SlideShare a Scribd company logo
1 of 14
Download to read offline
Application Guide
MSO5000 Series Digital Oscilloscope
Application Guide for Bode Plot Function
Version 1.0
May. 2020
RIGOL TECHNOLOGIES CO., LTD.
RIGOL
2
Application Guide for MSO5000 Series
Preface
Copyright
© 2020 RIGOL TECHNOLOGIES CO., LTD.
Trademark Information
RIGOL®
is a registered trademark of RIGOL TECHNOLOGIES CO., LTD.
Notices
 RIGOL products are covered by P.R.C. and foreign patents, issued and pending.
 RIGOL reserves the right to modify or change parts of or all the specifications and
pricing policies at the company’s sole decision.
 Information in this publication replaces all previously released materials.
 Information in this publication is subject to change without notice.
 RIGOL shall not be liable for either incidental or consequential losses in connection
with the furnishing, use, or performance of this manual, as well as any information
contained.
 Any part of this document is forbidden to be copied, photocopied, or rearranged
without prior written approval of RIGOL.
Product Certification
RIGOL guarantees that this product conforms to the national and industrial standards in
China as well as the ISO9001:2015 standard and the ISO14001:2015 standard. Other
international standard conformance certifications are in progress.
Contact Us
If you have any problem or requirement when using our products or this manual, please
contact RIGOL.
E-mail: service@rigol.com
Website: www.rigol.com
RIGOL
3
Application Guide for MSO5000 Series
This Application Guide
 Introduces the concept of Bode plot.
 Introduces the basic principle of Bode plot.
 Provides the method for setting up the loop test environment.
 Describes the steps, keys, and experience for Bode plot operation.
 Lists the available RIGOL products being equipped with the Bode plot function.
 Provides the method on how to obtain the new Bode plot function with the upgrade
software for the existing RIGOL products.
RIGOL
4
Application Guide for MSO5000 Series
Overview
A Bode plot is a graph that maps the frequency response of the system. It was first
introduced by Hendrik Wade Bode in 1940.
The Bode plot consists of the Bode magnitude plot and the Bode phase plot. Both the
amplitude and phase graphs are plotted against the frequency. The horizontal axis is lgω
(logarithmic scale to the base of 10), and the logarithmic scale is used. The vertical axis of
the Bode magnitude plot is 20lg (dB), and the linear scale is used, with the unit in decibel
(dB). The vertical axis of the Bode phase plot uses the linear scale, with the unit in degree
(°). Usually, the Bode magnitude plot and the Bode phase plot are placed up and down,
with the Bode magnitude plot at the top, with their respective vertical axis being aligned.
This is convenient to observe the magnitude and phase value at the same frequency, as
shown in the following figure.
L(ω) / dB
ω
ω
0
20
40
-40
-20
0°
90°
180°
-180°
-90°
0.01 0.1 1 10 100
0.01 0.1 1 10 100
ⱷ (ω)
The loop analysis test method is as follows: Inject a sine-wave signal with constantly
changing frequencies into a switching power supply circuit as the interference signal, and
then judge the ability of the circuit system in adjusting the interference signal at various
frequencies according to its output.
This method is commonly used in the test for the switching power supply circuit. The
measurement results of the changes in the gain and phase of the output voltage can be
output to form a curve, which shows the changes of the injection signal along with the
frequency variation. The Bode plot enables you to analyze the gain margin and phase
margin of the switching power supply circuit to determine its stability.
RIGOL
5
Application Guide for MSO5000 Series
Principle
The switching power supply is a typical feedback loop control system, and its feedback
gain model is as follows:
In the feedback circuit system, the relationship between the output voltage and the
reference voltage is as follows:
open-loop transfer function:
closed-loop transfer function:
voltage fluctuation expression:
From the above formula, you can find out the cause for the instability of the closed-loop
system: Given , the interference fluctuation of the system is infinite.
The instability arises from two aspects:
1) when the magnitude of the open-loop transfer function is
2) when the phase of the open-loop transfer function is
The above is the theoretical value. In fact, to maintain the stability of the circuit system,
you need to spare a certain amount of margin. Here we introduce two important terms:
 PM: phase margin.
When the gain is 1, the phase cannot be . At this time, the distance
between and is the phase margin. PM refers to the amount of phase, which
can be increased or decreased without making the system unstable. The greater the PM,
the greater the stability of the system, and the slower the system response.
RIGOL
6
Application Guide for MSO5000 Series
 GM: gain margin.
When the phase is , the gain cannot be 1. At this time, the distance
between and 1 is the gain margin. The gain margin is expressed in dB. If is
greater than 1, then the gain margin is a positive value. If is smaller than 1, then
the gain margin is a negative value. The positive gain margin indicates that the system is
stable, and the negative one indicates that the system is unstable.
The following figure is the Bode plot. The curve in purple shows that the loop system gain
varies with frequency. The curve in green indicates the variation of the loop system phase
with frequency. In the figure, the frequency at which the GM is 0 dB is called "crossover
frequency".
The principle of the Bode plot is simple, and its demonstration is clear. It evaluates the
stability of the closed-loop system with the open-loop gain of the system.
Loop Test Environment Setup
The following figure is the circuit topology diagram of the loop analysis test for the
switching power supply by using RIGOL's MSO5000 series digital oscilloscope. The loop
test environment is set up as follows:
1. Connect a 5Ω injection resistor Rinj to the feedback circuit, as indicated by the red
circle in the following figure.
2. Connect the GI connector of the MSO5000 series digital oscilloscope to an isolated
transformer. The swept sine-wave signal output from the oscilloscope's built-in
RIGOL
7
Application Guide for MSO5000 Series
waveform generator is connected in parallel to the two ends of the injection resistor
Rinj through the isolated transformer.
3. Use the probe that connects the two analog channels of the MSO5000 series digital
oscilloscope (e.g. RIGOL's PVP2350 probe) to measure the injection and output ends
of the swept signal.
The following figure is the physical connection diagram of the test environment.
Error Amplifier
Internal Reference Source
Isolated Transformer
Pulse Width Modulator
RIGOL
8
Application Guide for MSO5000 Series
Operation Procedures
The following section introduces how to use RIGOL's MSO5000 series digital oscilloscope
to carry out the loop analysis. The operation procedures are shown in the figure below.
Step 1 To Enable the Bode Plot Function
You can also enable the touch screen and then tap the function navigation icon at the
lower-left corner of the screen to open the function navigation. Then, tap the "Bode" icon
to open the "Bode" setting menu.
Step 2 To Set the Swept Signal
Press Amp/Freq Set. to enter the amplitude/frequency setting menu. Then the Bode Set
window is displayed. You can tap the input field of various parameters on the touch screen
to set the parameters by inputting values with the pop-up numeric keypad. Press
Var.Amp. continuously to enable or disable the voltage amplitude of the swept signal in
the different frequency ranges.
Variant Amplitude
RIGOL
9
Application Guide for MSO5000 Series
The definitions for the parameters on the screen are shown in the following table.
Parameter Definition
StartFreq Indicates the start frequency of the sine wave. The default is 10 Hz,
and the range available is from 10 Hz to 25 MHz.
StopFreq Indicates the stop frequency of the sine wave. The default is 100Hz,
and the range available is from 100 Hz to 25 MHz.
Points/decade Indicates the number of displayed points per decade. The default is 10,
and the range is from 10 to 300.
Amplitude Indicates the voltage amplitude of sine wave when the Var.Amp. key
is off.
Variant
Amplitude
Indicates the voltage magnitude of sine wave in different frequency
ranges when the Var.Amp. key is on.
Note:
The set "StopFreq" must be greater than the "StartFreq".
Press Sweep Type, and rotate the multifunction knob to select the desired sweep
type, and then press down the knob to select it. You can also enable the touch screen to
select it.
 Lin: the frequency of the swept sine wave varies linearly with the time.
 Log: the frequency of the swept sine wave varies logarithmically with the time.
Step 3 To Set the Input/Output Source
As shown in the circuit topology diagram in Loop Test Environment Setup, the input
source acquires the injection signal through the analog channel of the oscilloscope, and the
output source acquires the output signal of the device under test (DUT) through the analog
channel of the oscilloscope. Set the output and input sources by the following operation
methods.
Press In and rotate the multifunction knob to select the desired channel, and then
press down the knob to select it. You can also enable the touch screen to select it.
Press Out and rotate the multifunction knob to select the desired channel, and then
press down the knob to select it. You can also enable the touch screen to select it.
Step 4 To Enable the Loop Analysis Test
In the Bode setting, the initial running status shows "Start" under the Run Status key.
Press this key, and then the Bode Wave window is displayed. In the window, you can see
that a Bode plot is drawing. At this time, tap the "Bode Wave" window, the Run Status
menu is displayed. Under the menu, "Stop" is shown under the Run Status menu.
RIGOL
10
Application Guide for MSO5000 Series
Step 5 To View the Measurement Results from the Bode Plot
After the Bode plot has been completed drawing, the Run Status menu shows "Start"
again. You can view the Bode plot in the Bode Wave window, as shown in the following
figure.
The following table lists the descriptions for the main elements in the Bode plot.
No. Description
1 Frequency: indicates the X-axis value of the cursor in the Bode plot.
2 Gain: indicates the Y-axis value of the crossover point between the cursor
and the purple gain curve.
3 Phase: indicates the Y-axis value of the crossover point between the cursor
and the green phase curve.
4 Cursor line: Press Cursors and rotate the multifunction knob to adjust
horizontally the position of the cursor in the horizontal axis in the Bode Wave
window. While the cursor moves, the values in the upper-left corner of the
"Bode Wave" window will be changed.
5 Gain margin (GM)
6 Phase margin (PM)
Press Disp Type and rotate the multifunction knob to select "Chart" as the display
type of the Bode plot. The following table will be displayed, and you can view the
parameters of the measurement results for loop analysis test.
4
3
2
1
6
5
3GM
3PM
RIGOL
11
Application Guide for MSO5000 Series
Step 6 To Save the Bode Plot File
After the test has been completed, save the test results as a specified file type with a
specified filename.
Press File Type to select the file type for saving the Bode plot. The available file types
include "*.png", "*.bmp", "*.csv", and "*.html". When you select "*.png" or "*.bmp" as
the file type, the Bode plot will be saved as a form of waveform. When you select "*.csv" or
"*.html", the Bode plot will be saved as a form of chart.
Press File Name, input the filename for the Bode plot in the pop-up numeric keypad.
Key Points in Operation
When performing the loop analysis test for the switching power supply, pay attention to
the following points when injecting the test stimulus signal.
Selection of the Interference Signal Injection Location
We make use of feedback to inject the interference signal. Generally speaking, in the
voltage-feedback switching power supply circuit, we usually put the injection resistor
between the output voltage point and the voltage dividing resistor of the feedback loop. In
the current-feedback switching power supply circuit, put the injection resistor behind the
feedback circuit.
Selection of the Injection Resistor
When choosing the injection resistor, keep in mind that the injection resistor you select
should not affect the system stability. As the voltage dividing resistor is generally a type
that is at or above kΩ level, the impedance of the injection resistor that you select should
be between 5Ω and 10Ω.
Selection of Voltage Amplitude of the Injected Interference Signal
You can attempt to try the amplitude of the injected signal from 1/20 to 1/5 of the output
voltage.
RIGOL
12
Application Guide for MSO5000 Series
If the voltage of the injected signal is too large, this will make the switching power supply
be a nonlinear circuit, resulting in measurement distortion. If the voltage of the injected
signal in the low frequency band is too small, it will cause a low signal-to-noise ratio and
large interference.
Usually we tend to use a higher voltage amplitude when the injection signal frequency is
low, and use a lower voltage amplitude when the injection signal frequency is higher. By
selecting different voltage amplitudes in different frequency bands of the injection signal,
we can obtain more accurate measurement results. MSO5000 series digital oscilloscope
supports the swept signal with variable output frequencies. For details, refer to the
function of the Var.Amp. key introduced in Step 2 To Set the Swept Signal.
Selection of the Frequency Band for the Injected Interference Signal
The frequency sweep range of the injection signal should be near the crossover frequency,
which makes it easy to observe the phase margin and gain margin in the generated Bode
plot. In general, the crossover frequency of the system is between 1/20 and 1/5 of the
switching frequency, and the frequency band of the injection signal can be selected within
this frequency range.
Experience
The switching power supply is a typical feedback control system, and it has two important
indicators: system response and system stability. The system response refers to the speed
required for the power supply to quickly adjust when the load changes or the input voltage
changes. System stability is the ability of the system in suppressing the input interference
signals of different frequencies.
The greater the phase margin, the slower the system response. The smaller the phase
margin, the poorer the system stability. Similarly, if the crossing frequency is too high, the
system stability will be affected; if it is too low, the system response will be slow. To
balance the system response and stability, we share you the following experience:
● The crossing frequency is recommended to be 1/20 to 1/5 of the switching frequency.
● The phase margin should be greater than 45°. 45° to 80° is recommended.
● The gain margin is recommended to be greater than 10 dB.
Summary
RIGOL's MSO5000 series digital oscilloscope can generate the swept signal of the
specified range by controlling the built-in signal generator module and output the signal to
the switching power supply to carry out loop analysis test. The Bode plot generated from
the test can display the gain and phase variations of the system under different
frequencies. From the plot, you can see the phase margin, gain margin, crossover
frequency, and other important parameters. The Bode plot function is easy to operate, and
engineers may find it convenient in analyzing the circuit system stability.
RIGOL
13
Application Guide for MSO5000 Series
Currently, the Bode plot function is only available for the following models of RIGOL
oscilloscopes.
Model
MSO5000 Series MSO5000-E Series
Analog Bandwidth 70 MHz~350 MHz 150 MHz
No. of Analog
Channels
4 2
Max. Real-time
Sample Rate
8 GSa/s 4 GSa/s
Max. Memory Depth 200 Mpts 100 Mpts
Max. Waveform
Capture Rate
500,000 wfms/s 300,000 wfms/s
Digital Channel 16 16
Upgrade Method
Online Upgrade
After the oscilloscope is connected to network (if you do not have the access to the
Internet, please ask the administrator to open the specified network authority) via the LAN
interface, you can perform online upgrading for the system software.
1) Enable the touch screen and then tap the function navigation icon at the lower-left
corner of the touch screen to enable the function navigation.
2) Tap the "Help" icon, and then the "Help" menu is displayed on the screen.
3) Press Online upgrade or enable the touch screen to tap "Online upgrade", then a
"System Update Information" window is displayed, requesting you whether to accept
or cancel "RIGOL PRODUCT ONLINE UPGRADE SERVICE TERMS". Tap "Accept" to
start online upgrade. Tap "Cancel" to cancel the online upgrade.
For the local upgrade, please download the latest firmware from the following website and
then perform the upgrade.
MSO5000/MSO5000-E
https://int.rigol.com/En/Index/listView/catid/28/tp/6/wd/MSO5000
RIGOL
14
Application Guide for MSO5000 Series

More Related Content

Similar to Rigol oscilloscope mso5000_bode_plot_app_note

IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...
IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...
IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...IRJET Journal
 
DIGITAL HEART BEAT COUNTER
DIGITAL HEART BEAT COUNTERDIGITAL HEART BEAT COUNTER
DIGITAL HEART BEAT COUNTERDeevanshu Swani
 
Hioki bt3564 High voltage Battery tester
Hioki bt3564 High voltage Battery testerHioki bt3564 High voltage Battery tester
Hioki bt3564 High voltage Battery testerNIHON DENKEI SINGAPORE
 
Input-Output Interfacing for LED and Switch
Input-Output Interfacing for LED and SwitchInput-Output Interfacing for LED and Switch
Input-Output Interfacing for LED and SwitchRanaKhizar7
 
IRJET- Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...
IRJET-  	  Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...IRJET-  	  Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...
IRJET- Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...IRJET Journal
 
Design and Implementation of Digital PLL using Self Correcting DCO System
Design and Implementation of Digital PLL using Self Correcting DCO SystemDesign and Implementation of Digital PLL using Self Correcting DCO System
Design and Implementation of Digital PLL using Self Correcting DCO SystemIJERA Editor
 
IMPLEMENTING A DIGITAL MULTIMETER
IMPLEMENTING A DIGITAL MULTIMETERIMPLEMENTING A DIGITAL MULTIMETER
IMPLEMENTING A DIGITAL MULTIMETERVijay Elavunkal
 
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Umair Shahzad
 
Halderman ch043 lecture
Halderman ch043 lectureHalderman ch043 lecture
Halderman ch043 lecturemcfalltj
 
Analysis and Characterization of Different Comparator Topologies
Analysis and Characterization of Different Comparator TopologiesAnalysis and Characterization of Different Comparator Topologies
Analysis and Characterization of Different Comparator TopologiesAalay Kapadia
 
7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx
7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx
7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docxalinainglis
 
Design and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational AmplifierDesign and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational AmplifierIJERA Editor
 
EVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONS
EVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONSEVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONS
EVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONSIAEME Publication
 
Grid synchronisation
Grid synchronisationGrid synchronisation
Grid synchronisationmanogna gwen
 
DESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCO
DESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCODESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCO
DESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCOVLSICS Design
 

Similar to Rigol oscilloscope mso5000_bode_plot_app_note (20)

IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...
IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...
IRJET-Proportional Resonant Controller with Resonant Harmonic Compensators fo...
 
TV Remote Jammer
TV Remote JammerTV Remote Jammer
TV Remote Jammer
 
DIGITAL HEART BEAT COUNTER
DIGITAL HEART BEAT COUNTERDIGITAL HEART BEAT COUNTER
DIGITAL HEART BEAT COUNTER
 
Hioki bt3564 High voltage Battery tester
Hioki bt3564 High voltage Battery testerHioki bt3564 High voltage Battery tester
Hioki bt3564 High voltage Battery tester
 
Input-Output Interfacing for LED and Switch
Input-Output Interfacing for LED and SwitchInput-Output Interfacing for LED and Switch
Input-Output Interfacing for LED and Switch
 
IRJET- Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...
IRJET-  	  Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...IRJET-  	  Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...
IRJET- Grid Connected Third Harmonic Injection PWM in a Multilevel Invert...
 
Design and Implementation of Digital PLL using Self Correcting DCO System
Design and Implementation of Digital PLL using Self Correcting DCO SystemDesign and Implementation of Digital PLL using Self Correcting DCO System
Design and Implementation of Digital PLL using Self Correcting DCO System
 
IMPLEMENTING A DIGITAL MULTIMETER
IMPLEMENTING A DIGITAL MULTIMETERIMPLEMENTING A DIGITAL MULTIMETER
IMPLEMENTING A DIGITAL MULTIMETER
 
Copy of robotics17
Copy of robotics17Copy of robotics17
Copy of robotics17
 
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
 
Halderman ch043 lecture
Halderman ch043 lectureHalderman ch043 lecture
Halderman ch043 lecture
 
ZERO100L ultrasonic level meter manual. four lines
ZERO100L  ultrasonic level meter manual. four linesZERO100L  ultrasonic level meter manual. four lines
ZERO100L ultrasonic level meter manual. four lines
 
Analysis and Characterization of Different Comparator Topologies
Analysis and Characterization of Different Comparator TopologiesAnalysis and Characterization of Different Comparator Topologies
Analysis and Characterization of Different Comparator Topologies
 
7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx
7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx
7447_datasheet.pdf© 2001 Fairchild Semiconductor Corporati.docx
 
Design and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational AmplifierDesign and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational Amplifier
 
Ijaret 06 08_005
Ijaret 06 08_005Ijaret 06 08_005
Ijaret 06 08_005
 
EVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONS
EVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONSEVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONS
EVOLUTION OF VOLTAGE REGULATOR TO SYSTEM ON CHIP APPLICATIONS
 
CATV Optical Transmitter
CATV Optical TransmitterCATV Optical Transmitter
CATV Optical Transmitter
 
Grid synchronisation
Grid synchronisationGrid synchronisation
Grid synchronisation
 
DESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCO
DESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCODESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCO
DESIGN OF DIGITAL PLL USING OPTIMIZED PHASE NOISE VCO
 

More from NIHON DENKEI SINGAPORE

Quantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solutionQuantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solutionNIHON DENKEI SINGAPORE
 
MTI Japan Magnetic Field Measurement Instruments
MTI Japan Magnetic Field Measurement InstrumentsMTI Japan Magnetic Field Measurement Instruments
MTI Japan Magnetic Field Measurement InstrumentsNIHON DENKEI SINGAPORE
 
catalog-en-20190708_safety_training_machine.pdf
catalog-en-20190708_safety_training_machine.pdfcatalog-en-20190708_safety_training_machine.pdf
catalog-en-20190708_safety_training_machine.pdfNIHON DENKEI SINGAPORE
 
Ono sokki ds3000 Data Station DS-3000 series Sound and Vibration Real-time...
Ono sokki ds3000  Data Station  DS-3000 series  Sound and Vibration Real-time...Ono sokki ds3000  Data Station  DS-3000 series  Sound and Vibration Real-time...
Ono sokki ds3000 Data Station DS-3000 series Sound and Vibration Real-time...NIHON DENKEI SINGAPORE
 
HIOKI Current Series sensors probes_e1-1_zb
HIOKI Current  Series sensors probes_e1-1_zbHIOKI Current  Series sensors probes_e1-1_zb
HIOKI Current Series sensors probes_e1-1_zbNIHON DENKEI SINGAPORE
 
Hioki Field measuring instruments 2022 catalogue
Hioki Field measuring instruments 2022 catalogueHioki Field measuring instruments 2022 catalogue
Hioki Field measuring instruments 2022 catalogueNIHON DENKEI SINGAPORE
 
Hioki Electrical measuring instruments 2022 catalogue
Hioki Electrical measuring instruments 2022 catalogueHioki Electrical measuring instruments 2022 catalogue
Hioki Electrical measuring instruments 2022 catalogueNIHON DENKEI SINGAPORE
 
KG Electronic load DC power supply Ripple and Noise meter
KG Electronic load DC power supply Ripple and Noise meterKG Electronic load DC power supply Ripple and Noise meter
KG Electronic load DC power supply Ripple and Noise meterNIHON DENKEI SINGAPORE
 
ONO SOKKI Elevator Speedometer EC-2100
ONO SOKKI Elevator Speedometer  EC-2100ONO SOKKI Elevator Speedometer  EC-2100
ONO SOKKI Elevator Speedometer EC-2100NIHON DENKEI SINGAPORE
 
KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies
KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies
KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies NIHON DENKEI SINGAPORE
 
Rion product for_the_automotive_industry
Rion product for_the_automotive_industry Rion product for_the_automotive_industry
Rion product for_the_automotive_industry NIHON DENKEI SINGAPORE
 
ADCMT DC Voltage Current Source/Monitor Catalog 6253 DENKEI
ADCMT DC Voltage Current Source/Monitor  Catalog 6253  DENKEIADCMT DC Voltage Current Source/Monitor  Catalog 6253  DENKEI
ADCMT DC Voltage Current Source/Monitor Catalog 6253 DENKEINIHON DENKEI SINGAPORE
 
RIGOL Programmable linear DC power supply DP800 Series
RIGOL  Programmable linear DC power supply DP800 SeriesRIGOL  Programmable linear DC power supply DP800 Series
RIGOL Programmable linear DC power supply DP800 SeriesNIHON DENKEI SINGAPORE
 
Aikoh General Catalogue in Japanese catj201907
Aikoh General Catalogue in Japanese  catj201907Aikoh General Catalogue in Japanese  catj201907
Aikoh General Catalogue in Japanese catj201907NIHON DENKEI SINGAPORE
 

More from NIHON DENKEI SINGAPORE (20)

Quantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solutionQuantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solution
 
MTI Japan Magnetic Field Measurement Instruments
MTI Japan Magnetic Field Measurement InstrumentsMTI Japan Magnetic Field Measurement Instruments
MTI Japan Magnetic Field Measurement Instruments
 
catalog-en-20190708_safety_training_machine.pdf
catalog-en-20190708_safety_training_machine.pdfcatalog-en-20190708_safety_training_machine.pdf
catalog-en-20190708_safety_training_machine.pdf
 
Ono sokki ds3000 Data Station DS-3000 series Sound and Vibration Real-time...
Ono sokki ds3000  Data Station  DS-3000 series  Sound and Vibration Real-time...Ono sokki ds3000  Data Station  DS-3000 series  Sound and Vibration Real-time...
Ono sokki ds3000 Data Station DS-3000 series Sound and Vibration Real-time...
 
Hioki data logger selection
Hioki data logger selectionHioki data logger selection
Hioki data logger selection
 
HIOKI Current Series sensors probes_e1-1_zb
HIOKI Current  Series sensors probes_e1-1_zbHIOKI Current  Series sensors probes_e1-1_zb
HIOKI Current Series sensors probes_e1-1_zb
 
Hioki Field measuring instruments 2022 catalogue
Hioki Field measuring instruments 2022 catalogueHioki Field measuring instruments 2022 catalogue
Hioki Field measuring instruments 2022 catalogue
 
Hioki Electrical measuring instruments 2022 catalogue
Hioki Electrical measuring instruments 2022 catalogueHioki Electrical measuring instruments 2022 catalogue
Hioki Electrical measuring instruments 2022 catalogue
 
9322 Hioki Differential Probe
9322 Hioki Differential Probe9322 Hioki Differential Probe
9322 Hioki Differential Probe
 
KG Electronic load DC power supply Ripple and Noise meter
KG Electronic load DC power supply Ripple and Noise meterKG Electronic load DC power supply Ripple and Noise meter
KG Electronic load DC power supply Ripple and Noise meter
 
HIOKI Power Analyzer Pw8001
HIOKI Power Analyzer  Pw8001 HIOKI Power Analyzer  Pw8001
HIOKI Power Analyzer Pw8001
 
ONO SOKKI Elevator Speedometer EC-2100
ONO SOKKI Elevator Speedometer  EC-2100ONO SOKKI Elevator Speedometer  EC-2100
ONO SOKKI Elevator Speedometer EC-2100
 
KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies
KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies
KIKUSUI PBZ Series Intelligent Bi-Polar Power Supplies
 
Rion product for_the_automotive_industry
Rion product for_the_automotive_industry Rion product for_the_automotive_industry
Rion product for_the_automotive_industry
 
HIOKI BYPASS DIODE TESTER FT4310
HIOKI BYPASS DIODE TESTER FT4310HIOKI BYPASS DIODE TESTER FT4310
HIOKI BYPASS DIODE TESTER FT4310
 
TEAC Load cell catalog (JAPAN)
TEAC Load cell catalog  (JAPAN) TEAC Load cell catalog  (JAPAN)
TEAC Load cell catalog (JAPAN)
 
ADCMT DC Voltage Current Source/Monitor Catalog 6253 DENKEI
ADCMT DC Voltage Current Source/Monitor  Catalog 6253  DENKEIADCMT DC Voltage Current Source/Monitor  Catalog 6253  DENKEI
ADCMT DC Voltage Current Source/Monitor Catalog 6253 DENKEI
 
RIGOL Programmable linear DC power supply DP800 Series
RIGOL  Programmable linear DC power supply DP800 SeriesRIGOL  Programmable linear DC power supply DP800 Series
RIGOL Programmable linear DC power supply DP800 Series
 
Rz catalogue cn AIKOH 推拉力计
Rz catalogue cn AIKOH 推拉力计Rz catalogue cn AIKOH 推拉力计
Rz catalogue cn AIKOH 推拉力计
 
Aikoh General Catalogue in Japanese catj201907
Aikoh General Catalogue in Japanese  catj201907Aikoh General Catalogue in Japanese  catj201907
Aikoh General Catalogue in Japanese catj201907
 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

Rigol oscilloscope mso5000_bode_plot_app_note

  • 1. Application Guide MSO5000 Series Digital Oscilloscope Application Guide for Bode Plot Function Version 1.0 May. 2020 RIGOL TECHNOLOGIES CO., LTD.
  • 2. RIGOL 2 Application Guide for MSO5000 Series Preface Copyright © 2020 RIGOL TECHNOLOGIES CO., LTD. Trademark Information RIGOL® is a registered trademark of RIGOL TECHNOLOGIES CO., LTD. Notices  RIGOL products are covered by P.R.C. and foreign patents, issued and pending.  RIGOL reserves the right to modify or change parts of or all the specifications and pricing policies at the company’s sole decision.  Information in this publication replaces all previously released materials.  Information in this publication is subject to change without notice.  RIGOL shall not be liable for either incidental or consequential losses in connection with the furnishing, use, or performance of this manual, as well as any information contained.  Any part of this document is forbidden to be copied, photocopied, or rearranged without prior written approval of RIGOL. Product Certification RIGOL guarantees that this product conforms to the national and industrial standards in China as well as the ISO9001:2015 standard and the ISO14001:2015 standard. Other international standard conformance certifications are in progress. Contact Us If you have any problem or requirement when using our products or this manual, please contact RIGOL. E-mail: service@rigol.com Website: www.rigol.com
  • 3. RIGOL 3 Application Guide for MSO5000 Series This Application Guide  Introduces the concept of Bode plot.  Introduces the basic principle of Bode plot.  Provides the method for setting up the loop test environment.  Describes the steps, keys, and experience for Bode plot operation.  Lists the available RIGOL products being equipped with the Bode plot function.  Provides the method on how to obtain the new Bode plot function with the upgrade software for the existing RIGOL products.
  • 4. RIGOL 4 Application Guide for MSO5000 Series Overview A Bode plot is a graph that maps the frequency response of the system. It was first introduced by Hendrik Wade Bode in 1940. The Bode plot consists of the Bode magnitude plot and the Bode phase plot. Both the amplitude and phase graphs are plotted against the frequency. The horizontal axis is lgω (logarithmic scale to the base of 10), and the logarithmic scale is used. The vertical axis of the Bode magnitude plot is 20lg (dB), and the linear scale is used, with the unit in decibel (dB). The vertical axis of the Bode phase plot uses the linear scale, with the unit in degree (°). Usually, the Bode magnitude plot and the Bode phase plot are placed up and down, with the Bode magnitude plot at the top, with their respective vertical axis being aligned. This is convenient to observe the magnitude and phase value at the same frequency, as shown in the following figure. L(ω) / dB ω ω 0 20 40 -40 -20 0° 90° 180° -180° -90° 0.01 0.1 1 10 100 0.01 0.1 1 10 100 ⱷ (ω) The loop analysis test method is as follows: Inject a sine-wave signal with constantly changing frequencies into a switching power supply circuit as the interference signal, and then judge the ability of the circuit system in adjusting the interference signal at various frequencies according to its output. This method is commonly used in the test for the switching power supply circuit. The measurement results of the changes in the gain and phase of the output voltage can be output to form a curve, which shows the changes of the injection signal along with the frequency variation. The Bode plot enables you to analyze the gain margin and phase margin of the switching power supply circuit to determine its stability.
  • 5. RIGOL 5 Application Guide for MSO5000 Series Principle The switching power supply is a typical feedback loop control system, and its feedback gain model is as follows: In the feedback circuit system, the relationship between the output voltage and the reference voltage is as follows: open-loop transfer function: closed-loop transfer function: voltage fluctuation expression: From the above formula, you can find out the cause for the instability of the closed-loop system: Given , the interference fluctuation of the system is infinite. The instability arises from two aspects: 1) when the magnitude of the open-loop transfer function is 2) when the phase of the open-loop transfer function is The above is the theoretical value. In fact, to maintain the stability of the circuit system, you need to spare a certain amount of margin. Here we introduce two important terms:  PM: phase margin. When the gain is 1, the phase cannot be . At this time, the distance between and is the phase margin. PM refers to the amount of phase, which can be increased or decreased without making the system unstable. The greater the PM, the greater the stability of the system, and the slower the system response.
  • 6. RIGOL 6 Application Guide for MSO5000 Series  GM: gain margin. When the phase is , the gain cannot be 1. At this time, the distance between and 1 is the gain margin. The gain margin is expressed in dB. If is greater than 1, then the gain margin is a positive value. If is smaller than 1, then the gain margin is a negative value. The positive gain margin indicates that the system is stable, and the negative one indicates that the system is unstable. The following figure is the Bode plot. The curve in purple shows that the loop system gain varies with frequency. The curve in green indicates the variation of the loop system phase with frequency. In the figure, the frequency at which the GM is 0 dB is called "crossover frequency". The principle of the Bode plot is simple, and its demonstration is clear. It evaluates the stability of the closed-loop system with the open-loop gain of the system. Loop Test Environment Setup The following figure is the circuit topology diagram of the loop analysis test for the switching power supply by using RIGOL's MSO5000 series digital oscilloscope. The loop test environment is set up as follows: 1. Connect a 5Ω injection resistor Rinj to the feedback circuit, as indicated by the red circle in the following figure. 2. Connect the GI connector of the MSO5000 series digital oscilloscope to an isolated transformer. The swept sine-wave signal output from the oscilloscope's built-in
  • 7. RIGOL 7 Application Guide for MSO5000 Series waveform generator is connected in parallel to the two ends of the injection resistor Rinj through the isolated transformer. 3. Use the probe that connects the two analog channels of the MSO5000 series digital oscilloscope (e.g. RIGOL's PVP2350 probe) to measure the injection and output ends of the swept signal. The following figure is the physical connection diagram of the test environment. Error Amplifier Internal Reference Source Isolated Transformer Pulse Width Modulator
  • 8. RIGOL 8 Application Guide for MSO5000 Series Operation Procedures The following section introduces how to use RIGOL's MSO5000 series digital oscilloscope to carry out the loop analysis. The operation procedures are shown in the figure below. Step 1 To Enable the Bode Plot Function You can also enable the touch screen and then tap the function navigation icon at the lower-left corner of the screen to open the function navigation. Then, tap the "Bode" icon to open the "Bode" setting menu. Step 2 To Set the Swept Signal Press Amp/Freq Set. to enter the amplitude/frequency setting menu. Then the Bode Set window is displayed. You can tap the input field of various parameters on the touch screen to set the parameters by inputting values with the pop-up numeric keypad. Press Var.Amp. continuously to enable or disable the voltage amplitude of the swept signal in the different frequency ranges. Variant Amplitude
  • 9. RIGOL 9 Application Guide for MSO5000 Series The definitions for the parameters on the screen are shown in the following table. Parameter Definition StartFreq Indicates the start frequency of the sine wave. The default is 10 Hz, and the range available is from 10 Hz to 25 MHz. StopFreq Indicates the stop frequency of the sine wave. The default is 100Hz, and the range available is from 100 Hz to 25 MHz. Points/decade Indicates the number of displayed points per decade. The default is 10, and the range is from 10 to 300. Amplitude Indicates the voltage amplitude of sine wave when the Var.Amp. key is off. Variant Amplitude Indicates the voltage magnitude of sine wave in different frequency ranges when the Var.Amp. key is on. Note: The set "StopFreq" must be greater than the "StartFreq". Press Sweep Type, and rotate the multifunction knob to select the desired sweep type, and then press down the knob to select it. You can also enable the touch screen to select it.  Lin: the frequency of the swept sine wave varies linearly with the time.  Log: the frequency of the swept sine wave varies logarithmically with the time. Step 3 To Set the Input/Output Source As shown in the circuit topology diagram in Loop Test Environment Setup, the input source acquires the injection signal through the analog channel of the oscilloscope, and the output source acquires the output signal of the device under test (DUT) through the analog channel of the oscilloscope. Set the output and input sources by the following operation methods. Press In and rotate the multifunction knob to select the desired channel, and then press down the knob to select it. You can also enable the touch screen to select it. Press Out and rotate the multifunction knob to select the desired channel, and then press down the knob to select it. You can also enable the touch screen to select it. Step 4 To Enable the Loop Analysis Test In the Bode setting, the initial running status shows "Start" under the Run Status key. Press this key, and then the Bode Wave window is displayed. In the window, you can see that a Bode plot is drawing. At this time, tap the "Bode Wave" window, the Run Status menu is displayed. Under the menu, "Stop" is shown under the Run Status menu.
  • 10. RIGOL 10 Application Guide for MSO5000 Series Step 5 To View the Measurement Results from the Bode Plot After the Bode plot has been completed drawing, the Run Status menu shows "Start" again. You can view the Bode plot in the Bode Wave window, as shown in the following figure. The following table lists the descriptions for the main elements in the Bode plot. No. Description 1 Frequency: indicates the X-axis value of the cursor in the Bode plot. 2 Gain: indicates the Y-axis value of the crossover point between the cursor and the purple gain curve. 3 Phase: indicates the Y-axis value of the crossover point between the cursor and the green phase curve. 4 Cursor line: Press Cursors and rotate the multifunction knob to adjust horizontally the position of the cursor in the horizontal axis in the Bode Wave window. While the cursor moves, the values in the upper-left corner of the "Bode Wave" window will be changed. 5 Gain margin (GM) 6 Phase margin (PM) Press Disp Type and rotate the multifunction knob to select "Chart" as the display type of the Bode plot. The following table will be displayed, and you can view the parameters of the measurement results for loop analysis test. 4 3 2 1 6 5 3GM 3PM
  • 11. RIGOL 11 Application Guide for MSO5000 Series Step 6 To Save the Bode Plot File After the test has been completed, save the test results as a specified file type with a specified filename. Press File Type to select the file type for saving the Bode plot. The available file types include "*.png", "*.bmp", "*.csv", and "*.html". When you select "*.png" or "*.bmp" as the file type, the Bode plot will be saved as a form of waveform. When you select "*.csv" or "*.html", the Bode plot will be saved as a form of chart. Press File Name, input the filename for the Bode plot in the pop-up numeric keypad. Key Points in Operation When performing the loop analysis test for the switching power supply, pay attention to the following points when injecting the test stimulus signal. Selection of the Interference Signal Injection Location We make use of feedback to inject the interference signal. Generally speaking, in the voltage-feedback switching power supply circuit, we usually put the injection resistor between the output voltage point and the voltage dividing resistor of the feedback loop. In the current-feedback switching power supply circuit, put the injection resistor behind the feedback circuit. Selection of the Injection Resistor When choosing the injection resistor, keep in mind that the injection resistor you select should not affect the system stability. As the voltage dividing resistor is generally a type that is at or above kΩ level, the impedance of the injection resistor that you select should be between 5Ω and 10Ω. Selection of Voltage Amplitude of the Injected Interference Signal You can attempt to try the amplitude of the injected signal from 1/20 to 1/5 of the output voltage.
  • 12. RIGOL 12 Application Guide for MSO5000 Series If the voltage of the injected signal is too large, this will make the switching power supply be a nonlinear circuit, resulting in measurement distortion. If the voltage of the injected signal in the low frequency band is too small, it will cause a low signal-to-noise ratio and large interference. Usually we tend to use a higher voltage amplitude when the injection signal frequency is low, and use a lower voltage amplitude when the injection signal frequency is higher. By selecting different voltage amplitudes in different frequency bands of the injection signal, we can obtain more accurate measurement results. MSO5000 series digital oscilloscope supports the swept signal with variable output frequencies. For details, refer to the function of the Var.Amp. key introduced in Step 2 To Set the Swept Signal. Selection of the Frequency Band for the Injected Interference Signal The frequency sweep range of the injection signal should be near the crossover frequency, which makes it easy to observe the phase margin and gain margin in the generated Bode plot. In general, the crossover frequency of the system is between 1/20 and 1/5 of the switching frequency, and the frequency band of the injection signal can be selected within this frequency range. Experience The switching power supply is a typical feedback control system, and it has two important indicators: system response and system stability. The system response refers to the speed required for the power supply to quickly adjust when the load changes or the input voltage changes. System stability is the ability of the system in suppressing the input interference signals of different frequencies. The greater the phase margin, the slower the system response. The smaller the phase margin, the poorer the system stability. Similarly, if the crossing frequency is too high, the system stability will be affected; if it is too low, the system response will be slow. To balance the system response and stability, we share you the following experience: ● The crossing frequency is recommended to be 1/20 to 1/5 of the switching frequency. ● The phase margin should be greater than 45°. 45° to 80° is recommended. ● The gain margin is recommended to be greater than 10 dB. Summary RIGOL's MSO5000 series digital oscilloscope can generate the swept signal of the specified range by controlling the built-in signal generator module and output the signal to the switching power supply to carry out loop analysis test. The Bode plot generated from the test can display the gain and phase variations of the system under different frequencies. From the plot, you can see the phase margin, gain margin, crossover frequency, and other important parameters. The Bode plot function is easy to operate, and engineers may find it convenient in analyzing the circuit system stability.
  • 13. RIGOL 13 Application Guide for MSO5000 Series Currently, the Bode plot function is only available for the following models of RIGOL oscilloscopes. Model MSO5000 Series MSO5000-E Series Analog Bandwidth 70 MHz~350 MHz 150 MHz No. of Analog Channels 4 2 Max. Real-time Sample Rate 8 GSa/s 4 GSa/s Max. Memory Depth 200 Mpts 100 Mpts Max. Waveform Capture Rate 500,000 wfms/s 300,000 wfms/s Digital Channel 16 16 Upgrade Method Online Upgrade After the oscilloscope is connected to network (if you do not have the access to the Internet, please ask the administrator to open the specified network authority) via the LAN interface, you can perform online upgrading for the system software. 1) Enable the touch screen and then tap the function navigation icon at the lower-left corner of the touch screen to enable the function navigation. 2) Tap the "Help" icon, and then the "Help" menu is displayed on the screen. 3) Press Online upgrade or enable the touch screen to tap "Online upgrade", then a "System Update Information" window is displayed, requesting you whether to accept or cancel "RIGOL PRODUCT ONLINE UPGRADE SERVICE TERMS". Tap "Accept" to start online upgrade. Tap "Cancel" to cancel the online upgrade. For the local upgrade, please download the latest firmware from the following website and then perform the upgrade. MSO5000/MSO5000-E https://int.rigol.com/En/Index/listView/catid/28/tp/6/wd/MSO5000