SlideShare a Scribd company logo
1 of 20
Download to read offline
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
DOI:10.5121/msej.2016.3203 23
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE
P-N-HETEROJUNCTIONS ON COMPOSITION OF MULTI-
LAYER STRUCTURE
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we consider manufacturing a p-n-junctions by dopant diffusion or ion implantation into a
multilayer structure. We introduce an approach to increase sharpness of these p-n-junctions and at the
same time to increase homogeneity of distributions of dopants in enriched by these dopants areas. We con-
sider influence of the above changing of distribution of dopant on charge carrier mobility. We also consid-
er an approach to decrease value of mismatch-induced stress in the considered multilayer structure by us-
ing a buffer layer. The decreasing gives a possibility to increase value of charge carrier mobility.
KEYWORDS:
Multilayer structure; charge carriers mobility; p-n-heterojunctions
1. INTRODUCTION
In the present time one of the actual questions is increasing of performance of solid state electron-
ic devices (diodes, field-effect and bipolar transistors, ...) [1-6]. To increase the performance it is
attracted an interest searching of materials with higher values of the charge carrier mobility [7-
10]. An alternative approach to increase the performance is development of new technological
processes and optimization of existing one. Framework this paper we introduce an approach of
manufacturing of heterodiodes. The approach gives a possibility to decrease of switching time. At
the same using the approach gives a possibility to decrease dimensions of these diodes. With de-
creasing of switching time and dimensions of these diodes value of mismatch- induced stress also
decreases.
In this paper we consider a heterostructure on Fig. 1. The heterostructure includes into itself a
substrate and an epitaxial layer. A buffer layer has been grown between these substrate and epi-
taxial layer. We consider doping of the epitaxial layer by diffusion or ion implantation after man-
ufacturing the heterostructure. The doping gives a possibility to produce required type of conduc-
tivity (p or n). We assume, that type of conductivity of substrate is known: p or n. After doping of
the epitaxial layer optimized annealing of dopant and/or radiation defects has been considered. In
this paper we analyzed possibility to increase sharpness of p-n- junction with increasing of homo-
geneity of concentration of dopant in enriched by the dopant area. Framework the paper we ana-
lyzed influence of changing of distribution of concentration of dopant in space and time on charge
carrier mobility with account mismatch-induced stress in the considered heterostructure.
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
24
2. METHOD OF SOLUTION
To analyze influence of changing of distribution of concentration of dopant in space and time on
charge carrier mobility we solve the second Fick's law in the following form [1,11-15]
( ) ( ) ( ) ( )
+





∂
∂
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC ,,,,,,,,,,,,
(1)
( ) ( ) ( ) ( ) 





∫∇
∂
∂
Ω+





∫∇
∂
∂
Ω+
zz L
S
S
L
S
S
WdtWyxCtzyx
Tk
D
y
WdtWyxCtzyx
Tk
D
x 0
1
0
1 ,,,,,,,,,,,, µµ .
Fig. 1. Heterostructure, which consist of a substrate, epitaxial layers and buffer layer
Boundary and initial conditions for our case could be written as
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C(x,y,z,0)=fC(x,y,z).
The function C(x,y,z,t) describes distribution of concentration of dopant in space and time. Ω is
the atomic volume of dopant; ∇s is the symbol of surficial gradient. The function ( )∫
zL
zdtzyxC
0
,,,
describes distribution of surficial concentration of dopant in space and time on interface between
layers of heterostructure (in this situation we assume, that Z-axis is perpendicular to interface be-
tween layers of heterostructure). The function µ1(x,y,z,t) describes the chemical potential due to
the presence of mismatch-induced stress in space and time. The functions D and DS describe dis-
tributions of coefficients of volumetric and surficial diffusions on coordinate and temperature.
Values of dopant diffusions coefficients depends on properties of materials of heterostructure,
speed of heating and cooling of materials during annealing and spatio-temporal distribution of
concentration of dopant. Dependences of dopant diffusions coefficients on parameters could be
approximated by the following relations [13-15]
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
25
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC ςςξ γ
γ
,
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD SLSS ςςξ γ
γ
. (2)
Here DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostruicture)
and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the
temperature of annealing. Function P (x,y,z,T) describes spatial and temperature dependence of
the limit of solubility of dopant. Parameter γ ∈[1,3] with integer values depends on properties of
materials [13]. The function V (x,y,z,t) describes distribution of concentration of radiation vacan-
cies in space and time; V*
is the equilibrium distribution of vacancies. One can find description of
dependence of dopant diffusion coefficient on concentration of dopant in [13]. To determine dis-
tributions of concentration of point radiation defects in space and time we solve the following
boundary problem [11,12,14,15]
( ) ( ) ( ) ( ) ( ) ( ) ×−





+





= Tzyxk
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
IIII ,,,
,,,
,,,
,,,
,,,
,,,
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( ) +−





+× tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
tzyxI VII ,,,,,,,,,
,,,
,,,,,, ,
2
∂
∂
∂
∂
(3)
( ) ( ) ( ) ( ) 





∫∇
∂
∂
Ω+





∫∇
∂
∂
Ω+
zL
S
IS
zL
S
IS
WdtWyxItzyx
Tk
D
y
WdtWyxItzyx
Tk
D
x 00
,,,,,,,,,,,, µµ
( ) ( ) ( ) ( ) ( ) ( ) ×−





+





= Tzyxk
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VVVV ,,,
,,,
,,,
,,,
,,,
,,,
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( ) +−





+× tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
tzyxV VIV ,,,,,,,,,
,,,
,,,,,, ,
2
∂
∂
∂
∂
( ) ( ) ( ) ( ) 





∫∇
∂
∂
Ω+





∫∇
∂
∂
Ω+
zL
S
VS
zL
S
VS
WdtWyxVtzyx
Tk
D
y
WdtWyxVtzyx
Tk
D
x 00
,,,,,,,,,,,, µµ
( ) 0
,,,
0
=
=x
x
tzyxI
∂
∂
,
( ) 0
,,,
=
= xLx
x
tzyxI
∂
∂
,
( ) 0
,,,
0
=
=y
y
tzyxI
∂
∂
,
( ) 0
,,,
=
= yLy
y
tzyxI
∂
∂
,
( ) 0
,,,
0
=
=z
z
tzyxI
∂
∂
,
( ) 0
,,,
=
= zLz
z
tzyxI
∂
∂
,
( ) 0
,,,
0
=
=x
x
tzyxV
∂
∂
,
( ) 0
,,,
=
= xLx
x
tzyxV
∂
∂
,
( ) 0
,,,
0
=
=y
y
tzyxV
∂
∂
,
( ) 0
,,,
=
= yLy
y
tzyxV
∂
∂
,
( ) 0
,,,
0
=
=z
z
tzyxV
∂
∂
,
( ) 0
,,,
=
= zLz
z
tzyxV
∂
∂
I(x,y,z,0)=fI (x,y,z), V(x,y,z,0)=fV(x,y,z). (4)
The function I(x,y,z,t) describes distribution of concentration of radiation interstitials in space and
time with the equilibrium distribution I*
. The functions DI(x,y,z,T), DV(x,y,z,T), DIS(x,y,z,T),
DVS(x,y,z,T) describe dependences of coefficients of volumetric and surficial diffusions of intersti-
tials and vacancies on coordinate and temperature. Terms V2
(x,y,z,t) and I2
(x,y,z,t) gives a possi-
bility to take into account generation of divacancies and diinterstitials [15]. The functions
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
26
kI,V(x,y,z,T), kI,I(x,y, z,T) and kV,V(x,y,z,T) describe dependences of parameters of recombination of
point radiation defects and generation of their complexes on coordinate and temperature.
We determine spatio-temporal distributions of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,
z,t) by solving the following boundary problem [11,12,14,15]
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( )
( )
( ) ( ) ( ) ×+





∫Φ∇
∂
∂
Ω+




 Φ
+
Φ
Φ TzyxkWdtWyxtzyx
Tk
D
xz
tzyx
TzyxD
z
I
zL
IS
SII
I
,,,,,,,,,
,,,
,,,
0
1µ
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( )tzyxITzyxkWdtWyxtzyx
Tk
D
y
tzyxI II
zL
IS
SI
,,,,,,,,,,,,,,, 2
,
0
1 +





∫ Φ∇
∂
∂
Ω+×
Φ
µ (5)
( )
( )
( )
( )
( )
+




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( )
( )
( ) ( ) ( ) ×+





∫Φ∇
∂
∂
Ω+




 Φ
+
Φ
Φ TzyxkWdtWyxtzyx
Tk
D
xz
tzyx
TzyxD
z
V
zL
VS
SVV
V
,,,,,,,,,
,,,
,,,
0
1µ
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( )tzyxVTzyxkWdtWyxtzyx
Tk
D
y
tzyxV VV
zL
VS
SV
,,,,,,,,,,,,,,, 2
,
0
1 +





∫ Φ∇
∂
∂
Ω+×
Φ
µ
( ) 0
,,,
0
=
Φ
=x
I
x
tzyx
∂
∂
,
( ) 0
,,,
=
= xLx
x
tzyxI
∂
∂
,
( ) 0
,,,
0
=
=y
y
tzyxI
∂
∂
,
( ) 0
,,,
=
= yLy
y
tzyxI
∂
∂
,
( ) 0
,,,
0
=
Φ
=z
I
z
tzyx
∂
∂
,
( ) 0
,,,
=
= zLz
z
tzyxI
∂
∂
,
( ) 0
,,,
0
=
Φ
=x
V
x
tzyx
∂
∂
,
( ) 0
,,,
=
= xLx
x
tzyxV
∂
∂
,
( ) 0
,,,
0
=
=y
y
tzyxV
∂
∂
,
( ) 0
,,,
=
= yLy
y
tzyxV
∂
∂
,
( ) 0
,,,
0
=
=z
z
tzyxV
∂
∂
,
( ) 0
,,,
=
Φ
= zLz
V
z
tzyx
∂
∂
,
ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (6)
The functions DΦI(x,y,z,T), DΦV(x,y,z,T), DΦIS (x,y,z,T) and DΦVS(x,y,z,T) describe dependences of
coefficients of volumetric and surficial diffusions of complexes of radiation defects on coordinate
and temperature. The functions kI(x,y,z,T) and kV(x,y,z,T) describe dependences of parameters of
decay of complexes of radiation defects on coordinate and temperature.
Chemical potential µ1 in Eq.(1) could be determine by the following relation [11]
µ1=E(z)Ωσij [uij(x,y,z,t)+uji(x,y,z,t)]/2, (7)
where E(z) is the Young modulus, σij is the stress tensor;








∂
∂
+
∂
∂
=
i
j
j
i
ij
x
u
x
u
u
2
1
is the deformation
tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector
( )tzyxu ,,,
r
; xi, xj are the coordinate x, y, z. The Eq. (3) could be transform to the following form
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
27
( ) ( ) ( ) ( ) ( )




−








∂
∂
+
∂
∂








∂
∂
+
∂
∂
=
i
j
j
i
i
j
j
i
x
tzyxu
x
tzyxu
x
tzyxu
x
tzyxu
tzyx
,,,,,,
2
1,,,,,,
,,,µ
( )
( )
( ) ( ) ( ) ( )[ ] ( )zETtzyxTzzK
x
tzyxu
z
z
ij
k
kij
ij
2
,,,3
,,,
21
000
Ω




−−





−
∂
∂
−
+− δβε
σ
δσ
δε ,
where σ is Poisson coefficient; the mismatch parameter could be determined as ε0 =(as-aEL)/aEL,
where as is the lattice distances of the substrate, aEL and the epitaxial layer; K is the modulus of
uniform compression; parameter β describes thermal expansion coefficient, parameter Tr describes
the equilibrium temperature. The equilibrium temperature coincides in our case with room tem-
perature. Components of displacement vector could be obtained by solution of the following equ-
ations [12]
( ) ( ) ( ) ( ) ( )
z
tzyx
y
tzyx
x
tzyx
t
tzyxu
z xzxyxxx
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ ,,,,,,,,,,,,
2
2
σσσ
ρ
( )
( ) ( ) ( ) ( )
z
tzyx
y
tzyx
x
tzyx
t
tzyxu
z
yzyyyxy
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ ,,,,,,,,,,,,
2
2
σσσ
ρ
( ) ( ) ( ) ( ) ( )
z
tzyx
y
tzyx
x
tzyx
t
tzyxu
z zzzyzxz
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ ,,,,,,,,,,,,
2
2
σσσ
ρ ,
where
( )
( )[ ]
( ) ( ) ( ) ( )
×
∂
∂
+








∂
∂
−
∂
∂
+
∂
∂
+
=
k
k
ij
k
kij
i
j
j
i
ij
x
tzyxu
x
tzyxu
x
tzyxu
x
tzyxu
z
zE ,,,,,,
3
,,,,,,
12
δ
δ
σ
σ
( ) ( ) ( ) ( )[ ]rTtzyxTzKzzK −−× ,,,β , ρ (z) is the density of materials of heterostructure, δij is the
Kronecker symbol. With account the relation for σij last system of equation could be written as
( )
( )
( ) ( )
( )[ ]
( )
( ) ( )
( )[ ]
( )
+
∂∂
∂






+
−+
∂
∂






+
+=
∂
∂
yx
tzyxu
z
zE
zK
x
tzyxu
z
zE
zK
t
tzyxu
z
yxx
,,,
13
,,,
16
5,,,
2
2
2
2
2
σσ
ρ
( )
( )[ ]
( ) ( )
( ) ( )
( )[ ]
( )
−
∂∂
∂






+
++








∂
∂
+
∂
∂
+
+
zx
tzyxu
z
zE
zK
z
tzyxu
y
tzyxu
z
zE zzy ,,,
13
,,,,,,
12
2
2
2
2
2
σσ
( ) ( ) ( )
x
tzyxT
zzK
∂
∂
−
,,,
β
( )
( ) ( )
( )[ ]
( ) ( )
( ) ( ) ( )
+
∂
∂
−








∂∂
∂
+
∂
∂
+
=
∂
∂
y
tzyxT
zzK
yx
tzyxu
x
tzyxu
z
zE
t
tzyxu
z xyy ,,,,,,,,,
12
,,, 2
2
2
2
2
β
σ
ρ
( )
( )[ ]
( ) ( ) ( ) ( )
( )[ ]
( ) +






+
+∂
∂
+














∂
∂
+
∂
∂
+∂
∂
+ zK
z
zE
y
tzyxu
y
tzyxu
z
tzyxu
z
zE
z
yzy
σσ 112
5,,,,,,,,,
12 2
2
( ) ( )
( )[ ]
( )
( )
( )
yx
tzyxu
zK
zy
tzyxu
z
zE
zK
yy
∂∂
∂
+
∂∂
∂






+
−+
,,,,,,
16
22
σ
(8)
( )
( ) ( )
( )[ ]
( ) ( ) ( ) ( )
+








∂∂
∂
+
∂∂
∂
+
∂
∂
+
∂
∂
+
=
∂
∂
zy
tzyxu
zx
tzyxu
y
tzyxu
x
tzyxu
z
zE
t
tzyxu
z
yxzzz
,,,,,,,,,,,,
12
,,,
22
2
2
2
2
2
2
σ
ρ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
28
( )
( ) ( ) ( )
( ) ( ) ( )
+
∂
∂
−














∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
z
tzyxT
zzK
z
tzyxu
y
tzyxu
x
tzyxu
zK
z
xyx ,,,,,,,,,,,,
β
( )
( )
( ) ( ) ( ) ( )














∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
+∂
∂
+
z
tzyxu
y
tzyxu
x
tzyxu
z
tzyxu
z
zE
z
zyxz ,,,,,,,,,,,,
6
16
1
σ
.
Conditions for the system of Eq. (8) could be written in the form
( ) 0
,,,0
=
∂
∂
x
tzyu
r
;
( ) 0
,,,
=
∂
∂
x
tzyLu x
r
;
( ) 0
,,0,
=
∂
∂
y
tzxu
r
;
( ) 0
,,,
=
∂
∂
y
tzLxu y
r
;
( ) 0
,0,,
=
∂
∂
z
tyxu
r
;
( ) 0
,,,
=
∂
∂
z
tLyxu z
r
; ( ) 00,,, uzyxu
rr
= ; ( ) 0,,, uzyxu
rr
=∞ .
We solve the Eqs.(1), (3) and (5) by using standard method of averaging of function corrections
[17]. Previously we transform the Eqs.(1), (3) and (5) to the following form with account initial
distributions of the considered concentrations
( ) ( ) ( ) ( )
+





∂
∂
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC ,,,,,,,,,,,,
(1a)
( ) ( ) ( ) ( ) +





∫∇
∂
∂
Ω++
zL
S
S
C WdtWyxCtzyx
Tk
D
x
tzyxf
0
,,,,,,,, µδ
( ) ( ) 





∫∇
∂
∂
Ω+
zL
S
S
WdtWyxCtzyx
Tk
D
y 0
,,,,,,µ
( ) ( ) ( ) ( ) ( ) ( ) ( )++





+





= tzyxf
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
III δ
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
,,
,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( )×−





∫∇
∂
∂
Ω+





+ TzyxkWdtWyxItzyx
Tk
D
xz
tzyxI
TzyxD
z
VI
zL
S
IS
I ,,,,,,,,,
,,,
,,, ,
0
1µ
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxkWdtWyxItzyx
Tk
D
y
tzyxVtzyxI II
zL
S
IS
,,,,,,,,,,,,,,,,,, 2
,
0
1 −





∫∇
∂
∂
Ω+× µ (3a)
( )
( )
( )
( )
( )
( ) ( )++





+





= tzyxf
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VVV δ
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
,,
,,,
,,,
,,,
,,,
,,,
( )
( )
( ) ( ) ( ) ×−





∫∇
∂
∂
Ω+





+ TzyxkWdtWyxVtzyx
Tk
D
xz
tzyxV
TzyxD
z
VI
zL
S
VS
V ,,,,,,,,,
,,,
,,, ,
0
1µ
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxkWdtWyxVtzyx
Tk
D
y
tzyxVtzyxI VV
zL
S
VS
,,,,,,,,,,,,,,,,,, 2
,
0
1 −





∫∇
∂
∂
Ω+× µ
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
29
( ) ( ) ( ) ( ) +





∫Φ∇
∂
∂
Ω+




 Φ
+
Φ
Φ
zL
IS
SII
I
WdtWyxtzyx
Tk
D
xz
tzyx
TzyxD
z 0
1 ,,,,,,
,,,
,,, µ
∂
∂
∂
∂
( ) ( ) ( ) ( )++





∫ Φ∇
∂
∂
Ω+
Φ
tzyxITzyxkWdtWyxtzyx
Tk
D
y
I
zL
IS
SI
,,,,,,,,,,,,
0
1µ
( ) ( ) ( ) ( )tzyxftzyxITzyxk III δ,,,,,,,, 2
, Φ++ (5a)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) +





∫Φ∇
∂
∂
Ω+




 Φ
+
Φ
Φ
zL
VS
SVV
V
WdtWyxtzyx
Tk
D
xz
tzyx
TzyxD
z 0
1 ,,,,,,
,,,
,,, µ
∂
∂
∂
∂
( ) ( ) ( ) ( )++





∫Φ∇
∂
∂
Ω+
Φ
tzyxITzyxkWdtWyxtzyx
Tk
D
y
I
zL
IS
SI
,,,,,,,,,,,,
0
1µ
( ) ( ) ( ) ( )tzyxftzyxVTzyxk VVV δ,,,,,,,, 2
, Φ++ .
Farther we replace concentrations of dopant and radiation defects in right sides of Eqs. (1a), (3a)
and (5a) on their average values α1ρ. The average values α1ρ are not yet known. In this situation
we obtain equations for the first-order approximations of the required concentrations in the fol-
lowing form
( )
( ) ( ) ( ) ( )tzyxftzyx
Tk
D
z
y
tzyx
Tk
D
z
xt
tzyxC
CS
S
CS
S
C δµαµα ,,,,,,,,
,,,
1111
1
+





∇
∂
∂
Ω+





∇
∂
∂
Ω=
∂
∂
(1b)
( ) ( ) ( ) +





∇
∂
∂
Ω+





∇
∂
∂
Ω= tzyx
Tk
D
z
y
tzyx
Tk
D
x
z
t
tzyxI
S
IS
IS
IS
I ,,,,,,
,,,
11
1
µαµα
∂
∂
( ) ( ) ( ) ( )TzyxkTzyxktzyxf VIVIIIII ,,,,,,,, ,11,
2
1 αααδ −−+ (3b)
( ) ( ) ( ) +





∇
∂
∂
Ω+





∇
∂
∂
Ω= tzyx
Tk
D
z
y
tzyx
Tk
D
x
z
t
tzyxV
S
VS
VS
VS
V ,,,,,,
,,,
1111
1
µαµα
∂
∂
( ) ( ) ( ) ( )TzyxkTzyxktzyxf VIVIVVVV ,,,,,,,, ,11,
2
1 αααδ −−+
( ) ( ) ( ) +





∇
∂
∂
Ω+





∇
∂
∂
Ω=
Φ Φ
Φ
Φ
Φ tzyx
Tk
D
y
ztzyx
Tk
D
x
z
t
tzyx
S
SI
IS
SI
I
I
,,,,,,
,,,
1111
1
µαµα
∂
∂
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxktzyxf IIII
,,,,,,,,,,,,,, 2
,+++ Φ δ (5b)
( ) ( ) ( ) +





∇
∂
∂
Ω+





∇
∂
∂
Ω=
Φ Φ
Φ
Φ
Φ tzyx
Tk
D
y
ztzyx
Tk
D
x
z
t
tzyx
S
SV
VS
SV
V
V
,,,,,,
,,,
1111
1
µαµα
∂
∂
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxktzyxf VVVV
,,,,,,,,,,,,,, 2
,+++ Φ δ .
Integration of the left and right sides of the Eqs. (1b), (3b) and (5b) on time gives us possibility to
obtain relations for above approximation in the final form
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
30
( ) ( ) ( ) ( ) ( )
( )
∫ ×








++∇
∂
∂
Ω=
t
SLSC
V
zyxV
V
zyxV
zyxTzyxD
x
tzyxC
0
2*
2
2*1111
,,,,,,
1,,,,,,,,,
τ
ς
τ
ςτµα
( )
( ) ( )
( )∫ ×





+∇
∂
∂
Ω+





+×
t
CS
SLSC
CS
TzyxPTk
z
zyxTzyxD
y
d
TzyxPTk
z
0
1
11
1
,,,
1,,,,,,
,,,
1 γ
γ
γ
γ
αξ
τµατ
αξ
( ) ( )
( )
( )zyxfd
V
zyxV
V
zyxV
C ,,
,,,,,,
1 2*
2
2*1 +








++× τ
τ
ς
τ
ς (1c)
( ) ( ) ( ) +∫ ∇
∂
∂
Ω+∫ ∇
∂
∂
Ω=
t
S
IS
I
t
S
IS
I dzyx
Tk
D
y
zdzyx
Tk
D
x
ztzyxI
0
11
0
111 ,,,,,,,,, ττµαττµα
( ) ( ) ( )∫−∫−+
t
VIVI
t
IIII dTzyxkdTzyxkzyxf
0
,11
0
,
2
1 ,,,,,,,, ταατα (3c)
( ) ( ) ( ) +∫ ∇
∂
∂
Ω+∫ ∇
∂
∂
Ω=
t
S
IS
V
t
S
IS
V dzyx
Tk
D
y
zdzyx
Tk
D
x
ztzyxV
0
11
0
111 ,,,,,,,,, ττµαττµα
( ) ( ) ( )∫−∫−+
t
VIVI
t
VVVV dTzyxkdTzyxkzyxf
0
,11
0
,
2
1 ,,,,,,,, ταατα
( ) ( ) ( ) +∫ ∇
∂
∂
Ω+∫ ∇
∂
∂
Ω=Φ
Φ
Φ
Φ
Φ
t
S
SI
I
t
S
SI
II dzyx
Tk
D
x
zdzyx
Tk
D
x
ztzyx
0
11
0
111 ,,,,,,,,, ττµαττµα
( ) ( ) ( ) ( ) ( )∫+∫++ Φ
t
II
t
II
dzyxITzyxkdzyxITzyxkzyxf
0
2
,
0
,,,,,,,,,,,,,, ττττ (5c)
( ) ( ) ( ) +∫ ∇
∂
∂
Ω+∫ ∇
∂
∂
Ω=Φ
Φ
Φ
Φ
Φ
t
S
SV
V
t
S
SV
VV dzyx
Tk
D
x
zdzyx
Tk
D
x
ztzyx
0
11
0
111 ,,,,,,,,, ττµαττµα
( ) ( ) ( ) ( ) ( )∫+∫++ Φ
t
VV
t
VV
dzyxVTzyxkdzyxVTzyxkzyxf
0
2
,
0
,,,,,,,,,,,,,, ττττ .
We determine average values of the first-order approximations of concentrations of dopant and
radiation defects by the following standard relation [17]
( )∫ ∫ ∫ ∫
Θ
=
Θ
0 0 0 0
11 ,,,
1 xL yL zL
zyx
tdxdydzdtzyx
LLL
ρα ρ . (9)
We obtain required average values by substitution of the relations (1c), (3c) and (5c) into relation
(9). The obtained relations could be written as
( )∫ ∫ ∫=
xL yL zL
C
zyx
C xdydzdzyxf
LLL 0 0 0
1 ,,
1
α ,
( )
4
3
4
1
2
3
2
4
2
3
1
4
4
4 a
Aa
a
aLLLBa
B
a
Aa zyx
I
+
−







 Θ+Θ
+−
+
=α ,
( ) 





Θ−−∫ ∫ ∫
Θ
= zyxIII
xL yL zL
I
IIV
V LLLSxdydzdzyxf
S
001
0 0 0100
1 ,,
1
α
α
α .
Here ( ) ( ) ( ) ( )∫ ∫ ∫ ∫−Θ=
Θ
0 0 0 0
11, ,,,,,,,,,
xL yL zL
ji
ij tdxdydzdtzyxVtzyxITzyxktS ρρρρ , ( )×−= 0000
2
004 VVIIIV SSSa
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
31
00IIS× , 0000
2
0000003 VVIIIVIIIV SSSSSa −+= , ( ) ×Θ+∫ ∫ ∫= 222
0 0 0
2
00002 ,, zyx
xL yL zL
VIVIV LLLxdydzdzyxfSSa
( ) ( ) ×∫ ∫ ∫−Θ−∫ ∫ ∫+×
xL yL zL
IVVzyx
xL yL zL
IIIVVIV xdydzdzyxfSLLLxdydzdzyxfSSS
0 0 0
00
222
0 0 0
000000 ,,,,2
2
00IVS× , ( )∫ ∫ ∫=
xL yL zL
IIV xdydzdzyxfSa
0 0 0
001 ,, , ( )
2
0 0 0
000 ,, 





∫ ∫ ∫=
xL yL zL
IVV xdydzdzyxfSa ,
4
2
2
4
2
32
48
a
a
a
a
yA Θ−Θ+= , 3 323 32
4
2
6
qpqqpq
a
a
B ++−−++
Θ
= , ×





Θ−=
4
31
04
a
aa
LLLaq zyx
2
4
2
1
4
222
3
4
3
2
3
4
2
32
22
4
02
2
4
2
3
854
4
824 a
a
LLL
a
a
a
a
a
a
a
a
a
zyx
Θ
−
Θ
−





Θ−ΘΘ−
Θ
× , −
Θ−
Θ= 2
4
31402
12
4
a
aaLLLaa
p
zyx
42 18aaΘ− ,
( )∫ ∫ ∫+
Θ
+
Θ
= ΦΦ
xL yL zL
I
zyxzyx
II
zyx
I
I
xdydzdzyxf
LLLLLL
S
LLL
R
0 0 0
201
1 ,,
1
α
( )∫ ∫ ∫+
Θ
+
Θ
= ΦΦ
xL yL zL
V
zyxzyx
VV
zyx
V
V
xdydzdzyxf
LLLLLL
S
LLL
R
0 0 0
201
1 ,,
1
α ,
Here ( ) ( ) ( )∫ ∫ ∫ ∫−Θ=
Θ
0 0 0 0
1 ,,,,,,
xL yL zL
i
Ii tdxdydzdtzyxITzyxktRρ .
The second-order approximations and approximations with higher orders of the considered con-
centrations have been calculated framework standard iterative procedure of method of averaging
of function corrections [17]. The considered approximations could be obtained by replacement
the required concentrations in the Eqs. (1c), (3c), (5c) on the following sum αnρ+ρ n-1(x,y,z,t). The
replacement leads to following results
( ) ( )[ ]
( )
( ) ( )
( )



×








++





 +
+
∂
∂
=
∂
∂
2*
2
2*1
122 ,,,,,,
1
,,,
,,,
1
,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
xt
tzyxC C
ςς
α
ξ γ
γ
( )
( ) ( ) ( )
( )
( )




×
∂
∂








++
∂
∂
+


∂
∂
×
y
tzyxC
V
tzyxV
V
tzyxV
yx
tzyxC
TzyxD L
,,,,,,,,,
1
,,,
,,, 1
2*
2
2*1
1
ςς
( ) ( )[ ]
( )
( ) ( )
( )



×








++
∂
∂
+









 +
+× 2*
2
2*1
12 ,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
zTzyxP
tzyxC
TzyxD C
L ςς
α
ξ γ
γ
( ) ( ) ( )[ ]
( )
( ) ( )++









 +
+
∂
∂
× tzyxf
TzyxP
tzyxC
z
tzyxC
TzyxD C
C
L δ
α
ξ γ
γ
,,
,,,
,,,
1
,,,
,,, 121
( ) ( )[ ] +






∫ +∇
∂
∂
Ω+
zL
CS
S
WdtWyxCtzyx
Tk
D
x 0
21 ,,,,,, αµ
( ) ( )[ ]






∫ +∇
∂
∂
Ω+
zL
CS
S
WdtWyxCtzyx
Tk
D
y 0
21 ,,,,,, αµ (1d)
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
32
( ) ( ) ( ) ( ) ( ) +





+





=
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
II
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,, 112
( ) ( ) ( ) ( )[ ] ( )×−+−





+ TzyxktzyxITzyxk
z
tzyxI
TzyxD
z
VIIIII ,,,,,,,,,
,,,
,,, ,
2
11,
1
α
∂
∂
∂
∂
( )[ ] ( )[ ] ( ) ( )[ ]



×∫ +∇
∂
∂
Ω+++×
zL
ISVI WdtWyxItzyx
x
tzyxVtzyxI
0
121111 ,,,,,,,,,,,, αµαα
( ) ( )[ ]






∫ +∇
∂
∂
Ω+



×
zL
IS
ISIS
WdtWyxItzyx
Tk
D
yTk
D
0
12 ,,,,,, αµ (3d)
( ) ( ) ( ) ( ) ( ) +





+





=
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VV
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,, 112
( ) ( ) ( ) ( )[ ] ( )×−+−





+ TzyxktzyxVTzyxk
z
tzyxV
TzyxD
z
VIVVVV ,,,,,,,,,
,,,
,,, ,
2
11,
1
α
∂
∂
∂
∂
( )[ ] ( )[ ] ( ) ( )[ ]



×∫ +∇
∂
∂
Ω+++×
zL
VSVI WdtWyxVtzyx
x
tzyxVtzyxI
0
121111 ,,,,,,,,,,,, αµαα
( ) ( )[ ]






∫ +∇
∂
∂
Ω+



×
zL
VS
VSVS
WdtWyxVtzyx
Tk
D
yTk
D
0
12 ,,,,,, αµ
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,, 112
( ) ( )[ ] ( ) ( )++






∫ Φ+∇
∂
∂
Ω+ Φ
Φ
tzyxITzyxkWdtWyxtzyx
Tk
D
x
II
zL
IIS
SI
,,,,,,,,,,,, 2
,
0
12αµ
( ) ( )[ ] ( ) ( )++






∫ Φ+∇
∂
∂
Ω+ Φ
Φ
tzyxITzyxkWdtWyxtzyx
Tk
D
y
I
zL
IIS
SI
,,,,,,,,,,,,
0
12αµ
( ) ( ) ( ) ( )tzyxf
z
tzyx
TzyxD
z I
I
I
δ
∂
∂
∂
∂
,,
,,,
,,, 1
ΦΦ +




 Φ
+ (5d)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,, 112
( ) ( )[ ] ( ) ( )++






∫ Φ+∇
∂
∂
Ω+ Φ
Φ
tzyxVTzyxkWdtWyxtzyx
Tk
D
x
VV
zL
VVS
SV
,,,,,,,,,,,, 2
,
0
12αµ
( ) ( )[ ] ( ) ( )++






∫ Φ+∇
∂
∂
Ω+ Φ
Φ
tzyxVTzyxkWdtWyxtzyx
Tk
D
y
V
zL
VVS
SV
,,,,,,,,,,,,
0
12αµ
( ) ( ) ( ) ( )tzyxf
z
tzyx
TzyxD
z V
V
V
δ
∂
∂
∂
∂
,,
,,,
,,, 1
ΦΦ +




 Φ
+ .
Final relations for the second-order approximations could be obtained by integration of the left
and the right sides of Eqs. (1d), (3d) and (5d). The final relations could be written as
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
33
( ) ( )
( )[ ]
( )
( ) ( )
( )
∫ ×








++







 +
+
∂
∂
=
t
C
L
V
zyxV
V
zyxV
TzyxP
zyxC
TzyxD
x
tzyxC
0
2*
2
2*1
12
2
,,,,,,
1
,,,
,,,
1,,,,,,
τ
ς
τ
ς
τα
ξ γ
γ
( )
( ) ( ) ( )
( )
( )
∫ ×
∂
∂








++
∂
∂
+
∂
∂
×
t
L
y
zyxC
V
zyxV
V
zyxV
TzyxD
y
d
x
zyxC
0
1
2*
2
2*1
1 ,,,,,,,,,
1,,,
,,, ττ
ς
τ
ςτ
τ
( )[ ]
( )
( ) ( )
( )
( )
∫ ×
∂
∂








++
∂
∂
+







 +
+×
t
C
z
zyxC
V
zyxV
V
zyxV
zTzyxP
tzyxC
0
1
2*
2
2*1
12 ,,,,,,,,,
1
,,,
,,,
1
ττ
ς
τ
ς
α
ξ γ
γ
( )
( )[ ]
( )
( ) ( )[ ] ×∫ ∫ +∇
∂
∂
+







 +
+×
t zL
CS
C
L WyxCzyx
x
d
TzyxP
zyxC
TzyxD
0 0
12
12
,,,,,,
,,,
,,,
1,,, τατµτ
τα
ξ γ
γ
( ) ( )[ ] ( )zyxfdWdWyxC
Tk
D
zyx
y
dWd
Tk
D
C
t zL
C
S
S
S
,,,,,,,,
0 0
12 +∫ ∫ +∇
∂
∂
Ω+× ττατµτ (1e)
( ) ( ) ( ) ( ) ( ) +∫+∫=
t
I
t
I d
y
zyxI
TzyxD
y
d
x
zyxI
TzyxD
x
tzyxI
0
1
0
1
2
,,,
,,,
,,,
,,,,,, τ
∂
τ∂
∂
∂
τ
∂
τ∂
∂
∂
( )
( )
( ) ( ) ( )[ ] −∫ +−+∫+
t
IIII
t
I dzyxITzyxkzyxfd
z
zyxI
TzyxD
z 0
2
12,
0
1
,,,,,,,,
,,,
,,, ττατ
∂
τ∂
∂
∂
( ) ( )[ ] ( )[ ] ( )×∫ ∇
∂
∂
Ω+∫ ++−
t
S
IS
t
VIVI zyx
Tk
D
x
dzyxVzyxITzyxk
00
1212, ,,,,,,,,,,,, τµττατα
( )[ ] ( ) ( )[ ]∫ ∫ +∇
∂
∂
Ω+∫ +×
t zL
I
IS
S
zL
I dWdWyxI
Tk
D
zyx
y
dWdWyxI
0 0
12
0
12 ,,,,,,,,, ττατµττα (3e)
( ) ( )
( )
( )
( )
+∫+∫=
t
V
t
V d
y
zyxV
TzyxD
y
d
x
zyxV
TzyxD
x
tzyxV
0
1
0
1
2
,,,
,,,
,,,
,,,,,, τ
∂
τ∂
∂
∂
τ
∂
τ∂
∂
∂
( ) ( ) ( ) ( ) ( )[ ] −∫ +−+∫+
t
VVVV
t
V dzyxVTzyxkzyxfd
z
zyxV
TzyxD
z 0
2
12,
0
1
,,,,,,,,
,,,
,,, ττατ
∂
τ∂
∂
∂
( ) ( )[ ] ( )[ ] ( )×∫ ∇
∂
∂
Ω+∫ ++−
t
S
VS
t
VIVI zyx
Tk
D
x
dzyxVzyxITzyxk
00
1212, ,,,,,,,,,,,, τµττατα
( )[ ] ( ) ( )[ ]∫ ∫ +∇
∂
∂
Ω+∫ +×
t zL
I
VS
S
zL
I dWdWyxV
Tk
D
zyx
y
dWdWyxV
0 0
12
0
12 ,,,,,,,,, ττατµττα
( ) ( ) ( ) ( )
∫ ×
Φ
+∫
Φ
=Φ Φ
t
I
t
I
II
y
zyx
y
d
x
zyx
TzyxD
x
tzyx
0
1
0
1
2
,,,,,,
,,,,,,
∂
τ∂
∂
∂
τ
∂
τ∂
∂
∂
( ) ( )
( )
( ) ×∫ ∇
∂
∂
Ω+∫
Φ
+×
Φ
ΦΦ
t
SI
S
t
I
II
Tk
D
zyx
x
d
z
zyx
TzyxD
z
dTzyxD
00
1
,,,
,,,
,,,,,, τµτ
∂
τ∂
∂
∂
τ
( )[ ] ( ) ( )[ ] ×∫ ∫ Φ+∇
∂
∂
Ω+∫ Φ+× ΦΦ
t zL
IIS
zL
II
WdWyxzyx
y
dWdWyx
0 0
12
0
12 ,,,,,,,,, τατµττα
( ) ( ) ( ) ( ) ( )zyxfdzyxITzyxkdzyxITzyxkd
Tk
D
I
t
I
t
II
SI
,,,,,,,,,,,,,,
00
2
, Φ
Φ
+∫+∫+× τττττ (5e)
( ) ( ) ( ) ( )
∫ ×
Φ
+∫
Φ
=Φ Φ
t
V
t
V
VV
y
zyx
y
d
x
zyx
TzyxD
x
tzyx
0
1
0
1
2
,,,,,,
,,,,,,
∂
τ∂
∂
∂
τ
∂
τ∂
∂
∂
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
34
( ) ( )
( )
( ) ×∫ ∇
∂
∂
Ω+∫
Φ
+×
Φ
ΦΦ
t
SV
S
t
V
VV
Tk
D
zyx
x
d
z
zyx
TzyxD
z
dTzyxD
00
1
,,,
,,,
,,,,,, τµτ
∂
τ∂
∂
∂
τ
( )[ ] ( ) ( )[ ] ×∫ ∫ Φ+∇
∂
∂
Ω+∫ Φ+× ΦΦ
t zL
VVS
zL
VV
WdWyxzyx
y
dWdWyx
0 0
12
0
12 ,,,,,,,,, τατµττα
( ) ( ) ( ) ( ) ( )zyxfdzyxVTzyxkdzyxVTzyxkd
Tk
D
V
t
V
t
VV
SV
,,,,,,,,,,,,,,
00
2
, Φ
Φ
+∫+∫+× τττττ .
Average values of the second-order approximations of required approximations by using the fol-
lowing standard relation [17]
( ) ( )[ ]∫ ∫ ∫ ∫ −
Θ
=
Θ
0 0 0 0
122 ,,,,,,
1 xL yL zL
zyx
tdxdydzdtzyxtzyx
LLL
ρρα ρ . (10)
Substitution of the relations (1e), (3e), (5e) into relation (10) gives us possibility to obtain rela-
tions for required average values α2ρ
α2C=0, α2ΦI =0, α2ΦV =0,
( )
4
3
4
1
2
3
2
4
2
3
2
4
4
4 b
Eb
b
bLLLFa
F
b
Eb zyx
V
+
−






 Θ+Θ
+−
+
=α ,
( )
00201
11021001200
2
2
2
2
IVVIV
VIVVzyxVIVVVVVVV
I
SS
SSLLLSSSC
α
αα
α
+
−−Θ++−−
= ,
where 00
2
0000
2
004
11
IIVV
zyx
VVIV
zyx
SS
LLL
SS
LLL
b
Θ
−
Θ
= , ( )+Θ++
Θ
−= zyxIVVV
zyx
VVII
LLLSS
LLL
SS
b 1001
0000
3 2
( ) ( ) 3333
10
2
00
1001
2
00
011001
0000
22
zyx
IVIV
zyxIVVV
zyx
IV
zyxIVIIIV
zyx
VVIV
LLL
SS
LLLSS
LLL
S
LLLSSS
LLL
SS
Θ
−Θ++
Θ
+Θ+++
Θ
+ ,
( ) ( ) ( )×++Θ+Θ+−−++
Θ
= 0110
2
01101102
0000
2 22 IVIIzyxzyxVVIVVIVVV
zyx
VVII
SSLLLLLLSSCSS
LLL
SS
b
( ) ( ) +
Θ
++Θ+Θ+++
Θ
+
Θ
×
zyx
VVIV
IVIIzyxzyxIVIIIV
zyx
IV
zyx
VVIV
LLL
SS
SSLLLLLLSSS
LLL
S
LLL
SS 0001
0110
2
011001
000001
222
( )( ) ( ) ×−−−+Θ+Θ+++
Θ
+ 11021001011001
00
222 IVVVVIVzyxVVzyxIVIIIV
zyx
IV
SSCSLLLSLLLSSS
LLL
S
zyx
IVIV
IV
zyx
IVI
zyx
IV
LLL
SS
S
LLL
SC
LLL
S
Θ
−
Θ
+
Θ
× 0010
012222
2
00
2
00
2 , ( ++
Θ
++
= 1001
0211
001 2 IVVV
zyx
VVVIV
II SS
LLL
CSS
Sb
) ( )( ) −
Θ
−Θ++++Θ
Θ
+Θ+
zyx
IVIV
zyIVVVIVIIzyx
zyx
IV
zyx
LLL
SS
LLLSSSSLLL
LLL
S
LLL
2
0110
10010110
01
22
( )( ) 010011021001
00
223 IVIVIIVVVVzyxIIIV
zyx
IV
SSCSSCLLLSS
LLL
S
+−−Θ++
Θ
− , ×
Θ
=
zyx
II
LLL
S
b 00
0
( ) ( )( ) ×
Θ
−−
−−−++Θ
Θ
−+×
zyx
IVVVV
IVIVVVVIVIIzyx
zyx
IV
VVIV
LLL
SSC
SSSCSSLLL
LLL
S
SS 1102
0111020110
012
0200 2
( ) 2
01011001 22 IVIIVIIzyxIV SCSSLLLS +++Θ× , −
Θ
−
Θ
+
Θ
=
zyx
IIII
zyx
III
IV
zyx
VI
I
LLL
SS
LLL
S
S
LLL
C 202000
2
1
00
11 ααα
,
zyx
IV
LLL
S
Θ
− 11
, 110200
2
10011 IVVVVVVIVVIV SSSSC −−+= ααα ,
4
2
2
4
2
32
48
a
a
a
a
yE Θ−Θ+= , +
Θ
=
4
2
6a
a
F
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
35
3 323 32
rsrrsr ++−−++ , ×





Θ−Θ−
Θ
−





Θ−
Θ
=
4
2
32
23
4
3
2
3
4
31
02
4
2
3
4
54
4
24 b
b
b
b
b
b
bb
LLLb
b
b
r zyx
2
4
2
1
4
222
2
4
2
0
88 b
b
LLL
b
b zyx
Θ
−
Θ
× ,
4
2
2
4
31402
1812
4
b
b
b
bbLLLbb
s
zyx Θ
−
Θ−
Θ= .
Farther we determine solutions of Eqs.(8), i.e. components of displacement vector. To determine
the first-order approximations of the considered components framework method of averaging of
function corrections we replace the required functions in the right sides of the equations by their
not yet known average values αi. The substitution leads to the following result
( ) ( ) ( ) ( ) ( )
x
tzyxT
zzK
t
tzyxu
z x
∂
∂
−=
∂
∂ ,,,,,,
2
1
2
βρ , ( )
( )
( ) ( ) ( )
y
tzyxT
zzK
t
tzyxu
z
y
∂
∂
−=
∂
∂ ,,,,,,
2
1
2
βρ ,
( ) ( ) ( ) ( ) ( )
z
tzyxT
zzK
t
tzyxu
z z
∂
∂
−=
∂
∂ ,,,,,,
2
1
2
βρ .
Integration of the left and the right sides of the above relations on time t leads to the following
result
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( )∫ ∫
∂
∂
−∫ ∫
∂
∂
+=
∞
0 00 0
01 ,,,,,,,,,
ϑϑ
ϑττ
ρ
β
ϑττ
ρ
β
ddzyxT
xz
z
zKddzyxT
xz
z
zKutzyxu
t
xx ,
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( )∫ ∫
∂
∂
−∫ ∫
∂
∂
+=
∞
0 00 0
01 ,,,,,,,,,
ϑϑ
ϑττ
ρ
β
ϑττ
ρ
β
ddzyxT
yz
z
zKddzyxT
yz
z
zKutzyxu
t
yy ,
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( )∫ ∫
∂
∂
−∫ ∫
∂
∂
+=
∞
0 00 0
01 ,,,,,,,,,
ϑϑ
ϑττ
ρ
β
ϑττ
ρ
β
ddzyxT
zz
z
zKddzyxT
zz
z
zKutzyxu
t
zz .
Approximations of the second and higher orders of components of displacement vector could be
determined by using standard replacement of the required components on the following sums
αi+ui(x,y,z,t) [17]. The replacement leads to the following result
( )
( )
( ) ( )
( )[ ]
( )
( ) ( )
( )[ ]
( )
+
∂∂
∂






+
−+
∂
∂






+
+=
∂
∂
yx
tzyxu
z
zE
zK
x
tzyxu
z
zE
zK
t
tzyxu
z
yxx
,,,
13
,,,
16
5,,, 1
2
2
1
2
2
2
2
σσ
ρ
( ) ( )
( )[ ]
( ) ( )
( ) ( ) ( )
+
∂
∂
−








∂
∂
+
∂
∂
+
+
∂∂
∂
×
x
tzyxT
zzK
z
tzyxu
y
tzyxu
z
zE
yx
tzyxu zyy ,,,,,,,,,
12
,,,
2
1
2
2
1
2
1
2
β
σ
( ) ( )
( )[ ]
( )
zx
tzyxu
z
zE
zK z
∂∂
∂






+
++
,,,
13
1
2
σ
( )
( ) ( )
( )[ ]
( ) ( )
( ) ( ) ( )
+
∂
∂
−








∂∂
∂
+
∂
∂
+
=
∂
∂
y
tzyxT
zzK
yx
tzyxu
x
tzyxu
z
zE
t
tzyxu
z xyy ,,,,,,,,,
12
,,, 1
2
2
1
2
2
2
2
β
σ
ρ
( )
( )[ ]
( ) ( ) ( ) ( )
( )[ ]
( ) +






+
+∂
∂
+














∂
∂
+
∂
∂
+∂
∂
+ zK
z
zE
y
tzyxu
y
tzyxu
z
tzyxu
z
zE
z
yzy
σσ 112
5,,,,,,,,,
12 2
1
2
11
( ) ( )
( )[ ]
( )
( )
( )
yx
tzyxu
zK
zy
tzyxu
z
zE
zK
yy
∂∂
∂
+
∂∂
∂






+
−+
,,,,,,
16
1
2
1
2
σ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
36
( )
( ) ( ) ( ) ( ) ( )
×








∂∂
∂
+
∂∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
zy
tzyxu
zx
tzyxu
y
tzyxu
x
tzyxu
t
tzyxu
z
yxzzz
,,,,,,,,,,,,,,, 1
2
1
2
2
1
2
2
1
2
2
2
2
ρ
( )
( )[ ]
( )
( ) ( ) ( ) ( )
( )[ ]
×
+
+














∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
+
×
z
zE
z
tzyxu
y
tzyxu
x
tzyxu
zK
zz
zE xyx
σσ 16
,,,,,,,,,
12
111
( ) ( ) ( ) ( ) ( )
×
∂
∂
−










∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
∂
∂
×
z
tzyxT
z
tzyxu
y
tzyxu
x
tzyxu
z
tzyxu
z
zyxz ,,,,,,,,,,,,,,,
6 1111
( ) ( )zzK β× .
Integration of the left and right sides of the above relations on time t leads to the following result
( )
( )
( ) ( )
( )[ ]
( ) ( ) ( )
( )[ ]
×





+
−+∫ ∫
∂
∂






+
+=
z
zE
zKddzyxu
xz
zE
zK
z
tzyxu
t
xx
σ
ϑττ
σρ
ϑ
13
,,,
16
51
,,,
0 0
12
2
2
( )
( ) ( ) ( ) ×





∫ ∫
∂
∂
+∫ ∫
∂
∂
+∫ ∫
∂∂
∂
×
t
z
t
y
t
y ddzyxu
z
ddzyxu
y
ddzyxu
yxz 0 0
12
2
0 0
12
2
0 0
1
2
,,,,,,,,,
1 ϑϑϑ
ϑττϑττϑττ
ρ
( )
( ) ( )[ ] ( )
( ) ( ) ( )
( )[ ]
( ) ( )
( )
×−






+
+∫ ∫
∂∂
∂
+
+
×
z
z
zK
z
zE
zKddzyxu
zxzzz
zE t
z
ρ
β
σ
ϑττ
ρσρ
ϑ
13
,,,
1
12 0 0
1
2
( )
( )
( ) ( )
( )[ ]
( )
( )
×−∫ ∫
∂
∂






+
+−∫ ∫
∂
∂
×
∞
z
ddzyxu
xz
zE
zK
z
ddzyxT
x
x
t
ρ
ϑττ
σρ
ϑττ
ϑϑ 1
,,,
16
51
,,,
0 0
12
2
0 0
( ) ( )
( )[ ]
( ) ( )
( )
( )


+∫ ∫
∂
∂
+
−∫ ∫
∂∂
∂






+
−×
∞∞
0 0
12
2
0 0
1
2
,,,
1
,,,
13
ϑϑ
ϑττ
σ
ϑττ
σ
ddzyxu
yz
zE
ddzyxu
yxz
zE
zK yy
( )
( )
( ) ( )
( )[ ]
( ) ×∫ ∫
∂∂
∂






+
+−


∫ ∫
∂
∂
+
∞∞
0 0
1
2
0 0
12
2
,,,
132
1
,,,
ϑϑ
ϑττ
σρ
ϑττ ddzyxu
zxz
zE
zK
z
ddzyxu
z
zz
( )
( ) ( )
( )
( )∫ ∫
∂
∂
++×
∞
0 0
0 ,,,
1 ϑ
ϑττ
ρ
β
ρ
ddzyxT
xz
z
zKu
z
x
( ) ( )
( ) ( )[ ]
( ) ( ) +





∫ ∫
∂∂
∂
+∫ ∫
∂
∂
+
=
t
x
t
xy ddzyxu
yx
ddzyxu
xzz
zE
tzyxu
0 0
1
2
0 0
12
2
2 ,,,,,,
12
,,,
ϑϑ
ϑττϑττ
σρ
( )
( )
( )
( ) ( ) ( )
( )[ ]


+
+
∫ ∫
∂
∂
+∫ ∫
∂∂
∂
+
+
×
z
zE
ddzyxu
y
ddzyxu
yxz
zK
z
t
x
t
y
σ
ϑττϑττ
ρσ
ϑϑ
112
5
,,,,,,
1
1
0 0
12
2
0 0
1
2
( )
( )
( )
( )
( ) ( ) ×














∫ ∫
∂
∂
+∫ ∫
∂
∂
+∂
∂
+



+
t
z
t
y ddzyxu
y
ddzyxu
zz
zE
zz
zK
0 0
1
0 0
1 ,,,,,,
1
1 ϑϑ
ϑττϑττ
σρ
( )
( ) ( )
( )
( ) ( )
( )[ ]
( ) ( ) ×∫ ∫
∂∂
∂






−
+
−∫ ∫−×
t
y
t
ddzyxu
zy
zK
z
zE
ddzyxT
z
z
zK
z 0 0
1
2
0 0
,,,
16
,,,
2
1 ϑϑ
ϑττ
σ
ϑττ
ρ
β
ρ
( )
( )
( ) ( )[ ]
( ) ( ) ( ) ×−





∫ ∫
∂∂
∂
+∫ ∫
∂
∂
+
−×
∞∞
zKddzyxu
yx
ddzyxu
xzz
zE
z
xx
0 0
1
2
0 0
12
2
,,,,,,
12
1 ϑϑ
ϑττϑττ
σρρ
( )
( )
( ) ( )
( )
( )
( )
( )
( )[ ]


+
+∂
∂
−∫ ∫
∂∂
∂
−∫ ∫×
∞∞
z
zE
yz
ddzyxu
yxz
zK
ddzyxT
z
z
y
σρ
ϑττ
ρ
ϑττ
ρ
β ϑϑ
112
51
,,,,,, 2
2
0 0
1
2
0 0
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
37
( ) ( ) ( ) ( ) ×










∫ ∫
∂
∂
+∫ ∫
∂
∂
∂
∂
−∫ ∫




+
∞∞∞
0 0
1
0 0
1
0 0
1 ,,,,,,,,,
ϑϑϑ
ϑττϑττϑττ ddzyxu
y
ddzyxu
zz
ddzyxuzK zyx
( )
( ) ( ) ( )
( ) ( )
( )[ ]
( ) yy uddzyxu
zyz
zE
zK
zzz
zE
0
0 0
1
2
,,,
16
1
2
1
1
+∫ ∫
∂∂
∂






+
−−



+
×
∞ ϑ
ϑττ
σρρσ
( ) ( )
( ) ( )[ ]
( ) ( )


+∫ ∫
∂
∂
+∫ ∫
∂
∂
+
=
∞∞
0 0
12
2
0 0
12
2
,,,,,,
12
,,,
ϑϑ
ϑττϑττ
σρ
ddzyxu
y
ddzyxu
xzz
zE
tzyxu zzz
( ) ( ) ( )







+∫ ∫
∂
∂
∂
∂
+


∫ ∫
∂∂
∂
+∫ ∫
∂∂
∂
+
∞∞∞
0 0
1
0 0
1
2
0 0
1
2
,,,,,,,,,
ϑϑϑ
ϑττϑττϑττ ddzyxu
xz
ddzyxu
zy
ddzyxu
zx
xyx
( ) ( ) ( )
( ) ( )
( )
( )


×
+∂
∂
+







∫ ∫
∂
∂
+∫ ∫
∂
∂
+
∞∞
z
zE
zzz
zKddzyxu
z
ddzyxu
y
xx
σρρ
ϑττϑττ
ϑϑ
16
11
,,,,,,
0 0
1
0 0
1
( ) ( ) ( )


−∫ ∫
∂
∂
−∫ ∫
∂
∂
−∫ ∫
∂
∂
×
∞∞∞
0 0
1
0 0
1
0 0
1 ,,,,,,,,,6
ϑϑϑ
ϑττϑττϑττ ddzyxu
y
ddzyxu
x
ddzyxu
z
yxz
( ) ( ) ( )
( )
( ) zz uddzyxT
zz
z
zKddzyxu
z
0
0 00 0
1 ,,,,,, +∫ ∫
∂
∂
−







∫ ∫
∂
∂
−
∞∞ ϑϑ
ϑττ
ρ
β
ϑττ .
In this paper we calculate distributions of concentration of dopant, concentrations of radiation
defects and components of displacement vector in space and time by using the second-order ap-
proximation framework method of averaging of function corrections.
This approximation is usually enough good approximation to make qualitative analysis and to
obtain some quantitative results. All obtained results have been checked by comparison with re-
sults of numerical simulations.
3. DISCUSSION
Now we analyzed changing concentrations of dopant and radiation defects in space and time in a
heterostructure with account mismatch-induced stress. Several spatial distributions of dopant con-
centration are presented on Fig. 2 for diffusion type of doping and on Fig. 3 for ion type of dop-
ing. In the both cases dopant diffusion coefficient in the epitaxial layer is larger, than in the sub-
strate. One can find from these figures, that using in homogeneity of heterostructure leads to in-
creasing of sharpness of p-n-junctions. In this situation the accompanying effect is increasing
homogeneity of dopant distribution in doped part of heterostructure. Switching time of p-n- junc-
tion correlated with the junction sharpness and could be increased with increasing of the sharp-
ness. Increasing homogeneity of dopant distribution leads to decreasing local overheat leads to
decreasing local heating during functioning of p-n-junction or to decrease dimensions of the p-n-
junction for fixed maximal value of local overheat. However framework this approach of manu-
facturing of p-n-junction and their systems (bipolar transistor and thyristors) it is necessary to op-
timize annealing of dopant and/or radiation defects. Reason of this optimization is following. If
annealing time is small, the dopant did not achieve any interfaces between materials of hetero-
structure. In this situation one cannot find any modifications of distribution of concentration of
dopant. Increasing of annealing time leads to increasing of homogeneity of distribution of con-
centration of dopant. We optimize annealing time framework recently introduces approach
[16,18-24]. To use the criterion one shall to approximate real distribution of concentration of do-
pant by step-wise function (see Figs. 4 for diffusion doping and 5 for ion doping). The optimal
values of annealing time have been calculated by minimization of the following mean-squared
error
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
38
( ) ( )[ ]∫ ∫ ∫ −Θ=
xL yL zL
zyx
xdydzdzyxzyxC
LLL
U
0 0 0
,,,,,
1
ψ . (15)
Fig.2. Distributions of concentration dopant in heterostructure from Fig. 1 for diffusion type of
doping. Direction of diffusion is perpendicular to interface between layers of heterostructure. Do-
pant diffusion coefficient in the epitaxial layer is larger, than in the substrate and increasing with
increasing of number of curves.
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.3. Distributions of concentration dopant in heterostructure from Fig. 1 for ion type of doping.
Direction of diffusion is perpendicular to interface between layers of heterostructure. Curves 1
and 3 corresponds to annealing time Θ= 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4 corresponds to
annealing time Θ=0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 are the distributions of concentrations
of dopant in homogenous sample. Curves 3 and 4 are the distributions of concentrations of dopant
in the heterostructure. Dopant diffusion coefficient in the epitaxial layer is larger, than in the sub-
strate and increasing with increasing of number of curves.
C(x,Θ)
0 Lx
2
1
3
4
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
39
Fig. 4. Distributions of concentration dopant in heterostructure from Fig. 1 for diffusion type of
doping. Curve 1 is idealized distribution of dopant. Curves 2-4 are the calculated distributions of
dopant for several values of annealing time. Annealing time increased with increasing of number
of curves.
x
C(x,Θ)
1
2
3
4
0 L
Fig. 5. Distributions of concentration dopant in heterostructure from Fig. 1 for ion type of doping.
Curve 1 is idealized distribution of dopant. Curves 2-4 are the calculated distributions of dopant
for several values of annealing time. Annealing time increased with increasing of number of
curves.
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
ΘD0
L
-2
3
2
4
1
Fig.6. Dimensionless optimal annealing time of infused dopant. Curve 1 describes dependence of
the annealing time on normalized thickness of epitaxial layer, ξ= γ = 0 and equal to each other
values of dopant diffusion coefficient in all layers of heterostructure. Curve 2 describes depen-
dence of the annealing time on normalized difference between diffusion coefficients ε =(DEL-DS)/
DS, a/L=1/2 and ξ=γ=0. Curve 3 describes dependence of the annealing time on value of parame-
ter ξ for a/L=1/2 and ε = γ = 0. Curve 3 describes dependence of the annealing time on value of
parameter γ for a/L=1/2 and ε=ξ=0.
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
ΘD0
L
-2
3
2
4
1
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
40
Fig.7. Dimensionless optimal annealing time of implanted dopant. Curve 1 describes dependence
of the annealing time on normalized thickness of epitaxial layer, ξ=γ =0 and equal to each other
values of dopant diffusion coefficient in all layers of heterostructure. Curve 2 describes depen-
dence of the annealing time on normalized difference between diffusion coefficients ε =(DEL-DS)/
DS, a/L=1/2 and ξ=γ=0. Curve 3 describes dependence of the annealing time on value of parame-
ter ξ for a/L=1/2 and ε = γ = 0. Curve 3 describes dependence of the annealing time on value of
parameter γ for a/L=1/2 and ε=ξ=0.
Here ψ(x,y,z) is the step-wise approximation function. We calculate dependences of optimal val-
ues of annealing time on parameters. These dependences are presented on Figs. 6 (for diffusion
type of doping) and 7 (for ion types of doping). It is known, that radiation defects should be an-
nealed after ion implantation. Distribution of concentration of these defects will be spreads during
the annealing. If distribution of dopant concentration achieves nearest interface, than we obtain
rare ideal case. If the dopant has not enough time for the achievement, it is practicably to addi-
tionally anneal the dopant. In this situation the considered the additional annealing time became
smaller, than annealing time for diffusion type of doping.
Now we analyzed correlation between relaxations of mismatch-induced stress and distribution of
concentration of dopant. If ε0< 0, one obtain compression of distribution of concentration of do-
pant. Contrary one obtain spreading of distribution of concentration of dopant. Laser annealing
gives a possibility to decrease influence of mismatch-induced stress on distribution of concentra-
tion of dopant [22]. Using the annealing leads to acceleration of dopant diffusion in the irradiated
area. Taking into account mismatch-induced stress leads to changing of optimal values of anneal-
ing time. Mismatch-induced stress could be used to increase density of elements of integrated
circuits. On the other hand could leads to generation dislocations of the discrepancy. Fig. 8 shows
distributions of component of displacement vector in direction, which is perpendicular to epitaxial
layer and substrate.
z
0.0
0.2
0.4
0.6
0.8
1.0
Uz
1
2
0.0 a
Fig. 8. Normalized dependences of component uz of displacement vector on coordinate z for nonporous
(curve 1) and porous (curve 2) epitaxial layers
Fig. 9. Normalized distributions of charge carrier mobility in the considered heterostructure.
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
41
Curve 1 corresponds to the heterostructure, which has been considered in Fig. 1. Curve 2 corres-
pond to a homogenous material with averaged parameters of heterostructure from Fig. 1
Now we consider the changing of charge carrier mobility with changing of distribution of concen-
tration of dopant. It has been recently shown, that the mobility is a function of concentration of
dopant: µ~C1/3
[25]. The situation is illustrated by Fig. 9. The figure shows normalized distribu-
tions of charge carrier mobility in the considered heterostructure. Curve 1 corresponds to the hete-
rostructure, which has been considered in Fig. 1. Curve 2 correspond to material after averaging
parameters of heterostructure from Fig. 1.
4. CONCLUSIONS
In this paper we consider a possibility to increase sharpness of diffusion-junction and implanted-
junction heterorectifiers. At the same time homogeneity of distribution of concentration of dopant
in enriched by the dopant increases. We also consider an approach to decrease mismatch-induced
stress in the considered heterostructure. We analyzed influence of changing of concentration of
dopant on value of charge carrier mobility.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu-
cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia
and educational fellowship for scientific research of Nizhny Novgorod State University of Archi-
tecture and Civil Engineering.
REFERENCES
1. V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001.
2. A. Polishscuk. Modern models of integrated operating amplifier. Modern Electronics. Issue 12. P.
8-11 (2004).
3. G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Is-
sue 2. P. 10-17 (2006).
4. A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Elec-
tronics. Issue 1. P. 34-38 (2008).
5. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M.
Litvin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of
current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903
(2009).
6. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance In-
GaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974
(2009).
7. O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin.
Formation of donor centers after annealing of dysprosium and holmium implanted silicon. Semi-
conductors. Vol. 32 (9). P. 1029-1032 (1998).
8. I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in
CdTe films, preparing at different temperature conditions and further annealing. Semiconductors.
Vol. 43 (8). P. 1016-1020 (2009).
9. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buo-
nassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with
a zinc oxysulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
10. J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes.
Shallow acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118
(2013).
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016
42
11. Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitax-
ial thin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297
(1999).
12. L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow,
2001, in Russian).
13. Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).
14. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.
Phys. Vol. 61 (2). P. 289-388 (1989).
15. V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors (Naukova Dumka, Kiev,
1979, in Russian).
16. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
17. Yu.D. Sokolov. On the determination of the dynamic forces in mine hoist ropes. Applied Mechan-
ics. Vol.1 (1). P. 23-35 (1955).
18. E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007).
19. E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by us-
ing radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).
20. E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of
distributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
21. E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an im-planted-
junction rectifiers by using overlayers. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119-130
(2012).
22. E.L. Pankratov. Increasing of the sharpness of p–n junctions by laser pulses. Nano. Vol. 6 (1). P.
31-40 (2011).
23. E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of
vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
24. E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease
surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12
(2015).
25. I.P. Stepanenko. Basis of microelectronics (Soviet radio, Moscow, 1980).
Authors:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical
Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of
Nizhny Novgorod State University. He has 155 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 103 published papers in area of her researches.

More Related Content

What's hot

ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...ijcsa
 
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014Cristina Staicu
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Daniel Wheeler
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaDaniel Wheeler
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...ijcsitcejournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain propertiesUniversity of Glasgow
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
AN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORS
AN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORSAN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORS
AN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORSantjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 

What's hot (15)

ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...
 
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain properties
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
S. Duplij, Polyadic Hopf Algebras And Quantum Groups
S. Duplij, Polyadic Hopf Algebras And Quantum GroupsS. Duplij, Polyadic Hopf Algebras And Quantum Groups
S. Duplij, Polyadic Hopf Algebras And Quantum Groups
 
AN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORS
AN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORSAN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORS
AN APPROACH FOR OPTIMIZATION OF MANUFACTURE MULTIEMITTER HETEROTRANSISTORS
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 

Similar to Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composition of Multilayer Structure

ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESmsejjournal
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersZac Darcy
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sourcesmsejjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logicalijcsa
 
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTHON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTHZac Darcy
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
On Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During OvergrowthOn Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During OvergrowthZac Darcy
 
On Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During OvergrowthOn Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During OvergrowthZac Darcy
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensionsijrap
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...antjjournal
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 

Similar to Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composition of Multilayer Structure (20)

ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logical
 
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTHON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
On Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During OvergrowthOn Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During Overgrowth
 
On Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During OvergrowthOn Modification of Properties of P-N-Junctions During Overgrowth
On Modification of Properties of P-N-Junctions During Overgrowth
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 

More from msejjournal

Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...msejjournal
 
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...msejjournal
 
International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp FabricFlammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp Fabricmsejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal ...
     Advances in Materials Science and Engineering: An International Journal ...     Advances in Materials Science and Engineering: An International Journal ...
Advances in Materials Science and Engineering: An International Journal ...msejjournal
 

More from msejjournal (20)

Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...
 
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
 
International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp FabricFlammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal ...
     Advances in Materials Science and Engineering: An International Journal ...     Advances in Materials Science and Engineering: An International Journal ...
Advances in Materials Science and Engineering: An International Journal ...
 

Recently uploaded

Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 

Recently uploaded (20)

Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 

Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composition of Multilayer Structure

  • 1. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 DOI:10.5121/msej.2016.3203 23 DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSITION OF MULTI- LAYER STRUCTURE E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we consider manufacturing a p-n-junctions by dopant diffusion or ion implantation into a multilayer structure. We introduce an approach to increase sharpness of these p-n-junctions and at the same time to increase homogeneity of distributions of dopants in enriched by these dopants areas. We con- sider influence of the above changing of distribution of dopant on charge carrier mobility. We also consid- er an approach to decrease value of mismatch-induced stress in the considered multilayer structure by us- ing a buffer layer. The decreasing gives a possibility to increase value of charge carrier mobility. KEYWORDS: Multilayer structure; charge carriers mobility; p-n-heterojunctions 1. INTRODUCTION In the present time one of the actual questions is increasing of performance of solid state electron- ic devices (diodes, field-effect and bipolar transistors, ...) [1-6]. To increase the performance it is attracted an interest searching of materials with higher values of the charge carrier mobility [7- 10]. An alternative approach to increase the performance is development of new technological processes and optimization of existing one. Framework this paper we introduce an approach of manufacturing of heterodiodes. The approach gives a possibility to decrease of switching time. At the same using the approach gives a possibility to decrease dimensions of these diodes. With de- creasing of switching time and dimensions of these diodes value of mismatch- induced stress also decreases. In this paper we consider a heterostructure on Fig. 1. The heterostructure includes into itself a substrate and an epitaxial layer. A buffer layer has been grown between these substrate and epi- taxial layer. We consider doping of the epitaxial layer by diffusion or ion implantation after man- ufacturing the heterostructure. The doping gives a possibility to produce required type of conduc- tivity (p or n). We assume, that type of conductivity of substrate is known: p or n. After doping of the epitaxial layer optimized annealing of dopant and/or radiation defects has been considered. In this paper we analyzed possibility to increase sharpness of p-n- junction with increasing of homo- geneity of concentration of dopant in enriched by the dopant area. Framework the paper we ana- lyzed influence of changing of distribution of concentration of dopant in space and time on charge carrier mobility with account mismatch-induced stress in the considered heterostructure.
  • 2. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 24 2. METHOD OF SOLUTION To analyze influence of changing of distribution of concentration of dopant in space and time on charge carrier mobility we solve the second Fick's law in the following form [1,11-15] ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC ,,,,,,,,,,,, (1) ( ) ( ) ( ) ( )       ∫∇ ∂ ∂ Ω+      ∫∇ ∂ ∂ Ω+ zz L S S L S S WdtWyxCtzyx Tk D y WdtWyxCtzyx Tk D x 0 1 0 1 ,,,,,,,,,,,, µµ . Fig. 1. Heterostructure, which consist of a substrate, epitaxial layers and buffer layer Boundary and initial conditions for our case could be written as ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C(x,y,z,0)=fC(x,y,z). The function C(x,y,z,t) describes distribution of concentration of dopant in space and time. Ω is the atomic volume of dopant; ∇s is the symbol of surficial gradient. The function ( )∫ zL zdtzyxC 0 ,,, describes distribution of surficial concentration of dopant in space and time on interface between layers of heterostructure (in this situation we assume, that Z-axis is perpendicular to interface be- tween layers of heterostructure). The function µ1(x,y,z,t) describes the chemical potential due to the presence of mismatch-induced stress in space and time. The functions D and DS describe dis- tributions of coefficients of volumetric and surficial diffusions on coordinate and temperature. Values of dopant diffusions coefficients depends on properties of materials of heterostructure, speed of heating and cooling of materials during annealing and spatio-temporal distribution of concentration of dopant. Dependences of dopant diffusions coefficients on parameters could be approximated by the following relations [13-15]
  • 3. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 25 ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ , ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD SLSS ςςξ γ γ . (2) Here DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostruicture) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing. Function P (x,y,z,T) describes spatial and temperature dependence of the limit of solubility of dopant. Parameter γ ∈[1,3] with integer values depends on properties of materials [13]. The function V (x,y,z,t) describes distribution of concentration of radiation vacan- cies in space and time; V* is the equilibrium distribution of vacancies. One can find description of dependence of dopant diffusion coefficient on concentration of dopant in [13]. To determine dis- tributions of concentration of point radiation defects in space and time we solve the following boundary problem [11,12,14,15] ( ) ( ) ( ) ( ) ( ) ( ) ×−      +      = Tzyxk y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI IIII ,,, ,,, ,,, ,,, ,,, ,,, , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) +−      +× tzyxVtzyxITzyxk z tzyxI TzyxD z tzyxI VII ,,,,,,,,, ,,, ,,,,,, , 2 ∂ ∂ ∂ ∂ (3) ( ) ( ) ( ) ( )       ∫∇ ∂ ∂ Ω+      ∫∇ ∂ ∂ Ω+ zL S IS zL S IS WdtWyxItzyx Tk D y WdtWyxItzyx Tk D x 00 ,,,,,,,,,,,, µµ ( ) ( ) ( ) ( ) ( ) ( ) ×−      +      = Tzyxk y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VVVV ,,, ,,, ,,, ,,, ,,, ,,, , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) +−      +× tzyxVtzyxITzyxk z tzyxV TzyxD z tzyxV VIV ,,,,,,,,, ,,, ,,,,,, , 2 ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )       ∫∇ ∂ ∂ Ω+      ∫∇ ∂ ∂ Ω+ zL S VS zL S VS WdtWyxVtzyx Tk D y WdtWyxVtzyx Tk D x 00 ,,,,,,,,,,,, µµ ( ) 0 ,,, 0 = =x x tzyxI ∂ ∂ , ( ) 0 ,,, = = xLx x tzyxI ∂ ∂ , ( ) 0 ,,, 0 = =y y tzyxI ∂ ∂ , ( ) 0 ,,, = = yLy y tzyxI ∂ ∂ , ( ) 0 ,,, 0 = =z z tzyxI ∂ ∂ , ( ) 0 ,,, = = zLz z tzyxI ∂ ∂ , ( ) 0 ,,, 0 = =x x tzyxV ∂ ∂ , ( ) 0 ,,, = = xLx x tzyxV ∂ ∂ , ( ) 0 ,,, 0 = =y y tzyxV ∂ ∂ , ( ) 0 ,,, = = yLy y tzyxV ∂ ∂ , ( ) 0 ,,, 0 = =z z tzyxV ∂ ∂ , ( ) 0 ,,, = = zLz z tzyxV ∂ ∂ I(x,y,z,0)=fI (x,y,z), V(x,y,z,0)=fV(x,y,z). (4) The function I(x,y,z,t) describes distribution of concentration of radiation interstitials in space and time with the equilibrium distribution I* . The functions DI(x,y,z,T), DV(x,y,z,T), DIS(x,y,z,T), DVS(x,y,z,T) describe dependences of coefficients of volumetric and surficial diffusions of intersti- tials and vacancies on coordinate and temperature. Terms V2 (x,y,z,t) and I2 (x,y,z,t) gives a possi- bility to take into account generation of divacancies and diinterstitials [15]. The functions
  • 4. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 26 kI,V(x,y,z,T), kI,I(x,y, z,T) and kV,V(x,y,z,T) describe dependences of parameters of recombination of point radiation defects and generation of their complexes on coordinate and temperature. We determine spatio-temporal distributions of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y, z,t) by solving the following boundary problem [11,12,14,15] ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ×+      ∫Φ∇ ∂ ∂ Ω+      Φ + Φ Φ TzyxkWdtWyxtzyx Tk D xz tzyx TzyxD z I zL IS SII I ,,,,,,,,, ,,, ,,, 0 1µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( )tzyxITzyxkWdtWyxtzyx Tk D y tzyxI II zL IS SI ,,,,,,,,,,,,,,, 2 , 0 1 +      ∫ Φ∇ ∂ ∂ Ω+× Φ µ (5) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ×+      ∫Φ∇ ∂ ∂ Ω+      Φ + Φ Φ TzyxkWdtWyxtzyx Tk D xz tzyx TzyxD z V zL VS SVV V ,,,,,,,,, ,,, ,,, 0 1µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( )tzyxVTzyxkWdtWyxtzyx Tk D y tzyxV VV zL VS SV ,,,,,,,,,,,,,,, 2 , 0 1 +      ∫ Φ∇ ∂ ∂ Ω+× Φ µ ( ) 0 ,,, 0 = Φ =x I x tzyx ∂ ∂ , ( ) 0 ,,, = = xLx x tzyxI ∂ ∂ , ( ) 0 ,,, 0 = =y y tzyxI ∂ ∂ , ( ) 0 ,,, = = yLy y tzyxI ∂ ∂ , ( ) 0 ,,, 0 = Φ =z I z tzyx ∂ ∂ , ( ) 0 ,,, = = zLz z tzyxI ∂ ∂ , ( ) 0 ,,, 0 = Φ =x V x tzyx ∂ ∂ , ( ) 0 ,,, = = xLx x tzyxV ∂ ∂ , ( ) 0 ,,, 0 = =y y tzyxV ∂ ∂ , ( ) 0 ,,, = = yLy y tzyxV ∂ ∂ , ( ) 0 ,,, 0 = =z z tzyxV ∂ ∂ , ( ) 0 ,,, = Φ = zLz V z tzyx ∂ ∂ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (6) The functions DΦI(x,y,z,T), DΦV(x,y,z,T), DΦIS (x,y,z,T) and DΦVS(x,y,z,T) describe dependences of coefficients of volumetric and surficial diffusions of complexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z,T) describe dependences of parameters of decay of complexes of radiation defects on coordinate and temperature. Chemical potential µ1 in Eq.(1) could be determine by the following relation [11] µ1=E(z)Ωσij [uij(x,y,z,t)+uji(x,y,z,t)]/2, (7) where E(z) is the Young modulus, σij is the stress tensor;         ∂ ∂ + ∂ ∂ = i j j i ij x u x u u 2 1 is the deformation tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector ( )tzyxu ,,, r ; xi, xj are the coordinate x, y, z. The Eq. (3) could be transform to the following form
  • 5. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 27 ( ) ( ) ( ) ( ) ( )     −         ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂ = i j j i i j j i x tzyxu x tzyxu x tzyxu x tzyxu tzyx ,,,,,, 2 1,,,,,, ,,,µ ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )zETtzyxTzzK x tzyxu z z ij k kij ij 2 ,,,3 ,,, 21 000 Ω     −−      − ∂ ∂ − +− δβε σ δσ δε , where σ is Poisson coefficient; the mismatch parameter could be determined as ε0 =(as-aEL)/aEL, where as is the lattice distances of the substrate, aEL and the epitaxial layer; K is the modulus of uniform compression; parameter β describes thermal expansion coefficient, parameter Tr describes the equilibrium temperature. The equilibrium temperature coincides in our case with room tem- perature. Components of displacement vector could be obtained by solution of the following equ- ations [12] ( ) ( ) ( ) ( ) ( ) z tzyx y tzyx x tzyx t tzyxu z xzxyxxx ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ,,,,,,,,,,,, 2 2 σσσ ρ ( ) ( ) ( ) ( ) ( ) z tzyx y tzyx x tzyx t tzyxu z yzyyyxy ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ,,,,,,,,,,,, 2 2 σσσ ρ ( ) ( ) ( ) ( ) ( ) z tzyx y tzyx x tzyx t tzyxu z zzzyzxz ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ,,,,,,,,,,,, 2 2 σσσ ρ , where ( ) ( )[ ] ( ) ( ) ( ) ( ) × ∂ ∂ +         ∂ ∂ − ∂ ∂ + ∂ ∂ + = k k ij k kij i j j i ij x tzyxu x tzyxu x tzyxu x tzyxu z zE ,,,,,, 3 ,,,,,, 12 δ δ σ σ ( ) ( ) ( ) ( )[ ]rTtzyxTzKzzK −−× ,,,β , ρ (z) is the density of materials of heterostructure, δij is the Kronecker symbol. With account the relation for σij last system of equation could be written as ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) + ∂∂ ∂       + −+ ∂ ∂       + += ∂ ∂ yx tzyxu z zE zK x tzyxu z zE zK t tzyxu z yxx ,,, 13 ,,, 16 5,,, 2 2 2 2 2 σσ ρ ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) − ∂∂ ∂       + ++         ∂ ∂ + ∂ ∂ + + zx tzyxu z zE zK z tzyxu y tzyxu z zE zzy ,,, 13 ,,,,,, 12 2 2 2 2 2 σσ ( ) ( ) ( ) x tzyxT zzK ∂ ∂ − ,,, β ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) + ∂ ∂ −         ∂∂ ∂ + ∂ ∂ + = ∂ ∂ y tzyxT zzK yx tzyxu x tzyxu z zE t tzyxu z xyy ,,,,,,,,, 12 ,,, 2 2 2 2 2 β σ ρ ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) +       + +∂ ∂ +               ∂ ∂ + ∂ ∂ +∂ ∂ + zK z zE y tzyxu y tzyxu z tzyxu z zE z yzy σσ 112 5,,,,,,,,, 12 2 2 ( ) ( ) ( )[ ] ( ) ( ) ( ) yx tzyxu zK zy tzyxu z zE zK yy ∂∂ ∂ + ∂∂ ∂       + −+ ,,,,,, 16 22 σ (8) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) +         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ + ∂ ∂ + = ∂ ∂ zy tzyxu zx tzyxu y tzyxu x tzyxu z zE t tzyxu z yxzzz ,,,,,,,,,,,, 12 ,,, 22 2 2 2 2 2 2 σ ρ
  • 6. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 28 ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ∂ ∂ −               ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + z tzyxT zzK z tzyxu y tzyxu x tzyxu zK z xyx ,,,,,,,,,,,, β ( ) ( ) ( ) ( ) ( ) ( )               ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ +∂ ∂ + z tzyxu y tzyxu x tzyxu z tzyxu z zE z zyxz ,,,,,,,,,,,, 6 16 1 σ . Conditions for the system of Eq. (8) could be written in the form ( ) 0 ,,,0 = ∂ ∂ x tzyu r ; ( ) 0 ,,, = ∂ ∂ x tzyLu x r ; ( ) 0 ,,0, = ∂ ∂ y tzxu r ; ( ) 0 ,,, = ∂ ∂ y tzLxu y r ; ( ) 0 ,0,, = ∂ ∂ z tyxu r ; ( ) 0 ,,, = ∂ ∂ z tLyxu z r ; ( ) 00,,, uzyxu rr = ; ( ) 0,,, uzyxu rr =∞ . We solve the Eqs.(1), (3) and (5) by using standard method of averaging of function corrections [17]. Previously we transform the Eqs.(1), (3) and (5) to the following form with account initial distributions of the considered concentrations ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC ,,,,,,,,,,,, (1a) ( ) ( ) ( ) ( ) +      ∫∇ ∂ ∂ Ω++ zL S S C WdtWyxCtzyx Tk D x tzyxf 0 ,,,,,,,, µδ ( ) ( )       ∫∇ ∂ ∂ Ω+ zL S S WdtWyxCtzyx Tk D y 0 ,,,,,,µ ( ) ( ) ( ) ( ) ( ) ( ) ( )++      +      = tzyxf y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI III δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,, ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( )×−      ∫∇ ∂ ∂ Ω+      + TzyxkWdtWyxItzyx Tk D xz tzyxI TzyxD z VI zL S IS I ,,,,,,,,, ,,, ,,, , 0 1µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxkWdtWyxItzyx Tk D y tzyxVtzyxI II zL S IS ,,,,,,,,,,,,,,,,,, 2 , 0 1 −      ∫∇ ∂ ∂ Ω+× µ (3a) ( ) ( ) ( ) ( ) ( ) ( ) ( )++      +      = tzyxf y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VVV δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,, ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ×−      ∫∇ ∂ ∂ Ω+      + TzyxkWdtWyxVtzyx Tk D xz tzyxV TzyxD z VI zL S VS V ,,,,,,,,, ,,, ,,, , 0 1µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxkWdtWyxVtzyx Tk D y tzyxVtzyxI VV zL S VS ,,,,,,,,,,,,,,,,,, 2 , 0 1 −      ∫∇ ∂ ∂ Ω+× µ ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,,
  • 7. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 29 ( ) ( ) ( ) ( ) +      ∫Φ∇ ∂ ∂ Ω+      Φ + Φ Φ zL IS SII I WdtWyxtzyx Tk D xz tzyx TzyxD z 0 1 ,,,,,, ,,, ,,, µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )++      ∫ Φ∇ ∂ ∂ Ω+ Φ tzyxITzyxkWdtWyxtzyx Tk D y I zL IS SI ,,,,,,,,,,,, 0 1µ ( ) ( ) ( ) ( )tzyxftzyxITzyxk III δ,,,,,,,, 2 , Φ++ (5a) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) +      ∫Φ∇ ∂ ∂ Ω+      Φ + Φ Φ zL VS SVV V WdtWyxtzyx Tk D xz tzyx TzyxD z 0 1 ,,,,,, ,,, ,,, µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )++      ∫Φ∇ ∂ ∂ Ω+ Φ tzyxITzyxkWdtWyxtzyx Tk D y I zL IS SI ,,,,,,,,,,,, 0 1µ ( ) ( ) ( ) ( )tzyxftzyxVTzyxk VVV δ,,,,,,,, 2 , Φ++ . Farther we replace concentrations of dopant and radiation defects in right sides of Eqs. (1a), (3a) and (5a) on their average values α1ρ. The average values α1ρ are not yet known. In this situation we obtain equations for the first-order approximations of the required concentrations in the fol- lowing form ( ) ( ) ( ) ( ) ( )tzyxftzyx Tk D z y tzyx Tk D z xt tzyxC CS S CS S C δµαµα ,,,,,,,, ,,, 1111 1 +      ∇ ∂ ∂ Ω+      ∇ ∂ ∂ Ω= ∂ ∂ (1b) ( ) ( ) ( ) +      ∇ ∂ ∂ Ω+      ∇ ∂ ∂ Ω= tzyx Tk D z y tzyx Tk D x z t tzyxI S IS IS IS I ,,,,,, ,,, 11 1 µαµα ∂ ∂ ( ) ( ) ( ) ( )TzyxkTzyxktzyxf VIVIIIII ,,,,,,,, ,11, 2 1 αααδ −−+ (3b) ( ) ( ) ( ) +      ∇ ∂ ∂ Ω+      ∇ ∂ ∂ Ω= tzyx Tk D z y tzyx Tk D x z t tzyxV S VS VS VS V ,,,,,, ,,, 1111 1 µαµα ∂ ∂ ( ) ( ) ( ) ( )TzyxkTzyxktzyxf VIVIVVVV ,,,,,,,, ,11, 2 1 αααδ −−+ ( ) ( ) ( ) +      ∇ ∂ ∂ Ω+      ∇ ∂ ∂ Ω= Φ Φ Φ Φ Φ tzyx Tk D y ztzyx Tk D x z t tzyx S SI IS SI I I ,,,,,, ,,, 1111 1 µαµα ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxktzyxf IIII ,,,,,,,,,,,,,, 2 ,+++ Φ δ (5b) ( ) ( ) ( ) +      ∇ ∂ ∂ Ω+      ∇ ∂ ∂ Ω= Φ Φ Φ Φ Φ tzyx Tk D y ztzyx Tk D x z t tzyx S SV VS SV V V ,,,,,, ,,, 1111 1 µαµα ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxktzyxf VVVV ,,,,,,,,,,,,,, 2 ,+++ Φ δ . Integration of the left and right sides of the Eqs. (1b), (3b) and (5b) on time gives us possibility to obtain relations for above approximation in the final form
  • 8. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 30 ( ) ( ) ( ) ( ) ( ) ( ) ∫ ×         ++∇ ∂ ∂ Ω= t SLSC V zyxV V zyxV zyxTzyxD x tzyxC 0 2* 2 2*1111 ,,,,,, 1,,,,,,,,, τ ς τ ςτµα ( ) ( ) ( ) ( )∫ ×      +∇ ∂ ∂ Ω+      +× t CS SLSC CS TzyxPTk z zyxTzyxD y d TzyxPTk z 0 1 11 1 ,,, 1,,,,,, ,,, 1 γ γ γ γ αξ τµατ αξ ( ) ( ) ( ) ( )zyxfd V zyxV V zyxV C ,, ,,,,,, 1 2* 2 2*1 +         ++× τ τ ς τ ς (1c) ( ) ( ) ( ) +∫ ∇ ∂ ∂ Ω+∫ ∇ ∂ ∂ Ω= t S IS I t S IS I dzyx Tk D y zdzyx Tk D x ztzyxI 0 11 0 111 ,,,,,,,,, ττµαττµα ( ) ( ) ( )∫−∫−+ t VIVI t IIII dTzyxkdTzyxkzyxf 0 ,11 0 , 2 1 ,,,,,,,, ταατα (3c) ( ) ( ) ( ) +∫ ∇ ∂ ∂ Ω+∫ ∇ ∂ ∂ Ω= t S IS V t S IS V dzyx Tk D y zdzyx Tk D x ztzyxV 0 11 0 111 ,,,,,,,,, ττµαττµα ( ) ( ) ( )∫−∫−+ t VIVI t VVVV dTzyxkdTzyxkzyxf 0 ,11 0 , 2 1 ,,,,,,,, ταατα ( ) ( ) ( ) +∫ ∇ ∂ ∂ Ω+∫ ∇ ∂ ∂ Ω=Φ Φ Φ Φ Φ t S SI I t S SI II dzyx Tk D x zdzyx Tk D x ztzyx 0 11 0 111 ,,,,,,,,, ττµαττµα ( ) ( ) ( ) ( ) ( )∫+∫++ Φ t II t II dzyxITzyxkdzyxITzyxkzyxf 0 2 , 0 ,,,,,,,,,,,,,, ττττ (5c) ( ) ( ) ( ) +∫ ∇ ∂ ∂ Ω+∫ ∇ ∂ ∂ Ω=Φ Φ Φ Φ Φ t S SV V t S SV VV dzyx Tk D x zdzyx Tk D x ztzyx 0 11 0 111 ,,,,,,,,, ττµαττµα ( ) ( ) ( ) ( ) ( )∫+∫++ Φ t VV t VV dzyxVTzyxkdzyxVTzyxkzyxf 0 2 , 0 ,,,,,,,,,,,,,, ττττ . We determine average values of the first-order approximations of concentrations of dopant and radiation defects by the following standard relation [17] ( )∫ ∫ ∫ ∫ Θ = Θ 0 0 0 0 11 ,,, 1 xL yL zL zyx tdxdydzdtzyx LLL ρα ρ . (9) We obtain required average values by substitution of the relations (1c), (3c) and (5c) into relation (9). The obtained relations could be written as ( )∫ ∫ ∫= xL yL zL C zyx C xdydzdzyxf LLL 0 0 0 1 ,, 1 α , ( ) 4 3 4 1 2 3 2 4 2 3 1 4 4 4 a Aa a aLLLBa B a Aa zyx I + −         Θ+Θ +− + =α , ( )       Θ−−∫ ∫ ∫ Θ = zyxIII xL yL zL I IIV V LLLSxdydzdzyxf S 001 0 0 0100 1 ,, 1 α α α . Here ( ) ( ) ( ) ( )∫ ∫ ∫ ∫−Θ= Θ 0 0 0 0 11, ,,,,,,,,, xL yL zL ji ij tdxdydzdtzyxVtzyxITzyxktS ρρρρ , ( )×−= 0000 2 004 VVIIIV SSSa
  • 9. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 31 00IIS× , 0000 2 0000003 VVIIIVIIIV SSSSSa −+= , ( ) ×Θ+∫ ∫ ∫= 222 0 0 0 2 00002 ,, zyx xL yL zL VIVIV LLLxdydzdzyxfSSa ( ) ( ) ×∫ ∫ ∫−Θ−∫ ∫ ∫+× xL yL zL IVVzyx xL yL zL IIIVVIV xdydzdzyxfSLLLxdydzdzyxfSSS 0 0 0 00 222 0 0 0 000000 ,,,,2 2 00IVS× , ( )∫ ∫ ∫= xL yL zL IIV xdydzdzyxfSa 0 0 0 001 ,, , ( ) 2 0 0 0 000 ,,       ∫ ∫ ∫= xL yL zL IVV xdydzdzyxfSa , 4 2 2 4 2 32 48 a a a a yA Θ−Θ+= , 3 323 32 4 2 6 qpqqpq a a B ++−−++ Θ = , ×      Θ−= 4 31 04 a aa LLLaq zyx 2 4 2 1 4 222 3 4 3 2 3 4 2 32 22 4 02 2 4 2 3 854 4 824 a a LLL a a a a a a a a a zyx Θ − Θ −      Θ−ΘΘ− Θ × , − Θ− Θ= 2 4 31402 12 4 a aaLLLaa p zyx 42 18aaΘ− , ( )∫ ∫ ∫+ Θ + Θ = ΦΦ xL yL zL I zyxzyx II zyx I I xdydzdzyxf LLLLLL S LLL R 0 0 0 201 1 ,, 1 α ( )∫ ∫ ∫+ Θ + Θ = ΦΦ xL yL zL V zyxzyx VV zyx V V xdydzdzyxf LLLLLL S LLL R 0 0 0 201 1 ,, 1 α , Here ( ) ( ) ( )∫ ∫ ∫ ∫−Θ= Θ 0 0 0 0 1 ,,,,,, xL yL zL i Ii tdxdydzdtzyxITzyxktRρ . The second-order approximations and approximations with higher orders of the considered con- centrations have been calculated framework standard iterative procedure of method of averaging of function corrections [17]. The considered approximations could be obtained by replacement the required concentrations in the Eqs. (1c), (3c), (5c) on the following sum αnρ+ρ n-1(x,y,z,t). The replacement leads to following results ( ) ( )[ ] ( ) ( ) ( ) ( )    ×         ++       + + ∂ ∂ = ∂ ∂ 2* 2 2*1 122 ,,,,,, 1 ,,, ,,, 1 ,,, V tzyxV V tzyxV TzyxP tzyxC xt tzyxC C ςς α ξ γ γ ( ) ( ) ( ) ( ) ( ) ( )     × ∂ ∂         ++ ∂ ∂ +   ∂ ∂ × y tzyxC V tzyxV V tzyxV yx tzyxC TzyxD L ,,,,,,,,, 1 ,,, ,,, 1 2* 2 2*1 1 ςς ( ) ( )[ ] ( ) ( ) ( ) ( )    ×         ++ ∂ ∂ +           + +× 2* 2 2*1 12 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV zTzyxP tzyxC TzyxD C L ςς α ξ γ γ ( ) ( ) ( )[ ] ( ) ( ) ( )++           + + ∂ ∂ × tzyxf TzyxP tzyxC z tzyxC TzyxD C C L δ α ξ γ γ ,, ,,, ,,, 1 ,,, ,,, 121 ( ) ( )[ ] +       ∫ +∇ ∂ ∂ Ω+ zL CS S WdtWyxCtzyx Tk D x 0 21 ,,,,,, αµ ( ) ( )[ ]       ∫ +∇ ∂ ∂ Ω+ zL CS S WdtWyxCtzyx Tk D y 0 21 ,,,,,, αµ (1d)
  • 10. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 32 ( ) ( ) ( ) ( ) ( ) +      +      = y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI II ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, 112 ( ) ( ) ( ) ( )[ ] ( )×−+−      + TzyxktzyxITzyxk z tzyxI TzyxD z VIIIII ,,,,,,,,, ,,, ,,, , 2 11, 1 α ∂ ∂ ∂ ∂ ( )[ ] ( )[ ] ( ) ( )[ ]    ×∫ +∇ ∂ ∂ Ω+++× zL ISVI WdtWyxItzyx x tzyxVtzyxI 0 121111 ,,,,,,,,,,,, αµαα ( ) ( )[ ]       ∫ +∇ ∂ ∂ Ω+    × zL IS ISIS WdtWyxItzyx Tk D yTk D 0 12 ,,,,,, αµ (3d) ( ) ( ) ( ) ( ) ( ) +      +      = y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VV ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, 112 ( ) ( ) ( ) ( )[ ] ( )×−+−      + TzyxktzyxVTzyxk z tzyxV TzyxD z VIVVVV ,,,,,,,,, ,,, ,,, , 2 11, 1 α ∂ ∂ ∂ ∂ ( )[ ] ( )[ ] ( ) ( )[ ]    ×∫ +∇ ∂ ∂ Ω+++× zL VSVI WdtWyxVtzyx x tzyxVtzyxI 0 121111 ,,,,,,,,,,,, αµαα ( ) ( )[ ]       ∫ +∇ ∂ ∂ Ω+    × zL VS VSVS WdtWyxVtzyx Tk D yTk D 0 12 ,,,,,, αµ ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, 112 ( ) ( )[ ] ( ) ( )++       ∫ Φ+∇ ∂ ∂ Ω+ Φ Φ tzyxITzyxkWdtWyxtzyx Tk D x II zL IIS SI ,,,,,,,,,,,, 2 , 0 12αµ ( ) ( )[ ] ( ) ( )++       ∫ Φ+∇ ∂ ∂ Ω+ Φ Φ tzyxITzyxkWdtWyxtzyx Tk D y I zL IIS SI ,,,,,,,,,,,, 0 12αµ ( ) ( ) ( ) ( )tzyxf z tzyx TzyxD z I I I δ ∂ ∂ ∂ ∂ ,, ,,, ,,, 1 ΦΦ +      Φ + (5d) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, 112 ( ) ( )[ ] ( ) ( )++       ∫ Φ+∇ ∂ ∂ Ω+ Φ Φ tzyxVTzyxkWdtWyxtzyx Tk D x VV zL VVS SV ,,,,,,,,,,,, 2 , 0 12αµ ( ) ( )[ ] ( ) ( )++       ∫ Φ+∇ ∂ ∂ Ω+ Φ Φ tzyxVTzyxkWdtWyxtzyx Tk D y V zL VVS SV ,,,,,,,,,,,, 0 12αµ ( ) ( ) ( ) ( )tzyxf z tzyx TzyxD z V V V δ ∂ ∂ ∂ ∂ ,, ,,, ,,, 1 ΦΦ +      Φ + . Final relations for the second-order approximations could be obtained by integration of the left and the right sides of Eqs. (1d), (3d) and (5d). The final relations could be written as
  • 11. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 33 ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ∫ ×         ++         + + ∂ ∂ = t C L V zyxV V zyxV TzyxP zyxC TzyxD x tzyxC 0 2* 2 2*1 12 2 ,,,,,, 1 ,,, ,,, 1,,,,,, τ ς τ ς τα ξ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ∫ × ∂ ∂         ++ ∂ ∂ + ∂ ∂ × t L y zyxC V zyxV V zyxV TzyxD y d x zyxC 0 1 2* 2 2*1 1 ,,,,,,,,, 1,,, ,,, ττ ς τ ςτ τ ( )[ ] ( ) ( ) ( ) ( ) ( ) ∫ × ∂ ∂         ++ ∂ ∂ +         + +× t C z zyxC V zyxV V zyxV zTzyxP tzyxC 0 1 2* 2 2*1 12 ,,,,,,,,, 1 ,,, ,,, 1 ττ ς τ ς α ξ γ γ ( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫ +∇ ∂ ∂ +         + +× t zL CS C L WyxCzyx x d TzyxP zyxC TzyxD 0 0 12 12 ,,,,,, ,,, ,,, 1,,, τατµτ τα ξ γ γ ( ) ( )[ ] ( )zyxfdWdWyxC Tk D zyx y dWd Tk D C t zL C S S S ,,,,,,,, 0 0 12 +∫ ∫ +∇ ∂ ∂ Ω+× ττατµτ (1e) ( ) ( ) ( ) ( ) ( ) +∫+∫= t I t I d y zyxI TzyxD y d x zyxI TzyxD x tzyxI 0 1 0 1 2 ,,, ,,, ,,, ,,,,,, τ ∂ τ∂ ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( )[ ] −∫ +−+∫+ t IIII t I dzyxITzyxkzyxfd z zyxI TzyxD z 0 2 12, 0 1 ,,,,,,,, ,,, ,,, ττατ ∂ τ∂ ∂ ∂ ( ) ( )[ ] ( )[ ] ( )×∫ ∇ ∂ ∂ Ω+∫ ++− t S IS t VIVI zyx Tk D x dzyxVzyxITzyxk 00 1212, ,,,,,,,,,,,, τµττατα ( )[ ] ( ) ( )[ ]∫ ∫ +∇ ∂ ∂ Ω+∫ +× t zL I IS S zL I dWdWyxI Tk D zyx y dWdWyxI 0 0 12 0 12 ,,,,,,,,, ττατµττα (3e) ( ) ( ) ( ) ( ) ( ) +∫+∫= t V t V d y zyxV TzyxD y d x zyxV TzyxD x tzyxV 0 1 0 1 2 ,,, ,,, ,,, ,,,,,, τ ∂ τ∂ ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( )[ ] −∫ +−+∫+ t VVVV t V dzyxVTzyxkzyxfd z zyxV TzyxD z 0 2 12, 0 1 ,,,,,,,, ,,, ,,, ττατ ∂ τ∂ ∂ ∂ ( ) ( )[ ] ( )[ ] ( )×∫ ∇ ∂ ∂ Ω+∫ ++− t S VS t VIVI zyx Tk D x dzyxVzyxITzyxk 00 1212, ,,,,,,,,,,,, τµττατα ( )[ ] ( ) ( )[ ]∫ ∫ +∇ ∂ ∂ Ω+∫ +× t zL I VS S zL I dWdWyxV Tk D zyx y dWdWyxV 0 0 12 0 12 ,,,,,,,,, ττατµττα ( ) ( ) ( ) ( ) ∫ × Φ +∫ Φ =Φ Φ t I t I II y zyx y d x zyx TzyxD x tzyx 0 1 0 1 2 ,,,,,, ,,,,,, ∂ τ∂ ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( ) ×∫ ∇ ∂ ∂ Ω+∫ Φ +× Φ ΦΦ t SI S t I II Tk D zyx x d z zyx TzyxD z dTzyxD 00 1 ,,, ,,, ,,,,,, τµτ ∂ τ∂ ∂ ∂ τ ( )[ ] ( ) ( )[ ] ×∫ ∫ Φ+∇ ∂ ∂ Ω+∫ Φ+× ΦΦ t zL IIS zL II WdWyxzyx y dWdWyx 0 0 12 0 12 ,,,,,,,,, τατµττα ( ) ( ) ( ) ( ) ( )zyxfdzyxITzyxkdzyxITzyxkd Tk D I t I t II SI ,,,,,,,,,,,,,, 00 2 , Φ Φ +∫+∫+× τττττ (5e) ( ) ( ) ( ) ( ) ∫ × Φ +∫ Φ =Φ Φ t V t V VV y zyx y d x zyx TzyxD x tzyx 0 1 0 1 2 ,,,,,, ,,,,,, ∂ τ∂ ∂ ∂ τ ∂ τ∂ ∂ ∂
  • 12. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 34 ( ) ( ) ( ) ( ) ×∫ ∇ ∂ ∂ Ω+∫ Φ +× Φ ΦΦ t SV S t V VV Tk D zyx x d z zyx TzyxD z dTzyxD 00 1 ,,, ,,, ,,,,,, τµτ ∂ τ∂ ∂ ∂ τ ( )[ ] ( ) ( )[ ] ×∫ ∫ Φ+∇ ∂ ∂ Ω+∫ Φ+× ΦΦ t zL VVS zL VV WdWyxzyx y dWdWyx 0 0 12 0 12 ,,,,,,,,, τατµττα ( ) ( ) ( ) ( ) ( )zyxfdzyxVTzyxkdzyxVTzyxkd Tk D V t V t VV SV ,,,,,,,,,,,,,, 00 2 , Φ Φ +∫+∫+× τττττ . Average values of the second-order approximations of required approximations by using the fol- lowing standard relation [17] ( ) ( )[ ]∫ ∫ ∫ ∫ − Θ = Θ 0 0 0 0 122 ,,,,,, 1 xL yL zL zyx tdxdydzdtzyxtzyx LLL ρρα ρ . (10) Substitution of the relations (1e), (3e), (5e) into relation (10) gives us possibility to obtain rela- tions for required average values α2ρ α2C=0, α2ΦI =0, α2ΦV =0, ( ) 4 3 4 1 2 3 2 4 2 3 2 4 4 4 b Eb b bLLLFa F b Eb zyx V + −        Θ+Θ +− + =α , ( ) 00201 11021001200 2 2 2 2 IVVIV VIVVzyxVIVVVVVVV I SS SSLLLSSSC α αα α + −−Θ++−− = , where 00 2 0000 2 004 11 IIVV zyx VVIV zyx SS LLL SS LLL b Θ − Θ = , ( )+Θ++ Θ −= zyxIVVV zyx VVII LLLSS LLL SS b 1001 0000 3 2 ( ) ( ) 3333 10 2 00 1001 2 00 011001 0000 22 zyx IVIV zyxIVVV zyx IV zyxIVIIIV zyx VVIV LLL SS LLLSS LLL S LLLSSS LLL SS Θ −Θ++ Θ +Θ+++ Θ + , ( ) ( ) ( )×++Θ+Θ+−−++ Θ = 0110 2 01101102 0000 2 22 IVIIzyxzyxVVIVVIVVV zyx VVII SSLLLLLLSSCSS LLL SS b ( ) ( ) + Θ ++Θ+Θ+++ Θ + Θ × zyx VVIV IVIIzyxzyxIVIIIV zyx IV zyx VVIV LLL SS SSLLLLLLSSS LLL S LLL SS 0001 0110 2 011001 000001 222 ( )( ) ( ) ×−−−+Θ+Θ+++ Θ + 11021001011001 00 222 IVVVVIVzyxVVzyxIVIIIV zyx IV SSCSLLLSLLLSSS LLL S zyx IVIV IV zyx IVI zyx IV LLL SS S LLL SC LLL S Θ − Θ + Θ × 0010 012222 2 00 2 00 2 , ( ++ Θ ++ = 1001 0211 001 2 IVVV zyx VVVIV II SS LLL CSS Sb ) ( )( ) − Θ −Θ++++Θ Θ +Θ+ zyx IVIV zyIVVVIVIIzyx zyx IV zyx LLL SS LLLSSSSLLL LLL S LLL 2 0110 10010110 01 22 ( )( ) 010011021001 00 223 IVIVIIVVVVzyxIIIV zyx IV SSCSSCLLLSS LLL S +−−Θ++ Θ − , × Θ = zyx II LLL S b 00 0 ( ) ( )( ) × Θ −− −−−++Θ Θ −+× zyx IVVVV IVIVVVVIVIIzyx zyx IV VVIV LLL SSC SSSCSSLLL LLL S SS 1102 0111020110 012 0200 2 ( ) 2 01011001 22 IVIIVIIzyxIV SCSSLLLS +++Θ× , − Θ − Θ + Θ = zyx IIII zyx III IV zyx VI I LLL SS LLL S S LLL C 202000 2 1 00 11 ααα , zyx IV LLL S Θ − 11 , 110200 2 10011 IVVVVVVIVVIV SSSSC −−+= ααα , 4 2 2 4 2 32 48 a a a a yE Θ−Θ+= , + Θ = 4 2 6a a F
  • 13. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 35 3 323 32 rsrrsr ++−−++ , ×      Θ−Θ− Θ −      Θ− Θ = 4 2 32 23 4 3 2 3 4 31 02 4 2 3 4 54 4 24 b b b b b b bb LLLb b b r zyx 2 4 2 1 4 222 2 4 2 0 88 b b LLL b b zyx Θ − Θ × , 4 2 2 4 31402 1812 4 b b b bbLLLbb s zyx Θ − Θ− Θ= . Farther we determine solutions of Eqs.(8), i.e. components of displacement vector. To determine the first-order approximations of the considered components framework method of averaging of function corrections we replace the required functions in the right sides of the equations by their not yet known average values αi. The substitution leads to the following result ( ) ( ) ( ) ( ) ( ) x tzyxT zzK t tzyxu z x ∂ ∂ −= ∂ ∂ ,,,,,, 2 1 2 βρ , ( ) ( ) ( ) ( ) ( ) y tzyxT zzK t tzyxu z y ∂ ∂ −= ∂ ∂ ,,,,,, 2 1 2 βρ , ( ) ( ) ( ) ( ) ( ) z tzyxT zzK t tzyxu z z ∂ ∂ −= ∂ ∂ ,,,,,, 2 1 2 βρ . Integration of the left and the right sides of the above relations on time t leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∂ ∂ −∫ ∫ ∂ ∂ += ∞ 0 00 0 01 ,,,,,,,,, ϑϑ ϑττ ρ β ϑττ ρ β ddzyxT xz z zKddzyxT xz z zKutzyxu t xx , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∂ ∂ −∫ ∫ ∂ ∂ += ∞ 0 00 0 01 ,,,,,,,,, ϑϑ ϑττ ρ β ϑττ ρ β ddzyxT yz z zKddzyxT yz z zKutzyxu t yy , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∂ ∂ −∫ ∫ ∂ ∂ += ∞ 0 00 0 01 ,,,,,,,,, ϑϑ ϑττ ρ β ϑττ ρ β ddzyxT zz z zKddzyxT zz z zKutzyxu t zz . Approximations of the second and higher orders of components of displacement vector could be determined by using standard replacement of the required components on the following sums αi+ui(x,y,z,t) [17]. The replacement leads to the following result ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) + ∂∂ ∂       + −+ ∂ ∂       + += ∂ ∂ yx tzyxu z zE zK x tzyxu z zE zK t tzyxu z yxx ,,, 13 ,,, 16 5,,, 1 2 2 1 2 2 2 2 σσ ρ ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) + ∂ ∂ −         ∂ ∂ + ∂ ∂ + + ∂∂ ∂ × x tzyxT zzK z tzyxu y tzyxu z zE yx tzyxu zyy ,,,,,,,,, 12 ,,, 2 1 2 2 1 2 1 2 β σ ( ) ( ) ( )[ ] ( ) zx tzyxu z zE zK z ∂∂ ∂       + ++ ,,, 13 1 2 σ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) + ∂ ∂ −         ∂∂ ∂ + ∂ ∂ + = ∂ ∂ y tzyxT zzK yx tzyxu x tzyxu z zE t tzyxu z xyy ,,,,,,,,, 12 ,,, 1 2 2 1 2 2 2 2 β σ ρ ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) +       + +∂ ∂ +               ∂ ∂ + ∂ ∂ +∂ ∂ + zK z zE y tzyxu y tzyxu z tzyxu z zE z yzy σσ 112 5,,,,,,,,, 12 2 1 2 11 ( ) ( ) ( )[ ] ( ) ( ) ( ) yx tzyxu zK zy tzyxu z zE zK yy ∂∂ ∂ + ∂∂ ∂       + −+ ,,,,,, 16 1 2 1 2 σ
  • 14. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 36 ( ) ( ) ( ) ( ) ( ) ( ) ×         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ zy tzyxu zx tzyxu y tzyxu x tzyxu t tzyxu z yxzzz ,,,,,,,,,,,,,,, 1 2 1 2 2 1 2 2 1 2 2 2 2 ρ ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] × + +               ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + + × z zE z tzyxu y tzyxu x tzyxu zK zz zE xyx σσ 16 ,,,,,,,,, 12 111 ( ) ( ) ( ) ( ) ( ) × ∂ ∂ −           ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ ∂ ∂ × z tzyxT z tzyxu y tzyxu x tzyxu z tzyxu z zyxz ,,,,,,,,,,,,,,, 6 1111 ( ) ( )zzK β× . Integration of the left and right sides of the above relations on time t leads to the following result ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ×      + −+∫ ∫ ∂ ∂       + += z zE zKddzyxu xz zE zK z tzyxu t xx σ ϑττ σρ ϑ 13 ,,, 16 51 ,,, 0 0 12 2 2 ( ) ( ) ( ) ( ) ×      ∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ +∫ ∫ ∂∂ ∂ × t z t y t y ddzyxu z ddzyxu y ddzyxu yxz 0 0 12 2 0 0 12 2 0 0 1 2 ,,,,,,,,, 1 ϑϑϑ ϑττϑττϑττ ρ ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ×−       + +∫ ∫ ∂∂ ∂ + + × z z zK z zE zKddzyxu zxzzz zE t z ρ β σ ϑττ ρσρ ϑ 13 ,,, 1 12 0 0 1 2 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ×−∫ ∫ ∂ ∂       + +−∫ ∫ ∂ ∂ × ∞ z ddzyxu xz zE zK z ddzyxT x x t ρ ϑττ σρ ϑττ ϑϑ 1 ,,, 16 51 ,,, 0 0 12 2 0 0 ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )   +∫ ∫ ∂ ∂ + −∫ ∫ ∂∂ ∂       + −× ∞∞ 0 0 12 2 0 0 1 2 ,,, 1 ,,, 13 ϑϑ ϑττ σ ϑττ σ ddzyxu yz zE ddzyxu yxz zE zK yy ( ) ( ) ( ) ( ) ( )[ ] ( ) ×∫ ∫ ∂∂ ∂       + +−   ∫ ∫ ∂ ∂ + ∞∞ 0 0 1 2 0 0 12 2 ,,, 132 1 ,,, ϑϑ ϑττ σρ ϑττ ddzyxu zxz zE zK z ddzyxu z zz ( ) ( ) ( ) ( ) ( )∫ ∫ ∂ ∂ ++× ∞ 0 0 0 ,,, 1 ϑ ϑττ ρ β ρ ddzyxT xz z zKu z x ( ) ( ) ( ) ( )[ ] ( ) ( ) +      ∫ ∫ ∂∂ ∂ +∫ ∫ ∂ ∂ + = t x t xy ddzyxu yx ddzyxu xzz zE tzyxu 0 0 1 2 0 0 12 2 2 ,,,,,, 12 ,,, ϑϑ ϑττϑττ σρ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]   + + ∫ ∫ ∂ ∂ +∫ ∫ ∂∂ ∂ + + × z zE ddzyxu y ddzyxu yxz zK z t x t y σ ϑττϑττ ρσ ϑϑ 112 5 ,,,,,, 1 1 0 0 12 2 0 0 1 2 ( ) ( ) ( ) ( ) ( ) ( ) ×               ∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ +∂ ∂ +    + t z t y ddzyxu y ddzyxu zz zE zz zK 0 0 1 0 0 1 ,,,,,, 1 1 ϑϑ ϑττϑττ σρ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ×∫ ∫ ∂∂ ∂       − + −∫ ∫−× t y t ddzyxu zy zK z zE ddzyxT z z zK z 0 0 1 2 0 0 ,,, 16 ,,, 2 1 ϑϑ ϑττ σ ϑττ ρ β ρ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ×−      ∫ ∫ ∂∂ ∂ +∫ ∫ ∂ ∂ + −× ∞∞ zKddzyxu yx ddzyxu xzz zE z xx 0 0 1 2 0 0 12 2 ,,,,,, 12 1 ϑϑ ϑττϑττ σρρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]   + +∂ ∂ −∫ ∫ ∂∂ ∂ −∫ ∫× ∞∞ z zE yz ddzyxu yxz zK ddzyxT z z y σρ ϑττ ρ ϑττ ρ β ϑϑ 112 51 ,,,,,, 2 2 0 0 1 2 0 0
  • 15. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 37 ( ) ( ) ( ) ( ) ×           ∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ ∂ ∂ −∫ ∫     + ∞∞∞ 0 0 1 0 0 1 0 0 1 ,,,,,,,,, ϑϑϑ ϑττϑττϑττ ddzyxu y ddzyxu zz ddzyxuzK zyx ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) yy uddzyxu zyz zE zK zzz zE 0 0 0 1 2 ,,, 16 1 2 1 1 +∫ ∫ ∂∂ ∂       + −−    + × ∞ ϑ ϑττ σρρσ ( ) ( ) ( ) ( )[ ] ( ) ( )   +∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ + = ∞∞ 0 0 12 2 0 0 12 2 ,,,,,, 12 ,,, ϑϑ ϑττϑττ σρ ddzyxu y ddzyxu xzz zE tzyxu zzz ( ) ( ) ( )        +∫ ∫ ∂ ∂ ∂ ∂ +   ∫ ∫ ∂∂ ∂ +∫ ∫ ∂∂ ∂ + ∞∞∞ 0 0 1 0 0 1 2 0 0 1 2 ,,,,,,,,, ϑϑϑ ϑττϑττϑττ ddzyxu xz ddzyxu zy ddzyxu zx xyx ( ) ( ) ( ) ( ) ( ) ( ) ( )   × +∂ ∂ +        ∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ + ∞∞ z zE zzz zKddzyxu z ddzyxu y xx σρρ ϑττϑττ ϑϑ 16 11 ,,,,,, 0 0 1 0 0 1 ( ) ( ) ( )   −∫ ∫ ∂ ∂ −∫ ∫ ∂ ∂ −∫ ∫ ∂ ∂ × ∞∞∞ 0 0 1 0 0 1 0 0 1 ,,,,,,,,,6 ϑϑϑ ϑττϑττϑττ ddzyxu y ddzyxu x ddzyxu z yxz ( ) ( ) ( ) ( ) ( ) zz uddzyxT zz z zKddzyxu z 0 0 00 0 1 ,,,,,, +∫ ∫ ∂ ∂ −        ∫ ∫ ∂ ∂ − ∞∞ ϑϑ ϑττ ρ β ϑττ . In this paper we calculate distributions of concentration of dopant, concentrations of radiation defects and components of displacement vector in space and time by using the second-order ap- proximation framework method of averaging of function corrections. This approximation is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained results have been checked by comparison with re- sults of numerical simulations. 3. DISCUSSION Now we analyzed changing concentrations of dopant and radiation defects in space and time in a heterostructure with account mismatch-induced stress. Several spatial distributions of dopant con- centration are presented on Fig. 2 for diffusion type of doping and on Fig. 3 for ion type of dop- ing. In the both cases dopant diffusion coefficient in the epitaxial layer is larger, than in the sub- strate. One can find from these figures, that using in homogeneity of heterostructure leads to in- creasing of sharpness of p-n-junctions. In this situation the accompanying effect is increasing homogeneity of dopant distribution in doped part of heterostructure. Switching time of p-n- junc- tion correlated with the junction sharpness and could be increased with increasing of the sharp- ness. Increasing homogeneity of dopant distribution leads to decreasing local overheat leads to decreasing local heating during functioning of p-n-junction or to decrease dimensions of the p-n- junction for fixed maximal value of local overheat. However framework this approach of manu- facturing of p-n-junction and their systems (bipolar transistor and thyristors) it is necessary to op- timize annealing of dopant and/or radiation defects. Reason of this optimization is following. If annealing time is small, the dopant did not achieve any interfaces between materials of hetero- structure. In this situation one cannot find any modifications of distribution of concentration of dopant. Increasing of annealing time leads to increasing of homogeneity of distribution of con- centration of dopant. We optimize annealing time framework recently introduces approach [16,18-24]. To use the criterion one shall to approximate real distribution of concentration of do- pant by step-wise function (see Figs. 4 for diffusion doping and 5 for ion doping). The optimal values of annealing time have been calculated by minimization of the following mean-squared error
  • 16. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 38 ( ) ( )[ ]∫ ∫ ∫ −Θ= xL yL zL zyx xdydzdzyxzyxC LLL U 0 0 0 ,,,,, 1 ψ . (15) Fig.2. Distributions of concentration dopant in heterostructure from Fig. 1 for diffusion type of doping. Direction of diffusion is perpendicular to interface between layers of heterostructure. Do- pant diffusion coefficient in the epitaxial layer is larger, than in the substrate and increasing with increasing of number of curves. x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.3. Distributions of concentration dopant in heterostructure from Fig. 1 for ion type of doping. Direction of diffusion is perpendicular to interface between layers of heterostructure. Curves 1 and 3 corresponds to annealing time Θ= 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ=0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 are the distributions of concentrations of dopant in homogenous sample. Curves 3 and 4 are the distributions of concentrations of dopant in the heterostructure. Dopant diffusion coefficient in the epitaxial layer is larger, than in the sub- strate and increasing with increasing of number of curves. C(x,Θ) 0 Lx 2 1 3 4
  • 17. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 39 Fig. 4. Distributions of concentration dopant in heterostructure from Fig. 1 for diffusion type of doping. Curve 1 is idealized distribution of dopant. Curves 2-4 are the calculated distributions of dopant for several values of annealing time. Annealing time increased with increasing of number of curves. x C(x,Θ) 1 2 3 4 0 L Fig. 5. Distributions of concentration dopant in heterostructure from Fig. 1 for ion type of doping. Curve 1 is idealized distribution of dopant. Curves 2-4 are the calculated distributions of dopant for several values of annealing time. Annealing time increased with increasing of number of curves. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 ΘD0 L -2 3 2 4 1 Fig.6. Dimensionless optimal annealing time of infused dopant. Curve 1 describes dependence of the annealing time on normalized thickness of epitaxial layer, ξ= γ = 0 and equal to each other values of dopant diffusion coefficient in all layers of heterostructure. Curve 2 describes depen- dence of the annealing time on normalized difference between diffusion coefficients ε =(DEL-DS)/ DS, a/L=1/2 and ξ=γ=0. Curve 3 describes dependence of the annealing time on value of parame- ter ξ for a/L=1/2 and ε = γ = 0. Curve 3 describes dependence of the annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 ΘD0 L -2 3 2 4 1
  • 18. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 40 Fig.7. Dimensionless optimal annealing time of implanted dopant. Curve 1 describes dependence of the annealing time on normalized thickness of epitaxial layer, ξ=γ =0 and equal to each other values of dopant diffusion coefficient in all layers of heterostructure. Curve 2 describes depen- dence of the annealing time on normalized difference between diffusion coefficients ε =(DEL-DS)/ DS, a/L=1/2 and ξ=γ=0. Curve 3 describes dependence of the annealing time on value of parame- ter ξ for a/L=1/2 and ε = γ = 0. Curve 3 describes dependence of the annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0. Here ψ(x,y,z) is the step-wise approximation function. We calculate dependences of optimal val- ues of annealing time on parameters. These dependences are presented on Figs. 6 (for diffusion type of doping) and 7 (for ion types of doping). It is known, that radiation defects should be an- nealed after ion implantation. Distribution of concentration of these defects will be spreads during the annealing. If distribution of dopant concentration achieves nearest interface, than we obtain rare ideal case. If the dopant has not enough time for the achievement, it is practicably to addi- tionally anneal the dopant. In this situation the considered the additional annealing time became smaller, than annealing time for diffusion type of doping. Now we analyzed correlation between relaxations of mismatch-induced stress and distribution of concentration of dopant. If ε0< 0, one obtain compression of distribution of concentration of do- pant. Contrary one obtain spreading of distribution of concentration of dopant. Laser annealing gives a possibility to decrease influence of mismatch-induced stress on distribution of concentra- tion of dopant [22]. Using the annealing leads to acceleration of dopant diffusion in the irradiated area. Taking into account mismatch-induced stress leads to changing of optimal values of anneal- ing time. Mismatch-induced stress could be used to increase density of elements of integrated circuits. On the other hand could leads to generation dislocations of the discrepancy. Fig. 8 shows distributions of component of displacement vector in direction, which is perpendicular to epitaxial layer and substrate. z 0.0 0.2 0.4 0.6 0.8 1.0 Uz 1 2 0.0 a Fig. 8. Normalized dependences of component uz of displacement vector on coordinate z for nonporous (curve 1) and porous (curve 2) epitaxial layers Fig. 9. Normalized distributions of charge carrier mobility in the considered heterostructure.
  • 19. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 41 Curve 1 corresponds to the heterostructure, which has been considered in Fig. 1. Curve 2 corres- pond to a homogenous material with averaged parameters of heterostructure from Fig. 1 Now we consider the changing of charge carrier mobility with changing of distribution of concen- tration of dopant. It has been recently shown, that the mobility is a function of concentration of dopant: µ~C1/3 [25]. The situation is illustrated by Fig. 9. The figure shows normalized distribu- tions of charge carrier mobility in the considered heterostructure. Curve 1 corresponds to the hete- rostructure, which has been considered in Fig. 1. Curve 2 correspond to material after averaging parameters of heterostructure from Fig. 1. 4. CONCLUSIONS In this paper we consider a possibility to increase sharpness of diffusion-junction and implanted- junction heterorectifiers. At the same time homogeneity of distribution of concentration of dopant in enriched by the dopant increases. We also consider an approach to decrease mismatch-induced stress in the considered heterostructure. We analyzed influence of changing of concentration of dopant on value of charge carrier mobility. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu- cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia and educational fellowship for scientific research of Nizhny Novgorod State University of Archi- tecture and Civil Engineering. REFERENCES 1. V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001. 2. A. Polishscuk. Modern models of integrated operating amplifier. Modern Electronics. Issue 12. P. 8-11 (2004). 3. G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Is- sue 2. P. 10-17 (2006). 4. A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Elec- tronics. Issue 1. P. 34-38 (2008). 5. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009). 6. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance In- GaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974 (2009). 7. O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. Formation of donor centers after annealing of dysprosium and holmium implanted silicon. Semi- conductors. Vol. 32 (9). P. 1029-1032 (1998). 8. I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol. 43 (8). P. 1016-1020 (2009). 9. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buo- nassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). 10. J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shallow acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
  • 20. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 2, June 2016 42 11. Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitax- ial thin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999). 12. L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001, in Russian). 13. Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991). 14. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). 15. V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors (Naukova Dumka, Kiev, 1979, in Russian). 16. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). 17. Yu.D. Sokolov. On the determination of the dynamic forces in mine hoist ropes. Applied Mechan- ics. Vol.1 (1). P. 23-35 (1955). 18. E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007). 19. E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by us- ing radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012). 20. E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). 21. E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an im-planted- junction rectifiers by using overlayers. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119-130 (2012). 22. E.L. Pankratov. Increasing of the sharpness of p–n junctions by laser pulses. Nano. Vol. 6 (1). P. 31-40 (2011). 23. E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). 24. E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12 (2015). 25. I.P. Stepanenko. Basis of microelectronics (Soviet radio, Moscow, 1980). Authors: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 155 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 103 published papers in area of her researches.