SlideShare a Scribd company logo
1 of 58
Download to read offline
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
           Area  11  12 
                      3      3
Integration
Area Under Curve
           Area  11  12 
                      3      3


           Area  9
Integration
Area Under Curve
           Area  11  12 
                      3      3


           Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                      Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9


         Estimate Area  5 unit 2
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9


         Estimate Area  5 unit 2
           Exact Area  4 unit 2
Area  0.40.43  0.83  1.23  1.63  23 
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                                     Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                              2.56  Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                              2.56  Area  5.76
                         Estimate Area  4.16 unit 2
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  Area  4.84
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
      Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
                          Estimate Area  4.04 unit 2
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                                      x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                                      x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                    c                 x

                 A(c) is the area from 0 to c
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                    c    x            x

                 A(c) is the area from 0 to c
                 A(x) is the area from 0 to x
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                  f(x)



                          x-c
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                                 A x   Ac 
                         f x 
                                     xc
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                                 A x   Ac 
                         f x 
                                     xc
                                 Ac  h   Ac 
                                                    h = width of rectangle
                                         h
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                               A x   Ac 
                       f x 
                                   xc
                               Ac  h   Ac 
                                                h = width of rectangle
                                       h
As the width of the rectangle decreases, the estimate becomes more
accurate.
i.e. as h  0, the Area becomes exact
i.e. as h  0, the Area becomes exact
                       Ac  h   Ac 
        f  x   lim
                  h 0        h
i.e. as h  0, the Area becomes exact
                        Ac  h   Ac 
        f  x   lim
                   h 0         h
                        A x  h   A x 
                 lim
                  h 0
                                             as h  0, c  x 
                                h
i.e. as h  0, the Area becomes exact
                        Ac  h   Ac 
        f  x   lim
                   h 0         h
                        A x  h   A x 
                 lim
                  h 0
                                             as h  0, c  x 
                                h
             A x 
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
                              F b   F a 
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
                              F b   F a 
           where F  x  is the primitive function of f  x 
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
         x= 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                        0
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                        0
                               2

                        x4 
                          1
                        4 0
                            
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                          0
                                2

                        x4 
                          1
                        4 0
                            

                           2  04 
                          1 4
                          4
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                          0
                                2

                        x4 
                          1
                        4 0
                            

                           2  04 
                          1 4
                          4
                        4 units 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                                0
                                      2

                              x4 
                                1
                              4 0
                                  

                                 2  04 
                                1 4
                                4
                              4 units 2
          3
      ii   x 2  1dx
          2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                             0
                                   2

                           x4 
                             1
                           4 0
                               

                              2  04 
                             1 4
                             4
                           4 units 2
          3                             3

      ii   x  1dx  
                2         1 x 3  x 
                                     2
            2             3         
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                            0
                                  2

                          x4 
                            1
                          4 0
                              

                             2  04 
                            1 4
                            4
                          4 units 2
          3                            3

      ii   x  1dx  
                2         1 x 3  x 
                                     2
            2             3         
                        1 33  3  1 2 3  2
                                                   
                           3            3         
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                            0
                                  2

                          x4 
                            1
                          4 0
                              

                             2  04 
                            1 4
                            4
                          4 units 2
          3                            3

      ii   x  1dx  
                2         1 x 3  x 
                                     2
            2             3         
                        1 33  3  1 2 3  2
                                                   
                           3            3         
                          22
                        
                           3
5
iii   x 3dx
     4
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
                11 1 
                2  2
                2 5 4 
                9
             
               800
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4

                2  2
                1 1 1
                       
                2 5 4 
                9
             
               800




                         Exercise 11A; 1

        Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*

More Related Content

What's hot

Application of the integral
Application of the integral Application of the integral
Application of the integral Abhishek Das
 
Volume: Using Disks and Washers
Volume: Using Disks and WashersVolume: Using Disks and Washers
Volume: Using Disks and WashersMatt Braddock
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
Graphing translations of trig functions
Graphing translations of trig functionsGraphing translations of trig functions
Graphing translations of trig functionsJessica Garcia
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphsmath267
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15David Mao
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equationsmath266
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinatemath266
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16David Mao
 
Application of integration
Application of integrationApplication of integration
Application of integrationrricky98
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Muhammad Luthfan
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations xmath266
 
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSESReflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSESANURAG TYAGI CLASSES (ATC)
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areas96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areasJoão Ferreira
 

What's hot (19)

Application of the integral
Application of the integral Application of the integral
Application of the integral
 
Volume: Using Disks and Washers
Volume: Using Disks and WashersVolume: Using Disks and Washers
Volume: Using Disks and Washers
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Graphing translations of trig functions
Graphing translations of trig functionsGraphing translations of trig functions
Graphing translations of trig functions
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16
 
01 ray-optics-mm
01 ray-optics-mm01 ray-optics-mm
01 ray-optics-mm
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
Application of integration
Application of integrationApplication of integration
Application of integration
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSESReflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
 
Circuferencia trigonométrica
Circuferencia trigonométricaCircuferencia trigonométrica
Circuferencia trigonométrica
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areas96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areas
 

Viewers also liked

11X1 T06 06 transversals
11X1 T06 06 transversals11X1 T06 06 transversals
11X1 T06 06 transversalsNigel Simmons
 
X2 T03 04 parameters, hyperbola (2010)
X2 T03 04 parameters, hyperbola (2010)X2 T03 04 parameters, hyperbola (2010)
X2 T03 04 parameters, hyperbola (2010)Nigel Simmons
 
11X1 T08 02 first principles
11X1 T08 02 first principles11X1 T08 02 first principles
11X1 T08 02 first principlesNigel Simmons
 
11X1 T11 04 maximum & minimum problems
11X1 T11 04 maximum & minimum problems11X1 T11 04 maximum & minimum problems
11X1 T11 04 maximum & minimum problemsNigel Simmons
 
X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)Nigel Simmons
 
11X1 T08 08 implicit differentiation
11X1 T08 08 implicit differentiation11X1 T08 08 implicit differentiation
11X1 T08 08 implicit differentiationNigel Simmons
 
12X1 T02 02 integrating exponentials
12X1 T02 02 integrating exponentials12X1 T02 02 integrating exponentials
12X1 T02 02 integrating exponentialsNigel Simmons
 
11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinates11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinatesNigel Simmons
 
11 X1 T02 01 real numbers (2010)
11 X1 T02 01 real numbers (2010)11 X1 T02 01 real numbers (2010)
11 X1 T02 01 real numbers (2010)Nigel Simmons
 
11X1 T09 02 critical points
11X1 T09 02 critical points11X1 T09 02 critical points
11X1 T09 02 critical pointsNigel Simmons
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivativeNigel Simmons
 
12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logs12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logsNigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)Nigel Simmons
 
11 ext1 t4 4 trig equations (2013)
11 ext1 t4 4 trig equations (2013)11 ext1 t4 4 trig equations (2013)
11 ext1 t4 4 trig equations (2013)Nigel Simmons
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)Nigel Simmons
 
11 x1 t13 03 angle theorems 2
11 x1 t13 03 angle theorems 211 x1 t13 03 angle theorems 2
11 x1 t13 03 angle theorems 2Nigel Simmons
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)Nigel Simmons
 
11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)Nigel Simmons
 
11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)Nigel Simmons
 

Viewers also liked (20)

11X1 T06 06 transversals
11X1 T06 06 transversals11X1 T06 06 transversals
11X1 T06 06 transversals
 
X2 T03 04 parameters, hyperbola (2010)
X2 T03 04 parameters, hyperbola (2010)X2 T03 04 parameters, hyperbola (2010)
X2 T03 04 parameters, hyperbola (2010)
 
11X1 T08 02 first principles
11X1 T08 02 first principles11X1 T08 02 first principles
11X1 T08 02 first principles
 
11X1 T11 04 maximum & minimum problems
11X1 T11 04 maximum & minimum problems11X1 T11 04 maximum & minimum problems
11X1 T11 04 maximum & minimum problems
 
X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)
 
11X1 T08 08 implicit differentiation
11X1 T08 08 implicit differentiation11X1 T08 08 implicit differentiation
11X1 T08 08 implicit differentiation
 
12X1 T02 02 integrating exponentials
12X1 T02 02 integrating exponentials12X1 T02 02 integrating exponentials
12X1 T02 02 integrating exponentials
 
11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinates11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinates
 
11 X1 T02 01 real numbers (2010)
11 X1 T02 01 real numbers (2010)11 X1 T02 01 real numbers (2010)
11 X1 T02 01 real numbers (2010)
 
11X1 T09 02 critical points
11X1 T09 02 critical points11X1 T09 02 critical points
11X1 T09 02 critical points
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logs12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logs
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
11 ext1 t4 4 trig equations (2013)
11 ext1 t4 4 trig equations (2013)11 ext1 t4 4 trig equations (2013)
11 ext1 t4 4 trig equations (2013)
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
 
11 x1 t13 03 angle theorems 2
11 x1 t13 03 angle theorems 211 x1 t13 03 angle theorems 2
11 x1 t13 03 angle theorems 2
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)
 
11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)
 
11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)
 
11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)
 

Similar to 11X1 T14 01 area under curves

Similar to 11X1 T14 01 area under curves (20)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Areas and Definite Integrals.ppt
Areas and Definite Integrals.pptAreas and Definite Integrals.ppt
Areas and Definite Integrals.ppt
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Calc05_2.ppt
Calc05_2.pptCalc05_2.ppt
Calc05_2.ppt
 
香港六合彩
香港六合彩香港六合彩
香港六合彩
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas x
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volume
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
 
Chap6_Sec1.ppt
Chap6_Sec1.pptChap6_Sec1.ppt
Chap6_Sec1.ppt
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poop
 
1545 integration-define
1545 integration-define1545 integration-define
1545 integration-define
 
1544 integration-define
1544 integration-define1544 integration-define
1544 integration-define
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculus
 
Integration
IntegrationIntegration
Integration
 
5.5 volumes
5.5 volumes5.5 volumes
5.5 volumes
 
Ap integrales
Ap  integralesAp  integrales
Ap integrales
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 

Recently uploaded (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 

11X1 T14 01 area under curves

  • 4. Integration Area Under Curve Area  11  12  3 3
  • 5. Integration Area Under Curve Area  11  12  3 3 Area  9
  • 6. Integration Area Under Curve Area  11  12  3 3 Area  9
  • 7. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 Area  9
  • 8. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9
  • 9. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9 Estimate Area  5 unit 2
  • 10. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9 Estimate Area  5 unit 2 Exact Area  4 unit 2
  • 11.
  • 12.
  • 13. Area  0.40.43  0.83  1.23  1.63  23 
  • 14. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 15. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 16. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 17. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76
  • 18. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76 Estimate Area  4.16 unit 2
  • 19.
  • 20.
  • 21. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  • 22. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 23. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 24. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 25. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84
  • 26. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84 Estimate Area  4.04 unit 2
  • 27. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 28. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 29. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x A(c) is the area from 0 to c
  • 30. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x x A(c) is the area from 0 to c A(x) is the area from 0 to x
  • 31. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle;
  • 32. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c
  • 33. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x 
  • 34. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc
  • 35. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h
  • 36. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h As the width of the rectangle decreases, the estimate becomes more accurate.
  • 37. i.e. as h  0, the Area becomes exact
  • 38. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h
  • 39. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h
  • 40. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x 
  • 41. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function.
  • 42. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is;
  • 43. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a
  • 44. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a 
  • 45. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a  where F  x  is the primitive function of f  x 
  • 46. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and x= 2
  • 47. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0
  • 48. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  
  • 49. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0    2  04  1 4 4
  • 50. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0    2  04  1 4 4  4 units 2
  • 51. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0    2  04  1 4 4  4 units 2 3 ii   x 2  1dx 2
  • 52. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0    2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x  2 2 3 
  • 53. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0    2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x  2 2 3  1 33  3  1 2 3  2     3   3 
  • 54. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0    2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x  2 2 3  1 33  3  1 2 3  2     3   3  22  3
  • 55. 5 iii   x 3dx 4
  • 56. 5 5  1  2  iii   x dx   x  3 4  2 4
  • 57. 5 5  1  2  iii   x dx   x  3 4  2 4 11 1     2  2 2 5 4  9  800
  • 58. 5 5  1  2  iii   x dx   x  3 4  2 4    2  2 1 1 1   2 5 4  9  800 Exercise 11A; 1 Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*