the distribution with a Gaussian function and
obtainthemeanshiftasΔϕshift ≈ −0.77° ± 0.25° (ExtendedDataFig.10),
which is marginally significant and implies a small increase of back-
groundplasmadensityinthepulsarmagnetospherebyanamountof
Δη/η ≈ (22% ± 7%)(η/100)−1/3
(γ/100).Maybethenullingofthispulsaris
causedbythefloodingofpairplasmatotheinnergap11
,sothatthepair
productionandthefollowingradioemissionprocesscease.However,
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
bettermeasurementsformoredwarfpulsesareneededtobettercon-
strainΔϕshift andthenΔη/η.
Dataavailability
Original FAST observational data are open source after the one-year
protection for the high-priority usage by observers, according to the
FAST data policy. The processed data presented in this paper can be
downloadfromhttp://zmtt.bao.ac.cn/GPPS/B2111/.
References
1. Manchester, R. N. The shape of pulsar beams. J. Astrophys. Astron.
16, 107–117 (1995).
2. Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the
polarization structure of pulsar radiation. Astrophys. Lett. 3, 225
(1969).
3. Ruderman, M. A. & Sutherland, P. G. Theory of pulsars: polar gaps,
sparks, and coherent microwave radiation. Astrophys. J. 196,
51–72 (1975).
4. Oswald, L., Karastergiou, A. & Johnston, S. Pulsar polarimetry with
the Parkes ultra-wideband receiver. Mon. Not. R. Astron. Soc. 496,
1418–1429 (2020).
5. Backer, D. C. Pulsar nulling phenomena. Nature 228, 42–43 (1970).
6. Ritchings, R. T. Pulsar single pulse intensity measurements and
pulse nulling. Mon. Not. R. Astron. Soc. 176, 249–263 (1976).
7. Sturrock, P. A. A model of pulsars. Astrophys. J. 164, 529 (1971).
8. Philippov, A., Timokhin, A. & Spitkovsky, A. Origin of pulsar radio
emission. Phys. Rev. Lett. 124, 245101 (2020).
9. Chen, A. Y., Cruz, F. & Spitkovsky, A. Filling the magnetospheres of
weak pulsars. Astrophys. J. 889, 69 (2020).
10. Cruz, F., Grismayer, T., Chen, A. Y., Spitkovsky, A. & Silva, L. O.
Coherent emission from QED cascades in pulsar polar caps.
Astrophys. J. Lett. 919, L4 (2021).
11. Bransgrove, A., Beloborodov, A. M. & Levin, Y. Radio emission and
electric gaps in pulsar magnetospheres. Preprint at https://arxiv.org/
abs/2209.11362 (2022).
12. Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A. & Lorimer, D. R.
A periodically active pulsar giving insight into magnetospheric
physics. Science 312, 549–551 (2006).
13. Lorimer, D. R. et al. Radio and X-ray observations of the
intermittent pulsar J1832+0029. Astrophys. J. 758, 141 (2012).
14. Camilo, F., Ransom, S. M., Chatterjee, S., Johnston, S. & Demorest,
P. PSR J1841−0500: a radio pulsar that mostly is not there.
Astrophys. J. 746, 63 (2012).
15. Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E. & Jordan, C.
Long-term timing observations of 374 pulsars. Mon. Not. R. Astron.
Soc. 353, 1311–1344 (2004).
16. Davies, J. G. & Large, M. I. A single-pulse search for pulsars.
Mon. Not. R. Astron. Soc. 149, 301 (1970).
17. Mitra, D. & Li, X. H. Comparing geometrical and delay radio
emission heights in pulsars. Astron. Astrophys. 421, 215–228 (2004).
18. Zhang, H., Qiao, G. J., Han, J. L., Lee, K. J. & Wang, H. G. PSR
B2111+46: a test of the inverse Compton scattering model of radio
emission. Astron. Astrophys. 465, 525–531 (2007).
19. Thomas, R. M. C. & Gangadhara, R. T. Absolute emission altitude
of pulsars: PSRs B1839+09, B1916+14, and B2111+46. Astron.
Astrophys. 515, A86 (2010).
20. Gajjar, V., Joshi, B. C. & Kramer, M. A survey of nulling pulsars
using the Giant Meterwave Radio Telescope. Mon. Not. R. Astron.
Soc. 424, 1197–1205 (2012).
21. Han, J. L. et al. The FAST Galactic Plane Pulsar Snapshot survey: I.
Project design and pulsar discoveries. Res. Astron. Astrophys. 21,
107 (2021).
22. Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G. &
Kramer, M. On the apparent nulls and extreme variability of PSR
J1107−5907. Mon. Not. R. Astron. Soc. 442, 2519–2533 (2014).
23. Burke-Spolaor, S. et al. The high time resolution universe pulsar
survey—V. Single-pulse energetics and modulation properties of
315 pulsars. Mon. Not. R. Astron. Soc. 423, 1351–1367 (2012).
24. Cognard, I., Shrauner, J. A., Taylor, J. H. & Thorsett, S. E. Giant radio
pulses from a millisecond pulsar. Astrophys. J. Lett. 457, L81 (1996).
25. Rickett, B. J., Hankins, T. H. & Cordes, J. M. The radio spectrum
of micropulses from pulsar PSR 0950+08. Astrophys. J. 201,
425–430 (1975).
26. Soglasnov, V. A. et al. Giant pulses from PSR B1937+21 with widths
<=15 nanoseconds and Tb>=5×1039
K, the highest brightness
temperature observed in the Universe. Astrophys. J. 616, 439–451
(2004).
27. Cheng, A. F. & Ruderman, M. A. A theory of subpulse polarization
patterns from radio pulsars. Astrophys. J. 229, 348–360 (1979).
28. Wang, C., Lai, D. & Han, J. Polarization changes of pulsars due to
wave propagation through magnetospheres. Mon. Not. R. Astron.
Soc. 403, 569–588 (2010).
29. Beskin, V. S. & Philippov, A. A. On the mean profiles of radio
pulsars—I. Theory of propagation effects. Mon. Not. R. Astron. Soc.
425, 814–840 (2012).
30. Srostlik, Z. & Rankin, J. M. Core and conal component analysis of
pulsar B1237+25. Mon. Not. R. Astron. Soc. 362, 1121–1133 (2005).
31. Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G. &
Kramer, M. Long-term observations of three nulling pulsars.
Mon. Not. R. Astron. Soc. 449, 1495–1504 (2015).
32. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The
Australia Telescope National Facility Pulsar Catalogue. Astron. J.
129, 1993–2006 (2005).
33. van Straten, W. & Bailes, M. DSPSR: Digital signal processing
software for pulsar astronomy. Publ. Astron. Soc. Aust. 28, 1–14
(2011).
34. Wang, P. F. et al. FAST pulsar database: I. polarization profiles of
682 pulsars. Res. Astron. Astrophys. 23, 104002 (2023).
35. Hotan, A. W., van Straten, W. & Manchester, R. N. Psrchive and
psrfits: an open approach to radio pulsar data storage and
analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004).
36. Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization
determinations of 33 pulsars using the Green Bank Telescope.
Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015).
37. Lyne, A. G. & Manchester, R. N. The shape of pulsar radio beams.
Mon. Not. R. Astron. Soc. 234, 477–508 (1988).
38. Gould, D. M. & Lyne, A. G. Multifrequency polarimetry of 300
radio pulsars. Mon. Not. R. Astron. Soc. 301, 235–260 (1998).
39. Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization
determinations of 33 pulsars using the Green Bank Telescope.
Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015).
40. Rankin, J. M. Toward an empirical theory of pulsar emission. VI.
The geometry of the conal emission region. Astrophys. J. 405, 285
(1993).
41. Radhakrishnan, V. & Rankin, J. M. Toward an empirical theory of
pulsar emission. V. On the circular polarization in pulsar radiation.
Astrophys. J. 352, 258 (1990).
42. Han, J. L., Manchester, R. N., Xu, R. X. & Qiao, G. J. Circular
polarization in pulsar integrated profiles. Mon. Not. R. Astron. Soc.
300, 373–387 (1998).
43. Gangadhara, R. T., Han, J. L. & Wang, P. F. Coherent curvature radio
emission and polarization from pulsars. Astrophys. J. 911, 152 (2021).
44. Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line
revisited: is PSR J2144−3933 anomalous? Astrophys. J. Lett. 531,
L135–L138 (2000).
45. Chen, K. & Ruderman, M. Pulsar death lines and death valley.
Astrophys. J. 402, 264 (1993).
46. Weltevrede, P., Wright, G. A. E., Stappers, B. W. & Rankin, J. M. The
bright spiky emission of pulsar B0656+14. Astron. Astrophys. 458,
269–283 (2006).
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
47. Burke-Spolaor, S. & Bailes, M. The millisecond radio sky: transients
from a blind single-pulse search. Mon. Not. R. Astron. Soc. 402,
855–866 (2010).
48. Esamdin, A., Abdurixit, D., Manchester, R. N. & Niu, H. B. PSR
B0826−34: sometimes a rotating radio transient. Astrophys. J. Lett.
759, L3 (2012).
49. Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J.
157, 869 (1969).
50. Arons, J. & Scharlemann, E. T. Pair formation above pulsar polar
caps: structure of the low altitude acceleration zone. Astrophys. J.
231, 854–879 (1979).
51. Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from
rapidly spinning pulsars. I. Outer magnetosphere gaps.
Astrophys. J. 300, 500 (1986).
52. Qiao, G. J., Lee, K. J., Wang, H. G., Xu, R. X. & Han, J. L. The inner
annular gap for pulsar radiation: γ-ray and radio emission.
Astrophys. J. Lett. 606, L49–L52 (2004).
53. Muslimov, A. G. & Harding, A. K. High-altitude particle
acceleration and radiation in pulsar slot gaps. Astrophys. J. 606,
1143–1153 (2004).
Acknowledgements
This work made use of data from FAST. FAST is a Chinese national
mega-science facility, built and operated by the National Astronomical
Observatories, Chinese Academy of Sciences. The authors of this work
have been supported by the Natural Science Foundation of China:
numbers 11988101 and 11833009 and National SKA Program of China
2020SKA0120100.
Authorcontributions
X.C. and Y.Y. processed all related data and noticed the dwarf pulses,
and they contributed to this paper equally. J.L.H. supervised and
coordinated the team work, pursued the nature of the dwarf pulses
and took the responsibility for paper writing. P.F.W., C.W., W.C.J.
and D.J.Z. contributed to different aspects of data processing.
T.W., W.Y.W., Z.L.Y., W.Q.S., N.N.C., J.X., R.X.X., K.J.L., G.J.Q. and B.Z.
joined the discussions and contributed to some parts of paper writing
or plot-making.
Competinginterests
The authors declare no competing interests.
Additionalinformation
Extended data is available for this paper at
https://doi.org/10.1038/s41550-023-02056-z.
Supplementaryinformation The online version contains supplementary
material available at https://doi.org/10.1038/s41550-023-02056-z.
Correspondence and requests for materialsshould be addressed to
J. L. Han.
Peer review information Nature Astronomy thanks Ashley Bransgrove
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.
Reprints and permissions informationis available at
www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to Springer Nature Limited
2023
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.1|ThepulsesofPSRB2111+46observedbyFASTinthe
sessionon2020-08-24.Theleft-mostpanelisthetrainofindividualpulses
for886periods,withthemeanprofileshowninthebottomandtheintensityof
whichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual
pulseisplottedintheimmediatelyright,sothattheenergyfluctuationsareseen
veryclearlywhichshowthetwopredominatepeaksforbothnullingandemission
statesinthenumberdistributionsinthebottom.Asegmentofthepulsestackis
showningreyforhighqualityindividualpulses,withsignificantfluctuationsof
profileamplitude,inwhichnormalindividualpulsescanbeseenintheperiod
No.702-700,696and680,partialnullingintheperiodNo.679,anddwarfpulses
oftheperiodNo.699and682.Thedetailedpolarizationprofilesfor4pulsesare
presentedintheright4panels,eachwithtotalintensityI,linearpolarizationL
andcircularpolarizationVinthebottomsubpanelandPAintheuppersubpanel.
Thepolarizationprofilesofthemeanpulseareshownindashedlineinthese
subpanelsforcomparison.TheerrorbarforPAis ± 1σ.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.2|ThepulsesofPSRB2111+46observedbyFASTinthe
sessionon2020-08-26.Theleft-mostpanelisthetrainofindividualpulses
for886periods,withthemeanprofileshowninthebottomandtheintensityof
whichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual
pulseisplottedintheimmediatelyright.Asegmentofthepulsestackisshown
ingreyforhighqualityindividualpulses,withadwarfpulseintheperiodNo.377
andpartialnullingintheperiodNo.365.Thedetailedpolarizationprofilesfor
4pulsesarepresentedintheright4panels,eachwithtotalintensityI,linear
polarizationLandcircularpolarizationVinthebottomsubpanelandPAinthe
uppersubpanel.Thepolarizationprofilesofthemeanpulseareshownindashed
lineinthesesubpanelsforcomparison.TheerrorbarforPAis ± 1σ.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.3|ThepulsesofPSRB2111+46observedbyFASTinthe
sessionon2020-09-17.Theleft-mostpanelisthetrainofindividualpulsesfor
885periods,withthemeanprofileshowninthebottomandtheintensityof
whichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual
pulseisplottedintheimmediatelyright.Asegmentofthepulsestackisshown
ingreyforhighqualityindividualpulses,withadwarfpulseintheperiodNo.136
andpartialnullingintheperiodNo.137.Thedetailedpolarizationprofilesfor
4pulsesarepresentedintheright4panels,eachwithtotalintensityI,linear
polarizationLandcircularpolarizationVinthebottomsubpanelandPAinthe
uppersubpanel.Thepolarizationprofilesofthemeanpulseareshownindashed
lineinthesesubpanelsforcomparison.TheerrorbarforPAis ± 1σ.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.4|ThepulsesofPSRB2111+46observedbyFASTinthe
sessiononon2022-03-08.Theleft-mostpanelisthetrainofindividualpulses
for7098periods,withthemeanprofileshowninthebottomandtheintensity
ofwhichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual
pulseisplottedintheimmediatelyright.Asegmentofthepulsestackisshown
ingreyforhighqualityindividualpulses,withadwarfpulseinperiodofNo.5895
andtwopartialnullingsintheperiodNo.5891and5897.Thedetailedpolarization
profilesfor4pulsesarepresentedintheright4panels,eachwithtotalintensity
I,linearpolarizationLandcircularpolarizationVinthebottomsubpanelandPA
intheuppersubpanel.Thepolarizationprofilesofthemeanpulseareshownin
dashedlineinthesesubpanelsforcomparison.TheerrorbarforPAis ± 1σ.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.5|Examplesofpolarizationprofilesfortwodwarfpulses
andtwostrongindividualpulsesinhightimeresolution.Allofthemare
observedon2022-03-08byFASTwithtimeresolutionof49.152μs.Polarization
profilesfortwostrongindividualpulsesareshownfortheirelongatedcentral
partinthenextpanel.Eachripintheprofilesisreal,well-significantabovethe
noisefluctuations.Theseunrepresenteddetailsindicatethattheobserved
individualpulsesareanincoherentcollectionofmanyelementarypulses
generatedseparatelyinthemagnetosphere.TheerrorbarforPAis ± 1σ.The
intensityisscaledwiththeoff-pulsefluctuationsexpressedbyσbin.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.6|Longitudedistributionofdwarfpulses.Longitudedistributionofdwarfpulselocationsarecomparedtothemeanpulseprofileindicatedby
thedashline.Thebarlengthstandsfordwarfpulsewidth,andthedotsmarkthepeaklocationsinthelongitude.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.7|Pulsarperiodandperiodderivative(P − ̇
P)diagram
andthelocationofPSRB2111+46inthedeathvalley.Thedeathlinesaregiven
forthecurvatureradiationinadipolefield(upperone)andanextremelycurved
field(lowerone)inthevacuumgapmodel(soldlines)andthespace-
charged-limitedflowmodel(dashedlines)givenin44
.Allpulsardataaretaken
fromtheATNFpulsarCatalogue32
(version1.70).Thebackgroundgraydashed
anddottedlinesstandforconstantsurfacemagneticfieldstrengthsand
characteristicages,respectively.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.8|Distributionsforspectralindexesofthreekindsofindividualpulses.Allthesepulses,including5175normalpulses,199partialnulling
pulsesand67dwarfpulses,areobservedbyFASTon2022-03-08.Theindexesarecalculatedforeachindividualpulsebyusingtheon-pulseintegratedintensity,and
haveanuncertaintylessthan0.5.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.9|Thenumberdistributionofphase-resolvedspectralindexes.Dataofspectralindexesofallphasebinshaveanuncertaintylessthan0.5for
allindividualpulsesobservedbyFASTon2022-03-08,asshownintheuppersubpanel,togetherwiththemeanpolarizationprofileforunderstandinginthelower
subpanelscaledwiththepeakvalue.
Nature Astronomy
Article https://doi.org/10.1038/s41550-023-02056-z
ExtendedDataFig.10|Thephaseshiftdistributionofpolarizationanglesof62dwarfpulses.TheshiftvaluesareobtainedbycomparisonoftheirPAtothemean
PAcurveatthelongitudeofdwarfpulses.

More Related Content

Similar to Strong and weak pulsar radio emission due to thunderstorms and raindrops of particles in the magnetosphere

Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...
Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...
Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...Sérgio Sacani
 
Discrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful auroraDiscrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful auroraSérgio Sacani
 
Radio continum emission_of_35_edge_on_galaxies_observed_with_the_vla
Radio continum emission_of_35_edge_on_galaxies_observed_with_the_vlaRadio continum emission_of_35_edge_on_galaxies_observed_with_the_vla
Radio continum emission_of_35_edge_on_galaxies_observed_with_the_vlaSérgio Sacani
 
Dense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burstDense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burstSérgio Sacani
 
Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...Sérgio Sacani
 
Subsecond periodic radio oscillations in a microquasar
Subsecond periodic radio oscillations in a microquasarSubsecond periodic radio oscillations in a microquasar
Subsecond periodic radio oscillations in a microquasarSérgio Sacani
 
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Sérgio Sacani
 
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_stateRadio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_stateSérgio Sacani
 
Swiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsar
Swiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsarSwiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsar
Swiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsarSérgio Sacani
 
A. Zakharov: Supermassive Black Hole at the Galactic Center
A. Zakharov: Supermassive Black Hole at the Galactic CenterA. Zakharov: Supermassive Black Hole at the Galactic Center
A. Zakharov: Supermassive Black Hole at the Galactic CenterSEENET-MTP
 
Evidence for an intermediate-mass black hole in the globular cluster NGC 6624
Evidence for an intermediate-mass black hole in the globular cluster NGC 6624Evidence for an intermediate-mass black hole in the globular cluster NGC 6624
Evidence for an intermediate-mass black hole in the globular cluster NGC 6624Sérgio Sacani
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaSérgio Sacani
 
Hard xray emission_in_the_star_formation_region_on2
Hard xray emission_in_the_star_formation_region_on2Hard xray emission_in_the_star_formation_region_on2
Hard xray emission_in_the_star_formation_region_on2Sérgio Sacani
 
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Sérgio Sacani
 
The nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_lookThe nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_lookSérgio Sacani
 
Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...
Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...
Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...Anatol Alizar
 

Similar to Strong and weak pulsar radio emission due to thunderstorms and raindrops of particles in the magnetosphere (20)

Aa16869 11
Aa16869 11Aa16869 11
Aa16869 11
 
Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...
Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...
Monthly quasi-periodic eruptions from repeated stellar disruption by a massiv...
 
Discrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful auroraDiscrete and broadband electron acceleration in Jupiter’s powerful aurora
Discrete and broadband electron acceleration in Jupiter’s powerful aurora
 
Radio continum emission_of_35_edge_on_galaxies_observed_with_the_vla
Radio continum emission_of_35_edge_on_galaxies_observed_with_the_vlaRadio continum emission_of_35_edge_on_galaxies_observed_with_the_vla
Radio continum emission_of_35_edge_on_galaxies_observed_with_the_vla
 
Dense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burstDense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burst
 
Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...
 
Ngc 4151 03
Ngc 4151 03Ngc 4151 03
Ngc 4151 03
 
Ngc 4151 02
Ngc 4151 02Ngc 4151 02
Ngc 4151 02
 
Subsecond periodic radio oscillations in a microquasar
Subsecond periodic radio oscillations in a microquasarSubsecond periodic radio oscillations in a microquasar
Subsecond periodic radio oscillations in a microquasar
 
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
Discovery of rapid whistlers close to Jupiter implying lightning rates simila...
 
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_stateRadio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
 
Swiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsar
Swiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsarSwiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsar
Swiging between rotation_and_accretion_power_in_a_millisecond_binary_pulsar
 
A. Zakharov: Supermassive Black Hole at the Galactic Center
A. Zakharov: Supermassive Black Hole at the Galactic CenterA. Zakharov: Supermassive Black Hole at the Galactic Center
A. Zakharov: Supermassive Black Hole at the Galactic Center
 
poster
posterposter
poster
 
Evidence for an intermediate-mass black hole in the globular cluster NGC 6624
Evidence for an intermediate-mass black hole in the globular cluster NGC 6624Evidence for an intermediate-mass black hole in the globular cluster NGC 6624
Evidence for an intermediate-mass black hole in the globular cluster NGC 6624
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
 
Hard xray emission_in_the_star_formation_region_on2
Hard xray emission_in_the_star_formation_region_on2Hard xray emission_in_the_star_formation_region_on2
Hard xray emission_in_the_star_formation_region_on2
 
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
 
The nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_lookThe nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_look
 
Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...
Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...
Ещё шесть радиосигналов неизвестной природы получены из-за пределов нашей гал...
 

More from Sérgio Sacani

THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.Sérgio Sacani
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Sérgio Sacani
 
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Sérgio Sacani
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Sérgio Sacani
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...Sérgio Sacani
 
A Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthA Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthSérgio Sacani
 
Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Sérgio Sacani
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Sérgio Sacani
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureSérgio Sacani
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Sérgio Sacani
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surfaceSérgio Sacani
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Sérgio Sacani
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Sérgio Sacani
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Sérgio Sacani
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsSérgio Sacani
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpSérgio Sacani
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...Sérgio Sacani
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneySérgio Sacani
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationSérgio Sacani
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 

More from Sérgio Sacani (20)

THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
 
A Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthA Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on Earth
 
Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surface
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 

Recently uploaded

Mitosis...............................pptx
Mitosis...............................pptxMitosis...............................pptx
Mitosis...............................pptxCherry
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversitySteffi Friedrichs
 
B lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and ActivationB lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and ActivationBhanu Krishan
 
mixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategymixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategyMansiBishnoi1
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPirithiRaju
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyanmuralinath2
 
Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!University of Hertfordshire
 
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday LifeGBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday LifeAreesha Ahmad
 
Microbial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxMicrobial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxCherry
 
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPirithiRaju
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Sahil Suleman
 
GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)Areesha Ahmad
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalMd Hasan Tareq
 
Cell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptxCell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptxCherry
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxmuralinath2
 
SCHISTOSOMA HEAMATOBIUM life cycle .pdf
SCHISTOSOMA HEAMATOBIUM life cycle  .pdfSCHISTOSOMA HEAMATOBIUM life cycle  .pdf
SCHISTOSOMA HEAMATOBIUM life cycle .pdfDebdattaGhosh6
 
National Biodiversity protection initiatives and Convention on Biological Di...
National Biodiversity protection initiatives and  Convention on Biological Di...National Biodiversity protection initiatives and  Convention on Biological Di...
National Biodiversity protection initiatives and Convention on Biological Di...PABOLU TEJASREE
 
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanPlasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanmuralinath2
 
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesGBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesAreesha Ahmad
 
Hemoglobin metabolism: C Kalyan & E. Muralinath
Hemoglobin metabolism: C Kalyan & E. MuralinathHemoglobin metabolism: C Kalyan & E. Muralinath
Hemoglobin metabolism: C Kalyan & E. Muralinathmuralinath2
 

Recently uploaded (20)

Mitosis...............................pptx
Mitosis...............................pptxMitosis...............................pptx
Mitosis...............................pptx
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere University
 
B lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and ActivationB lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and Activation
 
mixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategymixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategy
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyan
 
Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!
 
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday LifeGBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
 
Microbial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxMicrobial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptx
 
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
 
GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of Bengal
 
Cell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptxCell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptx
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
 
SCHISTOSOMA HEAMATOBIUM life cycle .pdf
SCHISTOSOMA HEAMATOBIUM life cycle  .pdfSCHISTOSOMA HEAMATOBIUM life cycle  .pdf
SCHISTOSOMA HEAMATOBIUM life cycle .pdf
 
National Biodiversity protection initiatives and Convention on Biological Di...
National Biodiversity protection initiatives and  Convention on Biological Di...National Biodiversity protection initiatives and  Convention on Biological Di...
National Biodiversity protection initiatives and Convention on Biological Di...
 
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanPlasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
 
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesGBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
 
Hemoglobin metabolism: C Kalyan & E. Muralinath
Hemoglobin metabolism: C Kalyan & E. MuralinathHemoglobin metabolism: C Kalyan & E. Muralinath
Hemoglobin metabolism: C Kalyan & E. Muralinath
 

Strong and weak pulsar radio emission due to thunderstorms and raindrops of particles in the magnetosphere

  • 1. Nature Astronomy natureastronomy https://doi.org/10.1038/s41550-023-02056-z Article Strongandweakpulsarradioemissiondueto thunderstormsandraindropsofparticlesin themagnetosphere X. Chen1,2 , Y. Yan1,2 , J. L. Han 1,2,3 , C. Wang1,2,3 , P. F. Wang1,2,3 , W. C. Jing 1,2 , K. J. Lee 4,5 , B. Zhang 6,7 , R. X. Xu4,5 , T. Wang 1,2 , Z. L. Yang 1,2 , W. Q. Su1,2 , N. N. Cai1,2 , W. Y. Wang2,4,5 , G. J. Qiao2,4 , J. Xu1,3 & D. J. Zhou 1,2 Pulsarsradiateradiosignalswhentheyrotate.However,someold pulsars oftenstopradiatingforsomeperiods.Theunderlyingmechanismremains unknown,asthemagnetosphereduringnullingphasesishardtoprobedue totheabsenceofemissionmeasurements.Herewereportthedetection andaccuratepolarizationmeasurementsofsporadic,weak,narrowdwarf pulsesdetectedintheordinarynullingstateofpulsarB2111+46viathe Five-Hundred-MeterApertureSphericalradioTelescope.Furtheranalysis showsthattheirpolarizationanglesfollowtheaveragepolarization anglecurveofnormalpulses,suggestingnochangeofthemagnetic-field structureintheemissionregioninthetwoemissionstates.Whereasradio emissionofnormalindividualpulsesisradiatedbya‘thunderstorm’of particlesproducedbycopiousdischargesinregularlyformedgaps,dwarf pulsesareproducedbyoneorafew‘raindrops’ofparticlesgeneratedbypair productioninafragilegapofthisnear-deathpulsar. Howandwhypulsarsradiatehasremainedelusivesincetheirdiscovery over 50 years ago. In general, a pulsar radiates pulses continuously in every rotation period. The averaged pulse profiles often occupy a small fraction of the rotation longitude, which defines the emission window1 .Analysisofthepulsepolarizationpropertiessuggestedthat radio emission is generated by highly relativistic particles streaming in the open magnetic-field lines footed on the polar cap2,3 , and the polarization angles reflect the magnetic-field geometry of the emis- sion region sweeping across the line of sight4 . Although the averaged pulse profile of a pulsar is generally stable, individual pulses in each periodshowdiversevariations.Somerelativelyoldpulsarsoftencease radiating for some periods, which is called ‘nulling’5,6 . The magnetosphere of an active pulsar is believed to be filled with a continuously replenished electron–positron plasma7 . Recent particle-in-cellsimulations8–11 haveshownthatgaps,electricdischarge andpairproductioncanoccurinseveralpreferableregionsinthepul- sarmagnetosphere.Radioemissionofapulsarcanquenchduetotwo possibilities.Thefirstisthestandardpictureofpaircascadedepletion due to the inadequate electric potential in the gap. The second is that agapisfloodedbyapairplasmaproducedandinjectedfromelsewhere inthemagnetosphere.Themagnetosphereshouldbeinaverydifferent physical state when the emission ceases. A clear hint comes from the much smaller spin-down rates of a few pulsars12–14 during their long-term nulling state, compared with those in the emission-on state, indicating an interplay between the pulsar braking and outer-flowing particles in the magnetosphere. However, it is almost impossible to probe the magnetosphere state when emission completelyceases. Received: 15 September 2022 Accepted: 14 June 2023 Published online: xx xx xxxx Check for updates 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China. 2 School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing, China. 3 CAS Key laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China. 4 Department of Astronomy, Peking University, Beijing, China. 5 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China. 6 Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV, USA. 7 Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, USA. e-mail: hjl@bao.ac.cn
  • 2. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z interference (RFI) is removed and the data are calibrated, the polari- zation profiles for each individual period and the mean profiles for each session are obtained (Fig. 1 and Extended Data Figs. 1–4). Owing to the high sensitivity of FAST, we detected a large number of dwarf pulses(Fig.1andExtendedDataFigs.1–5)emergingoccasionallyfrom ordinarynullingperiods,andtheirpolarizationpropertiesarealsowell measured. Such dwarf pulses are rare, and only a few have previously beendetectedfromPSR J1107−590722 ,andnofurtherinformationwas previously available for further physical studies. The dwarf pulses of PSR B2111+46 are generally undetectable in low-sensitivity and/or low time-resolution observations, and hence these periods with dwarf pulses are usually thought to be in the nulling state. Therefore, these distinctive dwarf pulses are nice probes for physical processes and the emission region in most asymptotic quenched states of the magnetosphere. DwarfpulsesofPSR B2111+46distinguishthemselvesfromnormal pulsesbytheirdistinctlysmallenergies(Fig.2).Formanypulsars,the energydistributionofindividualpulsesfollowsalog-normaldistribu- tion23 . The emission of PSR B2111+46 in the normal state also follows suchadistribution.However,thedwarfpulseswedetectareveryweak andnarrow.Therefore,theyarefarawayfromthenormalpulseenergy distribution(Fig.3).Insharpcontrasttothegiantpulsesobservedfrom someyoungpulsars,mostdwarfpulseshavelowerpeakfluxdensities thanregularpulses,whilegiantpulseshavefluxdensitiestypicallymore thanoneorderofmagnitudehigherthannormalpulses23,24 . In addition to small energies, the dwarf pulses detected from PSR B2111+46 have very narrow pulse widths (see the distribution of WinFig.3).Withasamplingtimeof49.152 μsforeachdatabinduring observationsofPSR B2111+46,FASTcanmeasuretheradioemissionof We detected a number of sporadic dwarf pulses (Fig. 1), that is, thenarrow,weakpulses,inthemostlyasymptoticemission-quenched stateofPSR B2111+46usingtheFive-Hundred-MeterApertureSpherical radioTelescope(FAST).Detailedanalysesofthesedwarfpulses,suchas theenergydistribution(Fig.2),emergingphaseinrotationlongitudes andthepolarizationproperties,shedlightonthelong-standingenigma of pulsar nulling and mode switching, offering understanding of the physicalprocessesinpulsarmagnetospheres. PSR B2111+46isastrongpulsarwithaperiod15 of1.0146848 sand a dispersion measure of 141.40 rad m−2 , discovered at Jodrell Bank Observatory16 .Itsradioemissionshowstwoknownstates.Inthenormal emissionstate,themeanpulseprofileshowsthreedominantcompo- nents17 : a central core component coming from the emission beam centre and two shoulders from the conal emission. Two additional hidden components were revealed by model fitting18,19 . These promi- nent strong components in total occupy a longitude range of about a quarteroftherotationperiodaccordingtothemeanprofileofprevious observations. Analyses of the polarization profiles suggest that the magneticaxisisclosetotherotationaxis,andthelineofsightcutsthe emissionbeamalongalargearc.Thepulsedemissionisgeneratedfrom aregionatseveralhundredstomorethanathousandkilometresabove the neutron star surface17–19 . The nulling state of PSR B2111+46 is very impressive(ExtendedDataFigs.1–4),whichoccursforabout10–20% of the total periods6,20 depending on the observational frequencies. Intheperiodsofnulling,thepulsarsuddenlybecomesundetectable. PSR B2111+46wasserendipitouslyobservedbyFASTinthreeses- sionsinAugustandSeptember2020(Table1)duringtheFASTGalactic Plane Pulsar Snapshot survey21 , and the verification observations for the dwarf pulses were made in March 2022. After radio frequency 255 a b c d 252 249 246 243 Period number and intensity 240 237 234 231 100 8 March 2022 Period 233 8 March 2022 Period 237 8 March 2022 Period 248 50 0 –90 0 90 PA (°) I/σ bin 50 0 –90 0 90 PA (°) I/σ bin 50 100 0 –90 150 0 90 PA (°) I/σ bin 228 225 –50 0 Longitude (°) 50 –20 –40 0 Longitude (°) 20 40 I L V I L V –20 –40 0 Longitude (°) 20 40 11 12 13 14 Longitude (°) 15 I L V Fig.1|FASTdetectionofadwarfpulseinaseriespulsesofPSR B2111+46. a,AsegmentofpulsetrainsofPSR B2111+46observedinthesessionon8March 2022byFAST,showingsomeemissionandnullingperiods.b–d,Polarization profilesofthreeindividualpulses:period248(b),period237(c)andperiod233 (d).InthelowersubpanelsthetotalintensityI,linearpolarizationLandcircular polarizationV(withpositivevaluesfortheleft-handsense)areplottedinthe originaltimeresolution(49.152 μs)oftheFASTobservations,andthePAsare plottedintheuppersubpanels.Thedwarfpulseintheperiod237hasonlyone resolvedemissioncell,almostfullylinearlypolarizedwithawidthofabout0.1°. Manynotchesoftheothertwopulseprofilesaresensitivesignificantdetection ofrealintensityfluctuationscausedbyemissioncellswithdifferentstrengths. TheerrorbarforPAis±1σ.Theintensityisscaledwiththeoff-pulsefluctuations expressedbyσbin.
  • 3. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z morethan8,870samplesinsidetheemissionbeam(seethelongitude rangedefinedbytheprofileinFig.4)ofPSR B2111+46amongthetotal 20,643datapointseveryperiod.Thenormalindividualpulsesmostly havepulsewidthsintherangeof60° < W < 100°withdiverseintensity fluctuationsalonglongitudes,asthoughinthe‘thunderstormmode’, composited by a large number of emission ‘cells’ (see Fig. 1 and also twomoreexamplesinExtendedDataFig.5),whereasthedwarfpulses consist of only one (see period 237 in Fig. 1) or a few resolved peaks (ExtendedDataFig.5)asthoughonlyoneorafewraindropsintheclear sky,witheachelementarypulseabout0.1°(about0.3 ms).Suchatime- scaleismuchshorterthantheclassicsubpulsesbutmuchlongerthan micropulsesthathaveatimescaleofnanosecondsormicroseconds25,26 . Thedwarfpulsescanappearacrossawiderangeofphasesforboththe core and conal components and in between, with a preference in the trailingcomponent(ExtendedDataFig.6). Polarization measurements provide a physical link between the detectedemissionandthemagnetic-fieldlinesintheemissionregion4 . PSR B2111+46 has an S-shape polarization angle (PA) curve for the mean linear polarization profile, which has been used to estimate the emissionheightandsweepbackofmagnetic-fieldlinesforthecentral emission components17 . From our sensitive observations, we found a muchextendedleadingwingandtheorthogonalmodeforweakconal emissionwingsinbothleadingandtrailinglongitudes(Fig.4).Insome periods, radio emission was detected for only one or two of the three main components (Extended Data Figs. 1–4), which corresponds to partial nulling20 . The most intriguing fact is that the PAs of the dwarf a b 140 24 August 2020 26 August 2020 60 40 20 0 0 20 0 25 50 75 100 125 150 E/σE E/σE 0 50 100 150 200 E/σE 0 25 75 50 100 125 150 E/σE 0 25 50 75 100 125 150 E/σE 40 120 100 80 Number Number 60 Number 1,200 1,000 800 600 400 200 0 40 20 0 140 160 120 100 80 Number 60 40 20 0 140 120 100 80 Number 60 40 20 0 c d 60 40 20 0 0 20 E/σE 40 Number 17 September 2020 8 March 2022 80 60 40 20 0 0 20 E/σE 40 Number 1,500 1,000 500 0 0 25 E/σE 75 50 Number Fig.2|Dwarfpulsesdetectedinthenullingperiodswithverylowenergy. a–d,Theenergydistributionof822(a),886(b),885(c)and7,097(d)individual pulsesofPSR B2111+46observedinfourFASTobservationsessions.Thepulse energyE(that,isthefluence)foreveryperiodisthesumoftheenergyofan individualpulseoverthefullpulse-onwindowdefinedbythemeanprofile.To expressthedataqualityoftheobservations,thedistributionisscaledbythe standarddeviationsσE ofthestochasticenergyinthesamesizebutpulse-off window,ratherthantheaveragedenergy〈E〉asinliterature,whichistoohigh forFAST-detecteddwarfpulses.Theemissionstateandthenullstateshowtwo mainpeaksinthehistogram.Theorangepartoverlappingonthenullingstate indicatesdwarfpulses.Thegreencurveisthebestlog-normalfittingforthe normalemissionenergydistribution. Table 1 | Details of FAST observations of PSRB2111+46 Observation date Target name Beam name Offset (′) Observation time (min) Number of periods Number of dwarf periods Number of nulling periods Number of periods removed 24 August 2020 J2113+4642 P1M01 2.2 15 886 11 182 64 26 August 2020 J2113+4645 P1M01 2.4 15 886 7 180 0 17 September 2020 J2114+4655 P1M12 2.4 15 885 8 177 0 8 March 2022 B2111+46 P1M01 0.0 120 7,098 149 1,563 1 The table includes observation date, observation target name, FAST beam name for the pulsar detection, the offset of the pulsar location from the beam centre, observation time, number of pulsar periods, number of periods with dwarf pulses detected, number of nulling periods recognized and number of periods removed due to RFI.
  • 4. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z pulses, together with the partially nulling pulses, all nearly follow thePAcurveofthemeanprofileorattherespectiveorthogonalmode (Fig.4).Thedetectionofdwarfpulsesintheordinarynullingstatefrom PSR B2111+46thatstillkeepthesamepolarizationpropertiesasnormal pulsessuggeststhatthemagnetic-fieldconfigurationdoesnotchange atthetransitionphasetothecompletelynullingphase. Howandwherearethesedwarfpulsesgeneratedinsuchordinary nulling periods? Why does the radio emission of PSR B2111+46 often cease?Thenullingstatereflectsadeficitofouter-flowingparticlesfor radiation,orthefailureofthecoherenceconditionforparticles,orthe quenched gaps by flooding pairs formed in other parts in the pulsar magnetosphere.PSR B2111+46hasacharacteristicageof2.25 × 107 yr andasurfacemagneticfieldof8.62 × 1011 Gandislocatedinthedeath valley in the pulsar period and period derivative diagram (i.e. the P– ̇ P diagram in Extended Data Fig. 7). The pair creation of such a pulsar can operate effectively only above the magnetic polar cap9,10 throughtheγ−Bprocesswherethefieldisstrongenough.Forsuchan old pulsar with a weak magnetic field, the gap voltage is often barely enough to ignite electron–positron discharges, so a pulsar may fail toradiatefromtimetotime. Ifdwarfpulsesaregeneratedbyoneorafewraindropsofstream- ingparticlesfromtheotherwisenullingstate,thismeansthatonlyone orafewlightningsigniteabovethepolarcapsothatabarelyformedgap is very quickly discharged. Our observations shown in Fig. 5 indicate that the spectra (i.e. the flux density S changes agaist frequency ν in the form of S ≈ να ) of some distinguishable emission components are variable,withapossiblespectralindexαfrom−5totheunexpected+5, and that the dwarf pulses are more likely to have a reversed spectrum (ExtendedDataFig.8).Normalindividualpulseswithmanydistinguish- able peaks, revealed by the FAST observations in Fig. 1 and Extended Data Fig. 5, indicate that the lightning, pair-creation cascades and relatedphysicalprocessesoccurinaverywideareaofthepolarcap,as though the emission is produced by a thunderstorm of particles. The phase-resolvedspectraaremorelikelytobeflatterorevenreversedin thetwo-sideconalphaseranges(ExtendedDataFig.9). The plasma properties in the magnetosphere can be examined bythepropagationeffects27–29 ,suchasadiabaticwalkingandpolariza- tion limiting radius. The plasma density changes in the nulling state could cause the PA curve to shift to an earlier or later rotation phase withtheextentdependingonthebackgroundplasmapropertiesand magnetic-field strength. The longitude shift of the PA curves of the dwarfpulsesfromthatofthenormalpulsesisfoundtobe−0.77° ± 0.25° (ExtendedDataFig.10)fromourFASTmeasurementsforPSR B2111+46, which is marginally significant and implies not only no change to the magnetic-field configuration in the emission region but also only a slight change or no change (22 ± 7%) of the density of the magneto- spheric background plasma in the nulling state, compared with that forthenormalemissionstate. In addition to PSR B2111+46, dwarf pulses have also been detected from some nearly-nulling periods of several other pulsars by FAST observations, such as PSR J0540+3207, PSR J1851−0053 and PSR J1946+1805.Asmallnumberofnarrowpulsespreviouslydetected a 100 4 4 5 2 0 0 10 20 Partial nulling Normal pulses Dwarf pulses Partial nulling Normal pulses Dwarf pulses 24 August 2020: 640 + 26 August 2020: 706 + 17 September 2020: 708 = 2,054 8 March 2022: 5,534 24 August 2020: 640 + 26 August 2020: 706 + 17 September 2020: 708 = 2,054 8 March 2022: 5,534 80 60 E (Jy ms) 2.0 1.5 1.0 0.5 0 S peak (Jy) 2.0 1.5 1.0 0.5 0 S peak (Jy) 40 20 0 0 20 40 60 W (°) 80 100 0 20 40 60 W (°) 80 100 120 140 0 20 40 60 W (°) 80 100 0 20 40 60 W (°) 80 100 120 140 100 80 60 E (Jy ms) 40 20 0 b c d 4 2 0 0 10 20 4 1 5 6 7 3 2 4 5 3 4 5 6 2 1 4 3 3 5 8 4 Partial nulling Normal pulses Dwarf pulses 0.3 0.2 0.1 0 0 10 20 Partial nulling Normal pulses Dwarf pulses 0.3 0.2 0.1 0 0 10 20 5 6 7 7 5 7 6 3 4 2 5 6 8 9 3 4 4 3 5 7 9 5 3 1 4 2 6 8 7 Fig.3|DwarfpulsesofPSR B2111+46asadistinctpopulationfromthepartial nullingandnormalpulses.Pulsewidthismeasuredatthemostouterprofile atthe3σdetectionlevel.a,b,Pulsefluenceintegratedovereachpulse,E,against pulsewidth,W.Thedensitydistributionofthedataisshownincolourandalso incontoursatlevelsof1/2−n ofthemaximumdensity(n = 1–8).Moresensitive observationson8March2022shownin(b)givealargerwidthrangefornormal pulses.Theinsetsshowthedataislandofdwarfpulsesforclarity.Normalpulses areconcentratedaroundthemainpeak,withafluenceintherangeof10 Jy ms toabout50 Jy msandapulsewidthof60° < W < 100°.Thedwarfpulsesare concentratedonanotherpeak,withafluenceoflessthan1 Jy msandapulse widthoflessthan15°(thatis,40 ms).Inbetweenarepartiallynullingpulses (see‘NullingandPartialNulling’inMethods).c,d,Thesameasinaandbbutfor thepeakfluxdensitySpeak againstthepulsewidthW.a,c,Forindividualpulses obtainedinthethreesessionsin2020.b,d,Forpulsesdetectedinthelonger verificationobservationsessionon8March2022.
  • 5. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z from PSR B1237+2530 are similar to the dwarf pulses presented here. Dwarf pulses are probably a common phenomena for old nulling pul- sars,adistinct,veryweak,emissionmode31 standingoutmoreclearly inobservationswithahighersensitivity.Detailedhigh-time-resolution polarizationobservationsofdwarfpulses,asinthispaper,canpromote furtherourunderstandingoftheradiationmechanismofradiopulsars. Methods FAST observations of PSR B2111+46 PSR B2111+46wasserendipitouslydetectedin1ofthe19beamsofthe L-band 19-beam receiver on 24 August, 26 August and 17 September 2020 while FAST was tracking other objects for verification of pulsar candidates from the FAST Galactic Plane Pulsar Snapshot survey21 . Each tracking observation lasted for 15 min (see Table 1 for details), thatis,885/886periodsofPSR B2111+46.On8March2022,thecentral beam of the L-band 19-beam receiver of FAST was focused on PSR B2111+46 for 2 h, without beam offset, to verify the detection of dwarfpulses. Inallobservations,thesignalsfromtheXandYpolarizationchan- nelsintheradiofrequencyrangeof1.0 GHzto1.5 GHzwereamplified and then transferred to the digital room via optical fibres. Radio fre- quencysignalswererecoveredandsampled,andthenchannelizedto 2,048 channels in the digital backend and composited to 4 polariza- tions for each channel, XX, YY and X*Y and XY* (see details in ref. 21). These polarization data were collected every 49.152 μs (the sample rateforthe4polarizationchannels)andrecordedintoasetoffitsfiles. For each session, we have 2 min observations before the session with calibration signals of an amplitude of 1 K switching on–off every 1 s. This part of the data were processed to form a calibration reference file,whichwasusedtocalibratethepolarizationchannels. Dataprocessing The raw data of FAST observations of PSR B2111+46 were all saved in a search mode, with the 4 polarization channels recorded every 49.152 μs. On the basis of the pulsar ephemeris obtained from the Australia Telescope National Facility (ATNF) pulsar catalogue32 , 180 a b c d 120 Dwarf Average PA (°) 60 0 –60 1.0 0.8 0.6 Normalized intensity 0.4 0.2 0 –0.2 –50 –25 0 Longitude (°) 25 50 I L 24 August 2020 N = 2 20 60 120 V 180 120 Dwarf Average PA (°) 60 0 –60 1.0 0.8 0.6 Normalized intensity 0.4 0.2 0 –0.2 –50 –25 0 Longitude (°) 25 50 I L 26 August 2020 N = 2 20 60 120 V 180 120 Dwarf Average PA (°) 60 0 –60 1.0 0.8 0.6 Normalized intensity 0.4 0.2 0 –0.2 –50 –25 0 Longitude (°) 25 50 I L 17 September 2020 N = 2 20 60 120 V 180 120 Dwarf Average PA (°) 60 0 –60 0.02 0.01 Normalized intensity 0 –0.01 –0.02 –100 –75 –50 –25 0 Longitude (°) 25 50 75 I L 8 March 2022 N = 2 20 100 360 V Fig.4|PAdistributionofdwarfpulsescomparedwiththedataofnormal pulses.a–d,ThePAdataofeachbinofdwarfpulses(orange)areplotted againstthoseofnormalpulses(green,darknessscaledtothedatanumberN) andthemeanpolarizationprofilesforthefourFASTobservationsessions: 24August2020(a),26August2020(b),17September2020(c)and8March2022(d). Theorthogonalmodesaremostlypredominantinthewingsoftheconal components.Themagnifiedpolarizationprofilesfor8March2022showthe newlydetectedmuchextendedleadingweakprofilewing.Theerrorbarfor PAis±1σ.Theintensityisscaledwiththepeakvalue.
  • 6. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z we processed the pulsar data using the package DSPSR33 . The data were de-dispersed according to the dispersion measure (DM) value DM = 141.26 pc cm−3 initially15 , and were then folded according to the period P = 1.0146848 s. A better DM value DM = 141.378 pc cm−3 was found using our high-time-resolution data for the sharp peaks of individual pulses. The polarization leakages were calibrated34 , and the band distortion was corrected according to the calibration refe­rence file obtained from the 2 min calibration on–off data. Some frequency channels with strong RFI were weighted to zero using the softwarePSRZAP35 .Thepolarizationdatafromallchannelswerethen rotation-measure-correctedaccordingtotheknownrotationmeasure (RM)valueofRM = −218.7 rad m−2 (ref.36)usingthepulsarprocessing program PAM in the package PSRCHIVE35 . After the data from all fre- quencychannelswereintegrated,thefourStokesparameters(I,Q,U,V) were then saved for 512 bins each period for the normal detection of nullingpulses.Wealsodeterminedtheprofileswith1,024,2,048,4,096 and 20,643 bins, and found that those with 512 bins were the best for detectingdwarfpulses. Pulseprofilesandpolarization For each session, the mean profile of PSR B2111+46 was obtained (ExtendedDataFigs.1–4)afterindividualpulsesfromallperiodswere a b c d 1,500 0 5 1,350 1,200 Frequency (MHz) PA (°) Spectral index PA (°) Spectral index PA (°) Spectral index PA (°) Spectral index I/σ bin I/σoff 0 4 I/σoff 0 6 12 I/σoff 0 4 I/σoff 1,050 5 0 –5 60 0 –60 8 March 2022 Period 2,453 50 0 1,500 1,350 1,200 Frequency (MHz) I/σ bin 1,050 3 0 –3 60 0 –60 50 100 0 –40 –20 0 Longitude (°) 20 40 60 –40 –30 Longitude (°) –20 –10 0 V L I 1,500 1,350 1,200 Frequency (MHz) I/σ bin 1,050 3 0 –3 60 0 –60 40 20 0 1,500 1,350 1,200 Frequency (MHz) I/σ bin 1,050 3 0 –3 60 0 –60 40 20 0 8 March 2022 Period 3,766 8 March 2022 Period 237 8 March 2022 Period 369 V L I V L I V L I 12.0 12.5 13.0 Longitude (°) 13.5 14.0 14.5 23 24 Longitude (°) 25 26 27 Fig.5|Phase-resolvedspectralindexfortwoindividualpulsesandtwodwarf pulsesobservedon8March2022byFAST. a–d,Waterfallplotfortheindividual pulseintensityonthephase–frequencyplane(uppersubpanels;thefrequency channelscontainingRFIshavebeenremoved)fortwonormalpulsesinperiod 2453(a)andperiod3766(b)andtwodwarfpulsesinperiod237(c)and369(d), clearlyshowingthevariationofthephase-resolvedspectralindexforindividual pulses(seconduppersubpanels).ThepolarizationprofilesofthepulseandthePA values(green)togetherwiththemeanPAcurve(grey)areplottedinthebottom subpanelsandthesecondbottomsubpanels,respectively.Theobservationdate andtheperiodnumberoftheindividualpulsearemarkedinthebottompanel. ThePAcurvesarefittedwiththerotatingvectormodel2 .TheerrorbarforPAis ±1σ.Theintensityisscaledwiththeoff-pulsefluctuationsexpressedbyσbin.
  • 7. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z averaged.Nocleardifferencewasfoundbetweenthethreepolarization profiles(seeFig.4forthe2020sessions)andtheywereconsistentwith theresultsat610 MHzand1,408 MHz(refs.37,38)and1,500 MHz(ref.39) after the opposite definition of circular polarization is considered. However, much more extended profile wings were detected in the targeted verification observations on 8 March 2022 that have a much better sensitivity owing to the targeted good pointing. These results indicate the excellent performance of polarization measurements fortheL-band19-beamreceiver,evenwhentheobjectiswelloffofthe beamcentre.Intheresults,anumberofperiodsoccasionallyhaveRFI (see Table 1) and these were cleaned and marked with a dashed line in thepulsestacksofindividualpulses,suchasperiods683,684,694and 695inthe24August2020session(seeExtendedDataFig.1). The mean pulse profiles show triple components for both cone and core emission, with a strong linear polarization for almost all longitudes except for these in the two edges. The Gaussian fittings to the mean profile always give five components18 . The observations on 8 March 2022 show two highly polarized prefix mean profile com- ponents (Fig. 4), so that the mean profile has a wide longitude range of more than 155°. The reversed sense of circular polarization at the centre of the mean profiles indicates the core nature of the central component37,40 . The PA curves follow an S shape17,39 , which can be well interpreted by the rotating vector model2 . The orthogonal modes of the PA distributions are revealed by our FAST observations from the conalandtwonewlydetectedprefixwingemissioncomponentsshown in Fig. 4. The smoothly changing PA curve extends in the two sides of mean profiles and smoothly varies for more than 220°. Our fitting to the PA curve suggests that PSR B2111+46 is an aligned rotator, that is, with a small inclination angle of only 6.3° between the magnetic axis fromtherotationaxis,andthelineofsightimpactstheradioemission beam only 0.7° below the magnetic axis. The line of sight impacts the emission beam in about 40% of a period, and FAST obtains more than 8,750 independent samples of the emission beam among the 20,643 datapointseveryperiod. The polarization profiles of individual pulses at high-temporal resolution (Extended Data Fig. 5) can reveal many details about emis- sion.OwingtotheextremesensitivityofFASTobservations,individual pulses frequently contain numerous peaks, indicating real variations in emission. These fine subpulses are considered to be elementary emission cells and have a much smaller width than conventional sub- pulses. An example of a highly isolated elementary pulse can be seen in period 237 in Fig. 1, which is a dwarf pulse and exhibits nearly 100% polarization.ThePAsofsuchdwarfpulsesmostlyfollowthePAcurveof meanprofile,asseeninFig.4.ThePAvaluesofmostelementarypulses of normal individual pulses also conform to the PA curve of the mean profile, with deviations occasionally observed at various longitudes, probably owing to the overlaps of orthogonal modes. More intrigu- ing is the sense change of circular polarization for some elementary pulses not near the centre of the core component but in some other longitudes, even of the conal components (for example, periods 700 and 679 in Extended Data Fig. 1, period 354 in Extended Data Fig. 2, period 137 in Extended Data Fig. 3 and period 1,551 in Extended Data Fig.5).Thischallengesthesimplegeometricalexplanationforcircular polarization41–43 . Nullingandpartialnulling Thenullingphenomenonisoftenobservedforpulsarsnearthedeath- lineintheP– ̇ P diagram44,45 .PSR B2111+46islocatedinthedeathvalley (Extended Data Fig. 7). Nulling of PSR B2111+46 has previously been observed, and the nulling fraction is 12.5% at 408 MHz (ref. 6) and increasesto21%at610 MHz(ref.20).ThestatisticsfromTable1forour FASTobservationsgiveanullingfactorofabout20%at1,250 MHz. The nulling fraction varies from component to component20 . Partial nulling of PSR B2111+46 has previously been suggested20 , and our high-quality FAST data clearly manifest the phenomenology (seeexamplesinExtendedDataFigs.1–4).Thepartialnullingphenom- enon means that only one or two mean profile emission components existwithouttheothercomponents.Onthebasisofourverysensitive FAST observations, we find that many individual pulses have normal emission for only one or two components, and clearly lack emission for the other mean profile components, for example, period 679 in Extended Data Fig. 1, periods 365 and 371 in Extended Data Fig. 2 and periods 137 and 140 in Extended Data Fig. 3. These partially nulling pulses, if they appear, have a peak flux density comparable to the normalpulses.ThePAvaluesofeachbinfollowthemeanPAcurvewell. There is no question that partial nulling pulses have a smaller pulse widththannormalpulses,typically10° < W < 60°. Dwarfpulsesandpulseenergydistribution The most fascinating features observed are the ‘dwarf’ pulses, which areweakandnarrowinnature(ExtendedDataFigs.1–4).Thesedwarf pulses appear across a wide range of phases for both the core and conal components and in between, with a preference in the trailing component (as seen in Extended Data Fig. 6). To describe the narrow width of these weak pulses, the pulse width in this study is measured at a level of 3σbin, which is slightly different each period due to differ- entRFIcleaning;therefore,amuchlargerthantraditionalpulsewidth measured at a level of 50% or 10% of the peak, which is suitable for single Gaussian components rather than the complicated combina- tions of many strong and weak pulses for PSR B2111+46. The start and end phases of the on-pulse region are defined as the left-most and right-most sides with three successive data points higher than 3σbin. By counting the consecutive points over 3σbin, we obtain the width of a pulse. It is possible that some narrow pulses have only one or two bins, which are selected as real detection of a pulse only if the peak flux density is larger than 8σbin. Most dwarf pulses can be resolved in high-samplingFASTobservations,asshowninExtendedDataFig.5,and therefore they are composited by a few elementary pulses, probably generated by several ‘raindrops’ of particles streaming in the pulsar magnetosphere,insteadofthe‘thunderstorm’ofparticlesfornormal individualpulsesoverawidelongitude. Incontrasttogiantpulsesdetectedfromsomepulsars23,46 ,which are strong pulses with a few tens or even hundreds times of the peak fluxdensityofnormalpulses,thedwarfpulseshaveapeakfluxdensity that is, in general, much less than that for normal pulses. We checked andfoundthatPSR B2111+46hasnogiantpulses,thatis,anarrowpulse withapeakfluxdensityafewtimeshigherthantheaverage.According toExtendedDataFig.6,mostdwarfpulseshaveapeakfluxdensityless than50 mJy,morethan5timesweakerthantheaveragepeak,exceptfor afewverynarrowpulses(forexample,period237inFig.5)whichhave a high peak. We tried to define the dwarf pulse as a peak flux density lessthan,forexample,20%ofthepeakintheaverageprofile,butfound thatthepeakisbin-numberdependent. When the fluence of an individual pulse is counted by the area underneatheachpulseprofile,thenormalpulseshaveanenergyfollow- ing the log-normal distribution, similar to other pulsars23 . The partial nulling pulses have less energy, mainly because of their lack of some emission components. The dwarf pulses have the smallest energy, as showninFig.2,sotheyarehiddenintheenergydistributionpeaksfor nulling,butdistinctlystandawayfromthelog-normaldistributionof normalpulses.Ifobservationsweremadewithabettersensitivity,that is,withamuchsmallerσE inFig.2,thesedwarfpulseswouldstandout clearly from the histogram peak for nulling periods. Although some dwarf pulses have previously been detected from PSR J1107−590722 , theFASTdatahereforPSR B2111+46showthedwarfpulsesasadistinct population.Theirdistinctivedistributioninthetwo-dimensionalplot of pulse width and pulse energy in Fig. 3 suggest that they belong to a newclassofpulsesfortheweakemissionmode31 . Combining the energy and width information, dwarf pulses have a pulse width narrower than 15° and a fluence E < 2 Jy ms (Fig. 3),
  • 8. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z and reside at the lowest ends of the distribution in a separate island from the main pulses. This differs from the general mode-changing pulses23 thathaveasimilarpulse-widthdistributionasthemainpulses or the sparse pulses in the rotating radio transient PSR J0941−3947 and PSR B0826−3448 , which have similar peak flux densities to the normalpulses. Possiblephysicalprocessesfordifferentemissionmodes PSR B2111+46 shows four emission modes: the normal pulse mode consisting of many small, distinct elementary emission cells and somewide,undistinguishedemissioncomponents;thepartialnulling modethatlacksemissioninsomecomponents;thedwarfpulsemode characterized by only one or a few emission cells; and the completely nulling mode. The four modes of radio emission should respond to differentphysicalstatesinthemagnetosphere. Intheconventionalpicture,a‘gap’withchargedensitybelowthe Goldreich–Julian density49 is believed to be produced near the polar capregion,eitherintheformofavacuumgap3 orspace-charge-limited floe50 , or formed in the outer magnetosphere beyond the null-charge surface51 or in the annular region52 extending from the surface to outer magnetosphere in the form of a slot gap53 . Pulsar radio emis- sioniscoherentlyproducedbyabunchofparticles,asindicatedbyits extremely high brightness temperature, and the coherency must be realizedbyorderingparticlesinphasebythelongitudinalelectrostatic wavesorbythe‘antennamechanism’.Aclumpofrelativisticparticles streaming along a bunch of magnetic-field lines can produce visible radioemissionatagivenfrequencybandfromfiniteheightregions.The lowerfrequencyemissionisgenerallygeneratedfromahigher-altitude regioninthepulsarmagnetosphere. The most probable region of gap formation for this old pulsar with such a weak magnetic field, however, should be above the polar cap, as shown by recent simulations9,10 , which converges to the con- ventional concepts for the inner gap and the cascades of pairs via γ–Bprecess3,7 .Theelectron–positrondischargenearthepulsarpolar cap is non-stationary8,10 , which leads to large amplitude fluctuations of the electric field and collective plasma motions. Any break of the non-stationary nature will lead to incoherency for the radiation, and then the emission would be very weak even though the particles are stillflowingoutalongthefieldlines. Thenullingstateofpulsaremissiondemonstrateseitheradeficit of outer-flowing particles for radiation, or a lost of coherence forparticlesorthefailureofgapformation.Anotherpossibilityisthat thepolargapisfloodedwiththepairplasmacreatedfromothergaps, sothatthegapandradioemissionarescreened11 .Currentobservations seem to support the former possibility, especially when the pulsar is oldandneartheradiodeathline44,45 . For the emission state of PSR B2111+46, the accurate measure- ments of the polarization properties and the fine fluctuations for the well-resolved normal pulses in Extended Data Fig. 5 and the dwarf pulsesinFigs.1and5clearlyshowthatnormalpulsaremissioniscom- posited by the radiation from the thunderstorm of particles over a widely distributed area above the polar cap, with a very large multi- plicityofcascadesandalsoahigherplasmadensity.Thedwarfpulses of PSR B2111+46 are produced by one or a few raindrops of particles producedbythepairdischarges,withamuchlowermultiplicity. In principle, the gap voltage for the normal pulse emission state is higher than that for dwarf pulses, so that the pair-production multiplicity is large and that the energy distributions of the created particlesmayalsobedifferent.Tofindhintsoftheseprobablechanges, wethenexaminethespectraofphase-resolvedemissionofindividual pulses. As shown in Fig. 5, the spectra (S ≈ να ) of some distinguishable emission components are variable, with a possible index α from −5 to the unexpected +5. In the phase range for the positive spectral index, the PA values firmly follow the average PA curve. For a given dwarf pulse, the spectra do not vary along the pulse phase in such a narrow phase range. The distributions of mean spectral indexes for three kinds of individual pulses, normal pulse, partial nulling pulses and dwarf pulses, are shown in Extended Data Fig. 8. Dwarf pulses most likely have a reversed spectrum with a positive index, which means the primary particles in the gap may be responsible for dwarf pulses. Recent numerical simulations9,10 have shown that the core and conal components of pulsar radio emission may be preferably produced in someanglesbetweenthepair-productionfrontsandthebackground magneticfields.This,inprinciple,shouldinduceahigherprobability for elementary emission in the beam centre and beam edge, which is consistent with the mean profile of PSR B2111+46. The emission of the much extended phase range should be caused by the curvature of magnetic fields in the edge of the emission beam. We examine the phase-resolvedspectraforallnormalpulses,andfoundthatingeneral thespectrabetweenthephaserangeof±(20°−25°)areflatterthanthose atotherphasesandevenmorelikelyreversed(ExtendedDataFig.9). Plasmamultiplicityandpropagationeffectsinthepulsar magnetosphere Whenpulsaremissionisceased,eitherduetothefailureofgapforma- tion or the loss of coherence of emission particles, the pulsar magne- tosphere should always have a pair plasma filled but with a different multiplicity. The propagation effects of radio emission in the pulsar magnetosphere should be affected, which can be probed by the changesofthepolarizationproperties28,29 .Forexample,thePAfollows thedirectionofthelocalmagneticfieldduetoadiabaticwalking27 until the polarization limiting radius, after which the natural wave mode evolution becomes non-adiabatic and the PA angle is frozen. In this case, the PA curve should be shifted to an earlier rotation phase (see equation5.88inref.28) ϕshift ≈ −10.5∘ (η/100) 1/3 (γ/100) −1 , (1) hereη = N/NGJ istheplasmamultiplicityinthepulsarmagnetosphere, N is the charged particle density and NGJ is the density enviseaged by Goldreich and Julian49 , and γ is the Lorentz factor of the background plasmastream.Inprinciple,thephaseshiftϕshift canbedirectlydeter- mined by the phase difference between the steepest position of PA curve and the centre of the emission profile determined by the whole openfieldlineemissionregion.However,itisdifficulttodeterminethe central phase of the profile as the edges of emission region cannot be determinedclearly,andthereforewecannotobtaintheplasmamulti­ plicity. Nevertheless, we can compare the PA curves of dwarf pulses to the mean PA curve of normal pulses, and obtain the difference of phaseshiftsasbeingΔϕshift = ϕshift,dwarf-pulse − ϕshift,normal-pulse.Becauseradio emissionatthetwostatescomesfromalmostthesameregionwiththe samefieldgeometry,thechangeofplasmadensitycanbelimitedby Δη/η ≈ −0.3(Δϕshift/1∘ )(η/100) −1/3 (γ/100), (2) foragivenLorentzfactorγ. Theaccuratepolarizationmeasurementsofdwarfpulsesbysensi­ tive FAST observations provide a chance to probe the decrease of plasma density in such an emission-almost-quenched pulsar magne- tosphere. The PA values of dwarf pulses almost follow the mean PA curve. The phase shift of PA for each dwarf pulse is obtained from the differencebetweenthephaseofthedwarfpulseandthephaseforthe same PA value in the mean PA curve. Taking all phase-shift values for all dwarf pulses, we fit the distribution with a Gaussian function and obtainthemeanshiftasΔϕshift ≈ −0.77° ± 0.25° (ExtendedDataFig.10), which is marginally significant and implies a small increase of back- groundplasmadensityinthepulsarmagnetospherebyanamountof Δη/η ≈ (22% ± 7%)(η/100)−1/3 (γ/100).Maybethenullingofthispulsaris causedbythefloodingofpairplasmatotheinnergap11 ,sothatthepair productionandthefollowingradioemissionprocesscease.However,
  • 9. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z bettermeasurementsformoredwarfpulsesareneededtobettercon- strainΔϕshift andthenΔη/η. Dataavailability Original FAST observational data are open source after the one-year protection for the high-priority usage by observers, according to the FAST data policy. The processed data presented in this paper can be downloadfromhttp://zmtt.bao.ac.cn/GPPS/B2111/. References 1. Manchester, R. N. The shape of pulsar beams. J. Astrophys. Astron. 16, 107–117 (1995). 2. Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225 (1969). 3. Ruderman, M. A. & Sutherland, P. G. Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975). 4. Oswald, L., Karastergiou, A. & Johnston, S. Pulsar polarimetry with the Parkes ultra-wideband receiver. Mon. Not. R. Astron. Soc. 496, 1418–1429 (2020). 5. Backer, D. C. Pulsar nulling phenomena. Nature 228, 42–43 (1970). 6. Ritchings, R. T. Pulsar single pulse intensity measurements and pulse nulling. Mon. Not. R. Astron. Soc. 176, 249–263 (1976). 7. Sturrock, P. A. A model of pulsars. Astrophys. J. 164, 529 (1971). 8. Philippov, A., Timokhin, A. & Spitkovsky, A. Origin of pulsar radio emission. Phys. Rev. Lett. 124, 245101 (2020). 9. Chen, A. Y., Cruz, F. & Spitkovsky, A. Filling the magnetospheres of weak pulsars. Astrophys. J. 889, 69 (2020). 10. Cruz, F., Grismayer, T., Chen, A. Y., Spitkovsky, A. & Silva, L. O. Coherent emission from QED cascades in pulsar polar caps. Astrophys. J. Lett. 919, L4 (2021). 11. Bransgrove, A., Beloborodov, A. M. & Levin, Y. Radio emission and electric gaps in pulsar magnetospheres. Preprint at https://arxiv.org/ abs/2209.11362 (2022). 12. Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A. & Lorimer, D. R. A periodically active pulsar giving insight into magnetospheric physics. Science 312, 549–551 (2006). 13. Lorimer, D. R. et al. Radio and X-ray observations of the intermittent pulsar J1832+0029. Astrophys. J. 758, 141 (2012). 14. Camilo, F., Ransom, S. M., Chatterjee, S., Johnston, S. & Demorest, P. PSR J1841−0500: a radio pulsar that mostly is not there. Astrophys. J. 746, 63 (2012). 15. Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E. & Jordan, C. Long-term timing observations of 374 pulsars. Mon. Not. R. Astron. Soc. 353, 1311–1344 (2004). 16. Davies, J. G. & Large, M. I. A single-pulse search for pulsars. Mon. Not. R. Astron. Soc. 149, 301 (1970). 17. Mitra, D. & Li, X. H. Comparing geometrical and delay radio emission heights in pulsars. Astron. Astrophys. 421, 215–228 (2004). 18. Zhang, H., Qiao, G. J., Han, J. L., Lee, K. J. & Wang, H. G. PSR B2111+46: a test of the inverse Compton scattering model of radio emission. Astron. Astrophys. 465, 525–531 (2007). 19. Thomas, R. M. C. & Gangadhara, R. T. Absolute emission altitude of pulsars: PSRs B1839+09, B1916+14, and B2111+46. Astron. Astrophys. 515, A86 (2010). 20. Gajjar, V., Joshi, B. C. & Kramer, M. A survey of nulling pulsars using the Giant Meterwave Radio Telescope. Mon. Not. R. Astron. Soc. 424, 1197–1205 (2012). 21. Han, J. L. et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 21, 107 (2021). 22. Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G. & Kramer, M. On the apparent nulls and extreme variability of PSR J1107−5907. Mon. Not. R. Astron. Soc. 442, 2519–2533 (2014). 23. Burke-Spolaor, S. et al. The high time resolution universe pulsar survey—V. Single-pulse energetics and modulation properties of 315 pulsars. Mon. Not. R. Astron. Soc. 423, 1351–1367 (2012). 24. Cognard, I., Shrauner, J. A., Taylor, J. H. & Thorsett, S. E. Giant radio pulses from a millisecond pulsar. Astrophys. J. Lett. 457, L81 (1996). 25. Rickett, B. J., Hankins, T. H. & Cordes, J. M. The radio spectrum of micropulses from pulsar PSR 0950+08. Astrophys. J. 201, 425–430 (1975). 26. Soglasnov, V. A. et al. Giant pulses from PSR B1937+21 with widths <=15 nanoseconds and Tb>=5×1039 K, the highest brightness temperature observed in the Universe. Astrophys. J. 616, 439–451 (2004). 27. Cheng, A. F. & Ruderman, M. A. A theory of subpulse polarization patterns from radio pulsars. Astrophys. J. 229, 348–360 (1979). 28. Wang, C., Lai, D. & Han, J. Polarization changes of pulsars due to wave propagation through magnetospheres. Mon. Not. R. Astron. Soc. 403, 569–588 (2010). 29. Beskin, V. S. & Philippov, A. A. On the mean profiles of radio pulsars—I. Theory of propagation effects. Mon. Not. R. Astron. Soc. 425, 814–840 (2012). 30. Srostlik, Z. & Rankin, J. M. Core and conal component analysis of pulsar B1237+25. Mon. Not. R. Astron. Soc. 362, 1121–1133 (2005). 31. Young, N. J., Weltevrede, P., Stappers, B. W., Lyne, A. G. & Kramer, M. Long-term observations of three nulling pulsars. Mon. Not. R. Astron. Soc. 449, 1495–1504 (2015). 32. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005). 33. van Straten, W. & Bailes, M. DSPSR: Digital signal processing software for pulsar astronomy. Publ. Astron. Soc. Aust. 28, 1–14 (2011). 34. Wang, P. F. et al. FAST pulsar database: I. polarization profiles of 682 pulsars. Res. Astron. Astrophys. 23, 104002 (2023). 35. Hotan, A. W., van Straten, W. & Manchester, R. N. Psrchive and psrfits: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004). 36. Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization determinations of 33 pulsars using the Green Bank Telescope. Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015). 37. Lyne, A. G. & Manchester, R. N. The shape of pulsar radio beams. Mon. Not. R. Astron. Soc. 234, 477–508 (1988). 38. Gould, D. M. & Lyne, A. G. Multifrequency polarimetry of 300 radio pulsars. Mon. Not. R. Astron. Soc. 301, 235–260 (1998). 39. Force, M. M., Demorest, P. & Rankin, J. M. Absolute polarization determinations of 33 pulsars using the Green Bank Telescope. Mon. Not. R. Astron. Soc. 453, 4485–4499 (2015). 40. Rankin, J. M. Toward an empirical theory of pulsar emission. VI. The geometry of the conal emission region. Astrophys. J. 405, 285 (1993). 41. Radhakrishnan, V. & Rankin, J. M. Toward an empirical theory of pulsar emission. V. On the circular polarization in pulsar radiation. Astrophys. J. 352, 258 (1990). 42. Han, J. L., Manchester, R. N., Xu, R. X. & Qiao, G. J. Circular polarization in pulsar integrated profiles. Mon. Not. R. Astron. Soc. 300, 373–387 (1998). 43. Gangadhara, R. T., Han, J. L. & Wang, P. F. Coherent curvature radio emission and polarization from pulsars. Astrophys. J. 911, 152 (2021). 44. Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line revisited: is PSR J2144−3933 anomalous? Astrophys. J. Lett. 531, L135–L138 (2000). 45. Chen, K. & Ruderman, M. Pulsar death lines and death valley. Astrophys. J. 402, 264 (1993). 46. Weltevrede, P., Wright, G. A. E., Stappers, B. W. & Rankin, J. M. The bright spiky emission of pulsar B0656+14. Astron. Astrophys. 458, 269–283 (2006).
  • 10. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z 47. Burke-Spolaor, S. & Bailes, M. The millisecond radio sky: transients from a blind single-pulse search. Mon. Not. R. Astron. Soc. 402, 855–866 (2010). 48. Esamdin, A., Abdurixit, D., Manchester, R. N. & Niu, H. B. PSR B0826−34: sometimes a rotating radio transient. Astrophys. J. Lett. 759, L3 (2012). 49. Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869 (1969). 50. Arons, J. & Scharlemann, E. T. Pair formation above pulsar polar caps: structure of the low altitude acceleration zone. Astrophys. J. 231, 854–879 (1979). 51. Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from rapidly spinning pulsars. I. Outer magnetosphere gaps. Astrophys. J. 300, 500 (1986). 52. Qiao, G. J., Lee, K. J., Wang, H. G., Xu, R. X. & Han, J. L. The inner annular gap for pulsar radiation: γ-ray and radio emission. Astrophys. J. Lett. 606, L49–L52 (2004). 53. Muslimov, A. G. & Harding, A. K. High-altitude particle acceleration and radiation in pulsar slot gaps. Astrophys. J. 606, 1143–1153 (2004). Acknowledgements This work made use of data from FAST. FAST is a Chinese national mega-science facility, built and operated by the National Astronomical Observatories, Chinese Academy of Sciences. The authors of this work have been supported by the Natural Science Foundation of China: numbers 11988101 and 11833009 and National SKA Program of China 2020SKA0120100. Authorcontributions X.C. and Y.Y. processed all related data and noticed the dwarf pulses, and they contributed to this paper equally. J.L.H. supervised and coordinated the team work, pursued the nature of the dwarf pulses and took the responsibility for paper writing. P.F.W., C.W., W.C.J. and D.J.Z. contributed to different aspects of data processing. T.W., W.Y.W., Z.L.Y., W.Q.S., N.N.C., J.X., R.X.X., K.J.L., G.J.Q. and B.Z. joined the discussions and contributed to some parts of paper writing or plot-making. Competinginterests The authors declare no competing interests. Additionalinformation Extended data is available for this paper at https://doi.org/10.1038/s41550-023-02056-z. Supplementaryinformation The online version contains supplementary material available at https://doi.org/10.1038/s41550-023-02056-z. Correspondence and requests for materialsshould be addressed to J. L. Han. Peer review information Nature Astronomy thanks Ashley Bransgrove and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions informationis available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. © The Author(s), under exclusive licence to Springer Nature Limited 2023
  • 11. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z ExtendedDataFig.1|ThepulsesofPSRB2111+46observedbyFASTinthe sessionon2020-08-24.Theleft-mostpanelisthetrainofindividualpulses for886periods,withthemeanprofileshowninthebottomandtheintensityof whichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual pulseisplottedintheimmediatelyright,sothattheenergyfluctuationsareseen veryclearlywhichshowthetwopredominatepeaksforbothnullingandemission statesinthenumberdistributionsinthebottom.Asegmentofthepulsestackis showningreyforhighqualityindividualpulses,withsignificantfluctuationsof profileamplitude,inwhichnormalindividualpulsescanbeseenintheperiod No.702-700,696and680,partialnullingintheperiodNo.679,anddwarfpulses oftheperiodNo.699and682.Thedetailedpolarizationprofilesfor4pulsesare presentedintheright4panels,eachwithtotalintensityI,linearpolarizationL andcircularpolarizationVinthebottomsubpanelandPAintheuppersubpanel. Thepolarizationprofilesofthemeanpulseareshownindashedlineinthese subpanelsforcomparison.TheerrorbarforPAis ± 1σ.
  • 12. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z ExtendedDataFig.2|ThepulsesofPSRB2111+46observedbyFASTinthe sessionon2020-08-26.Theleft-mostpanelisthetrainofindividualpulses for886periods,withthemeanprofileshowninthebottomandtheintensityof whichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual pulseisplottedintheimmediatelyright.Asegmentofthepulsestackisshown ingreyforhighqualityindividualpulses,withadwarfpulseintheperiodNo.377 andpartialnullingintheperiodNo.365.Thedetailedpolarizationprofilesfor 4pulsesarepresentedintheright4panels,eachwithtotalintensityI,linear polarizationLandcircularpolarizationVinthebottomsubpanelandPAinthe uppersubpanel.Thepolarizationprofilesofthemeanpulseareshownindashed lineinthesesubpanelsforcomparison.TheerrorbarforPAis ± 1σ.
  • 13. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z ExtendedDataFig.3|ThepulsesofPSRB2111+46observedbyFASTinthe sessionon2020-09-17.Theleft-mostpanelisthetrainofindividualpulsesfor 885periods,withthemeanprofileshowninthebottomandtheintensityof whichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual pulseisplottedintheimmediatelyright.Asegmentofthepulsestackisshown ingreyforhighqualityindividualpulses,withadwarfpulseintheperiodNo.136 andpartialnullingintheperiodNo.137.Thedetailedpolarizationprofilesfor 4pulsesarepresentedintheright4panels,eachwithtotalintensityI,linear polarizationLandcircularpolarizationVinthebottomsubpanelandPAinthe uppersubpanel.Thepolarizationprofilesofthemeanpulseareshownindashed lineinthesesubpanelsforcomparison.TheerrorbarforPAis ± 1σ.
  • 14. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z ExtendedDataFig.4|ThepulsesofPSRB2111+46observedbyFASTinthe sessiononon2022-03-08.Theleft-mostpanelisthetrainofindividualpulses for7098periods,withthemeanprofileshowninthebottomandtheintensity ofwhichisnormalizedusingthepeakvalue.Thetotalenergyofeveryindividual pulseisplottedintheimmediatelyright.Asegmentofthepulsestackisshown ingreyforhighqualityindividualpulses,withadwarfpulseinperiodofNo.5895 andtwopartialnullingsintheperiodNo.5891and5897.Thedetailedpolarization profilesfor4pulsesarepresentedintheright4panels,eachwithtotalintensity I,linearpolarizationLandcircularpolarizationVinthebottomsubpanelandPA intheuppersubpanel.Thepolarizationprofilesofthemeanpulseareshownin dashedlineinthesesubpanelsforcomparison.TheerrorbarforPAis ± 1σ.
  • 17. Nature Astronomy Article https://doi.org/10.1038/s41550-023-02056-z ExtendedDataFig.7|Pulsarperiodandperiodderivative(P − ̇ P)diagram andthelocationofPSRB2111+46inthedeathvalley.Thedeathlinesaregiven forthecurvatureradiationinadipolefield(upperone)andanextremelycurved field(lowerone)inthevacuumgapmodel(soldlines)andthespace- charged-limitedflowmodel(dashedlines)givenin44 .Allpulsardataaretaken fromtheATNFpulsarCatalogue32 (version1.70).Thebackgroundgraydashed anddottedlinesstandforconstantsurfacemagneticfieldstrengthsand characteristicages,respectively.