SlideShare a Scribd company logo
1 of 39
Download to read offline
Geometrical Applications
       of Differentiation
The First Derivative
Geometrical Applications
        of Differentiation           d              dy
The First Derivative y, f  x ,       f  x ,
                                     dx             dx
Geometrical Applications
        of Differentiation       d              dy
The First Derivative y, f  x ,   f  x ,
                                 dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
                 If f  x   0, the curve is stationary
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
                 If f  x   0, the curve is stationary
 e.g. For the curve y  3x 2  x 3 , find all of the stationary points
      and determine their nature.
      Hence sketch the curve
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
                 If f  x   0, the curve is stationary
 e.g. For the curve y  3x 2  x 3 , find all of the stationary points
      and determine their nature.
      Hence sketch the curve
                                dy
                                    6 x  3x 2
                                dx
dy
Stationary points occur when      0
                               dx
dy
 Stationary points occur when      0
                                dx
i.e. 6 x  3x 2  0
dy
 Stationary points occur when      0
                                dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
dy
 Stationary points occur when      0
                                dx
i.e. 6 x  3x 2  0
     3x2  x   0
 x  0 or x  2
 stationary points occur at 0,0 and 2,4
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x
        dy
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x            0
        dy
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x            0
        dy            0
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x       0   0
        dy            0
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x       0   0     0
        dy            0
        dx
dy
  Stationary points occur when       0
                                  dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0
        dy               0
        dx
dy
  Stationary points occur when       0
                                  dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0
        dy      (-9)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x
        dy
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x               2
        dy
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x               2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x       2      2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x       2      2   2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2
        dy      (3)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2 (3)
        dy      (3)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2 (3)
        dy      (3)
                         0    (-9)


        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2 (3)
        dy      (3)
                         0    (-9)


        dx                                 2,4 is a maximum turning point
y




    x
y




    x
y

    2,4




            x
y

    2,4




                        x




            y  3x 2  x 3
Exercise 10A; 1, 2ace, 4, 5, 6ac, 7, 8, 9ace etc,
           11, 12, 13, 15ace, 16, 17

Exercise 10B; 1ad, 2ac, 3ac, 5, 6, 7ac, 8, 10, 12

More Related Content

What's hot

11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equationsarvindpt1
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]Hazrul156
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 
Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equationsmatthew_henderson
 
Chapter 4(differentiation)
Chapter 4(differentiation)Chapter 4(differentiation)
Chapter 4(differentiation)Eko Wijayanto
 

What's hot (11)

11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equations
 
4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers
 
Lei
LeiLei
Lei
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
0203 ch 2 day 3
0203 ch 2 day 30203 ch 2 day 3
0203 ch 2 day 3
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equations
 
Chapter 4(differentiation)
Chapter 4(differentiation)Chapter 4(differentiation)
Chapter 4(differentiation)
 

Viewers also liked

11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)Nigel Simmons
 
X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)Nigel Simmons
 
11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)Nigel Simmons
 
X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)Nigel Simmons
 
11X1 T05 04 probability & counting techniques (2011)
11X1 T05 04 probability & counting techniques (2011)11X1 T05 04 probability & counting techniques (2011)
11X1 T05 04 probability & counting techniques (2011)Nigel Simmons
 
11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)Nigel Simmons
 

Viewers also liked (9)

11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)
 
X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)
 
X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)
 
11X1 T05 04 probability & counting techniques (2011)
11X1 T05 04 probability & counting techniques (2011)11X1 T05 04 probability & counting techniques (2011)
11X1 T05 04 probability & counting techniques (2011)
 
11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)
 

Similar to Geometrical Applications of Differentiation and the First Derivative

Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handoutcoburgmaths
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)Nigel Simmons
 
11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)Nigel Simmons
 
C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handoutfatima d
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minimarouwejan
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflectionTarun Gehlot
 
11X1 T09 02 critical points
11X1 T09 02 critical points11X1 T09 02 critical points
11X1 T09 02 critical pointsNigel Simmons
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian IntegrationReza Rahimi
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)Nigel Simmons
 
11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)Nigel Simmons
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingGabriel Peyré
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09ingroy
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)Nigel Simmons
 

Similar to Geometrical Applications of Differentiation and the First Derivative (20)

Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)
 
11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)
 
C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minima
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflection
 
Cross product
Cross productCross product
Cross product
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
11X1 T09 02 critical points
11X1 T09 02 critical points11X1 T09 02 critical points
11X1 T09 02 critical points
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
 
11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Recently uploaded (20)

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Geometrical Applications of Differentiation and the First Derivative

  • 1. Geometrical Applications of Differentiation The First Derivative
  • 2. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx
  • 3. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx
  • 4. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing
  • 5. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing
  • 6. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing If f  x   0, the curve is stationary
  • 7. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing If f  x   0, the curve is stationary e.g. For the curve y  3x 2  x 3 , find all of the stationary points and determine their nature. Hence sketch the curve
  • 8. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing If f  x   0, the curve is stationary e.g. For the curve y  3x 2  x 3 , find all of the stationary points and determine their nature. Hence sketch the curve dy  6 x  3x 2 dx
  • 10. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0
  • 11. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2
  • 12. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4
  • 13. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0
  • 14. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x dy dx
  • 15. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 dy dx
  • 16. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 dy 0 dx
  • 17. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 0 dy 0 dx
  • 18. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 0 0 dy 0 dx
  • 19. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 dy 0 dx
  • 20. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 dy (-9) 0 dx
  • 21. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 dx
  • 22. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx
  • 23. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point
  • 24. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4
  • 25. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x dy dx
  • 26. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 dy dx
  • 27. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 dy 0 dx
  • 28. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 2 dy 0 dx
  • 29. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 2 2 dy 0 dx
  • 30. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 dy 0 dx
  • 31. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 dy (3) 0 dx
  • 32. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 (3) dy (3) 0 dx
  • 33. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 (3) dy (3) 0 (-9) dx
  • 34. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 (3) dy (3) 0 (-9) dx  2,4 is a maximum turning point
  • 35. y x
  • 36. y x
  • 37. y 2,4 x
  • 38. y 2,4 x y  3x 2  x 3
  • 39. Exercise 10A; 1, 2ace, 4, 5, 6ac, 7, 8, 9ace etc, 11, 12, 13, 15ace, 16, 17 Exercise 10B; 1ad, 2ac, 3ac, 5, 6, 7ac, 8, 10, 12