SlideShare a Scribd company logo
1 of 15
Download to read offline
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
DOI:10.5121/msej.2016.3301 1
ON DECREASING OF DIMENSIONS OF FIELD-
EFFECT TRANSISTORS WITH SEVERAL
SOURCES
E.L. Pankratov, E.A. Bulaeva
Nizhny Novgorod State University, 2 Gagarin avenue, Nizhny Novgorod, 603950, Russia
ABSTRACT
We analyzed mass and heat transport during manufacturing field-effect heterotransistors with several
sources to decrease their dimensions. Framework the result of manufacturing it is necessary to manufacture
heterostructure with specific configuration. After that it is necessary to dope required areas of the hetero-
structure by diffusion or ion implantation to manufacture the required type of conductivity (p or n). After
the doping it is necessary to do optimize annealing. We introduce an analytical approach to prognosis mass
and heat transport during technological processes. Using the approach leads to take into account nonlineari-
ty of mass and heat transport and variation in space and time (at one time) physical parameters of these
processes
KEYWORDS
Field-effect transistor, transistor with several channels, increasing of compactness of transistors
1. INTRODUCTION
Now several problems of solid state electronic intensively solving. The problems are increasing
of density of elements of integrated circuits and at the same time decreasing of dimensions of
these elements [1-4], increasing performance [5-7] and increasing reliability [8,9]. Now one can
find intensive development of both power electronic devices and logical elements. In this paper
we consider an approach to manufacture more compact field-effect heterotransistor with several
sources. Framework the approach it is necessary to manufacture a heterostructure. The hetero-
structure consist of a substrate and an epitaxial layer (see Fig. 1). Several sections have been
manufactured into the epitaxial layer. These sections manufactured by using other materials (see
Fig. 1). The sections have been doped by diffusion or ion implantation to obtain required type of
conductivity (n or p). After the doping one can manufacture a field-effect transistor framework
the considered heterostructure so as it is shown on the Fig. 1. The doping should be finished by
annealing of dopant and/or radiation defects. The annealing should be optimized. The optimiza-
tion attracted an interest to manufacture more compact distributions of concentrations of dopant.
Framework the paper we formulate conditions to increase compactness and at the same time to
increase homogeneity of distribution of concentration of dopant in enriched by the dopant area.
Fig. 1. Structure of a field-effect heterotransistor. Top side of the structure
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
2
2. METHOD OF SOLUTION
To solve our aim we determine distribution of concentration of dopant C(x,y,z,t) in space and
time. To determine the distribution we solve the following boundary problem
( ) ( ) ( ) ( )






∂
∂
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC ,,,,,,,,,,,,
(1)
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( )
0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C(x,y,z,0)=fC(x,y,z). (2)
Here T is the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion
coefficient takes another value in other materials. Heating and cooling of heterostructure (see
Arrhenius law) also leads to changing of value of diffusion coefficient. We consider following
approximation of concentrational dependences of dopant diffusion coefficient [10-12]
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC ςςξ γ
γ
. (3)
Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate
and temperature; function P (x,y,z,T) describes dependences of limit of solubility on coordinate
and temperature; parameter γ ∈[1,3] is integer and depends on properties of materials; function V
(x,y,z,t) describes distribution of concentration of radiation vacancies on space and time with
equilibrium distribution V*
. Dependence of dopant diffusion coefficient on concentration of do-
pant has been investigated and described in details in [10]. Diffusion of dopant gives a possibility
to dope materials without generation radiation defects. In this situation ζ1= ζ2= 0. Ion doping of
dopant leads to generation radiation defects. Distributions of concentrations of point radiation
defects have been determined by solving the following boundary problem [11,12]
( ) ( ) ( ) ( ) ( ) ( ) ×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
IIII ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
tzyxI VII ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× (4)
( )
( )
( )
( )
( )
( ) ×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VVVV ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
tzyxV VIV ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+×
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxρ
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxρ
,
( ) 0
,,,
=
∂
∂
= yLy
y
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxρ
,
( ) 0
,,,
=
∂
∂
= zLz
z
tzyxρ
, ρ(x,y,z,0)=fρ (x,y,z). (5)
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
3
Here ρ=I,V; distribution of concentration of radiation interstitials in space and time describes by
the function I (x,y,z,t); terms of Eqs.(4) with quadric concentrations of point radiation defects
(V2
(x,y,z,t) and I2
(x,y,z,t)) correspond to generation of simplest complexes of radiation defects
(divacancies and diinterstitials); temperature and spatial dependences of diffusion coefficients of
point radiation defects describe by functions Dρ(x,y,z,T); temperature and spatial dependences of
parameter of recombination of point radiation defects describe by function kI,V(x,y,z,T); functions
kI,I(x,y,z,T) and kV,V(x,y,z,T) describe spatial and temperature dependences of parameters of gener-
ation of simplest complexes of point radiation defects.
Concentrations of divacancies ΦV (x,y,z,t) and dinterstitials ΦI (x,y,z,t) have been calculated by
solution of the following boundary problem [11,12]
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk
z
tzyx
TzyxD
z
III
I
I ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk
z
tzyx
TzyxD
z
VVV
V
V ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
( )
0
,,,
0
=
∂
Φ∂
=x
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
z
tzyxρ
, ΦI(x,y,z,0)=fΦI (x,y,z), ΦV(x,y,z,0)=fΦV (x,y,z). (7)
Functions DΦρ(x,y,z,T) describe spatial and temperature dependences of diffusion coefficients of
simplest complexes of point radiation defects; functions kI(x,y,z,T) and kV (x,y,z,T) describe spatial
and temperature dependences of parameters of decay of the above complexes.
Now let us consider equivalent integro-differential form of Eq.(1)
( ) ( ) ( ) ( )
( )
×∫ ∫ ∫








++=∫ ∫ ∫
t y
L
z
L
L
x
L
y
L
z
Lzyx y zx y z V
wvxV
V
wvxV
TwvxDudvdwdtwvuC
LLL
zyx
0
2*
2
2*1
,,,,,,
1,,,,,,
τ
ς
τ
ς
( )
( )
( ) ( ) ( )
×∫ ∫ ∫+





+×
t x
L
z
L
L
zxzy x z y
wyuC
TwyuD
LL
zx
LL
zy
d
x
wvxC
TwvxP
wvxC
0
,,,
,,,
,,,
,,,
,,,
1
∂
τ∂
τ
∂
τ∂τ
ξ γ
γ
( ) ( )
( )
( )
( )
( )∫ ∫ ∫ ×+





+








++×
t x
L
y
L
L
yx x y
TzvuD
LL
yx
d
TzyxP
wyuC
V
wyuV
V
wyuV
0
2*
2
2*1 ,,,
,,,
,,,
1
,,,,,,
1 τ
τ
ξ
τ
ς
τ
ς γ
γ
( ) ( )
( )
( )
( )
( ) ×+





+








++×
zyx LLL
zyx
d
z
zvuC
TzyxP
zvuC
V
zvuV
V
zvuV
τ
∂
τ∂τ
ξ
τ
ς
τ
ς γ
γ
,,,
,,,
,,,
1
,,,,,,
1 2*
2
2*1
( )∫ ∫ ∫×
x
L
y
L
z
Lx y z
udvdwdwvuf ,, . (1a)
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
4
We used the Bubnov-Galerkin approach [13] to calculate solution of the above equation. To use
the approach we consider of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nCnnnnC tezcycxcatzyxC
0
0 ,,, .
Here ( ) ( )[ ]222
0
22
exp −−−
++−= zyxCnC LLLtDnte π , cn(χ) = cos (π n χ/Lχ). Number of terms N of the
above series is finite. The series is almost coincides with solution of Eq.(1) in the linear case (i.e.
with ξ = 0) and average value of dopant diffusion coefficient D0. Framework the approach we
substitute the above series into Eq.(1a). After the substitution we obtain
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )∫ ∫ ∫ ×









∑+−=∑
==
t y
L
z
L
N
n
nCnnnnC
N
n
nCnnn
C
y z TwvxP
ewcvcxcatezsysxs
n
azyx
0 11
32
,,,
1 γ
γ
ξ
τ
π
( ) ( )
( )
( ) ( ) ( ) ( ) ( ) −∑








++×
=
zy
N
n
nCnnnnCL
LL
zy
dewcvcxsanTwvxD
V
wvxV
V
wvxV
1
2*
2
2*1 ,,,
,,,,,,
1 ττ
τ
ς
τ
ς
( ) ( )
( )
( ) ( ) ( ) ( )∫ ∫ ∫



×



∑+








++−
=
t x
L
z
L
N
m
mCmmmmC
zx x z
ewcycuca
V
wyuV
V
wyuV
LL
zx
0 1
2*
2
2*1 1
,,,,,,
1
γ
τ
τ
ς
τ
ς
( )
( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫−∑



×
=
t x
L
y
L
L
yx
N
n
nCnnnnCL
x y
TzvuD
LL
yx
dewcysucanTwyuD
TwyuP 01
,,,,,,
,,,
ττ
ξ
γ
( )
( ) ( ) ( ) ( ) ( ) ( )
( )
×








++









∑+×
=
2*
2
2*1
1
,,,,,,
1
,,,
1
V
zvuV
V
zvuV
ezcvcuca
TzvuP
N
n
nCnnnnC
τ
ς
τ
ςτ
ξ γ
γ
( ) ( ) ( ) ( ) ( )∫ ∫ ∫+∑×
=
x
L
y
L
z
Lzyx
N
n
nCnnnnC
x y z
udvdwdwvuf
LLL
zyx
dezsvcucan ,,
1
ττ . (8)
Here sn(χ)=sin(πnχ/Lχ). To determine coefficients an it is necessary to use orthogonality condi-
tion of terms of the above series framework scale of heterostructure. Using the condition leads to
the following equations to calculate of coefficients an for any quantity of terms N
( ) ( ) ( ) ( ) ( ) ( )
( )∫ ∫ ∫ ∫ ×









∑+−=∑−
==
t L L L N
n
nCnnnnCL
N
n
nC
nCzyx
x y z
TzyxP
ezcycxcaTzyxDte
n
aLLL
0 0 0 0 11
65
222
,,,
1,,, γ
γ
ξ
τ
π
( ) ( )
( )
( ) ( ) ( ) ( )[ ] ×∑






−+








++×
=
N
n
n
y
nnn
nCzy
yc
n
L
ysyycxs
n
a
V
zyxV
V
zyxVLL
1
2*
2
2*12
12
,,,,,,
1
2 π
τ
ς
τ
ς
π
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫






∑−






−+×
=
t L L L N
n
nCnnnnCn
z
nnCn
x y z
ezcycxcadxdydzdzc
n
L
zszezc
0 0 0 0 1
1
γ
ττ
π
τ
( )
( ) ( ) ( )
( )
( )



++








++



+× *12*
2
2*1
,,,
1
,,,,,,
1,,,1
,,, V
zyxV
V
zyxV
V
zyxV
TzyxD
TzyxP
L
τ
ς
τ
ς
τ
ς
ξ
γ
( )
( )
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )∑ ×






−+






−+




+
=
N
n
nnnn
z
nn
x
n
znC
zcysxczc
n
L
zszxc
n
L
xsx
n
La
V
zyxV
1
22*
2
2 211
2
,,,
πππ
τ
ς
( ) ( ) ( ) ( ) ( )
( )∫ ∫ ∫ ∫ ×









∑+−×
=
t L L L N
n
nCnnnnC
yx
nC
x y z
TzyxP
ezcycxca
LL
dxdydzde
0 0 0 0 1
2
,,,
1
2 γ
γ
ξ
τ
π
ττ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
5
( ) ( )
( )
( ) ( ) ( ) ( )[ ] ×∑






−+








++×
=
N
n
n
x
nn
nC
L xc
n
L
xsxxc
n
a
V
zyxV
V
zyxV
TzyxD
1
*12*
2
2 1
,,,,,,
1,,,
π
τ
ς
τ
ς
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×






−++






−+×
=
N
n
L
n
x
nnCn
y
nnn
x
xc
n
L
xsxdxdydzdeyc
n
L
ysyzsyc
1 0
11
π
ττ
π
( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫






−+






−+×
y z
L L
n
z
nn
y
n xdydzdzyxfzc
n
L
zszyc
n
L
ysy
0 0
,,11
ππ
. (9)
Now we consider several examples. For γ=0 we obtain
( ) ( )[ ] ( ) ( )[ ] ( ) ( )∫ ∫ ∫



×+






−+






−+=
x y zL L L
x
nn
y
nn
y
nnC
n
L
xsxydzdzyxfzc
n
L
zszyc
n
L
ysya
0 0 0
,,11
πππ
( )[ ]} ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ){







∫ ∫ ∫ ∫ +






−+−×
t L L L
nn
y
nLnnnn
x y z
ysyzc
n
L
zszTzyxDzcycxs
n
xdxc
0 0 0 0
1,,,2
2
1
π
( )[ ] ( ) ( )
( ) ( )
( ) ×





+








++



−+ xdydzdzc
TzyxPV
zyxV
V
zyxV
yc
n
L
nn
y
,,,
1
,,,,,,
11 2*
2
2*1 γ
ξτ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ×∫ ∫ ∫ ∫






−+






−++×
t L L L
n
y
nnnn
y
nnnCnC
x y z
zc
n
L
zszzcysxc
n
L
xsxxcede
0 0 0 0
121
ππ
τττ
( )
( )
( ) ( )
( )
+








++





+× τ
τ
ς
τ
ς
ξ
γ
dxdydzd
V
zyxV
V
zyxV
TzyxP
TzyxDL 2*
2
2*1
,,,,,,
1
,,,
1,,,
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ×∫ ∫ ∫ ∫






−+






−++
t L L L
Ln
y
nnn
x
nnnC
x y z
TzyxDyc
n
L
ysyycxc
n
L
xsxxce
0 0 0 0
,,,11
ππ
τ
( )
( )
( )
( )
( )
1
65
222
*12*
2
2
,,,,,,
1
,,,
12
−




−












++





+×
n
LLL
dxdydzd
V
zyxV
V
zyxV
TzyxP
zs zzz
n
π
τ
τ
ς
τ
ς
ξ
γ
.(10)
For γ=1 calculation of parameters an leads to the following results
( ) ( ) ( ) ( )∫ ∫ ∫+±−=
x y zL L L
nnnnn
n
n
nC xdydzdzyxfzcycxca
0 0 0
2
,,4
2
αβ
α
β
. (11)
Here ( ) ( )
( )
( )
( ) ( )
( )
∫ ∫ ∫ ∫ ×








++=
t L L L
L
nn
zy
n
x y z
V
zyxV
V
zyxV
TzyxP
TzyxD
ycxs
n
LL
0 0 0 0
2*
2
2*12
,,,,,,
1
,,,
,,,
2
2
τ
ς
τ
ς
π
ξ
α
( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×+






−+






−+×
n
LL
dexdydzdzc
n
L
zszyc
n
L
ysyzc zx
nCn
z
nn
y
nn 2
2
11
π
ξ
ττ
ππ
( ) ( ) ( ) ( )[ ] ( ) ( )
( )
( ) ( )[ ] ×∫ ∫ ∫ ∫






−−






−+×
t L L L
n
z
n
L
nn
x
nnnC
x y z
zc
n
L
zsz
TzyxP
TzyxD
ysxc
n
L
xsxxce
0 0 0 0
1
,,,
,,,
21
ππ
τ
( ) ( ) ( )
( )
( ) ( ) ( )×∫ ∫ ∫+








++×
t L L
nnnC
yx
n
x y
ycxce
n
LL
dxdydzd
V
zyxV
V
zyxV
zc
0 0 0
22*
2
2*1
2
,,,,,,
1 τ
π
ξ
τ
τ
ς
τ
ς
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
6
( )
( )
( )
( ) ( )
( )
( ) ( )[ ] ( ){∫ ×






−+








++×
zL
nn
x
n
L
n ysxc
n
L
xsx
V
zyxV
V
zyxV
TzyxP
TzyxD
zs
0
2*
2
2*1 1
,,,,,,
1
,,,
,,,
2
π
τ
ς
τ
ς
( )[ ] τ
π
dxdydzdyc
n
L
y n
y



−+× 1 , ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫=
t L L L
LnnnnC
zy
n
x y z
TzyxDzcycxse
n
LL
0 0 0 0
2
,,,2
2
τ
π
β
( ) ( )
( )
( ) ( )[ ] ( )[ ] ( ) ×






+−






−+








++× ysyyc
n
L
zdzc
n
L
zsz
V
zyxV
V
zyxV
nn
y
n
z
n 11
,,,,,,
1 2*
2
2*1
ππ
τ
ς
τ
ς
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )
∫ ∫ ∫ ∫ 


++






−++×
t L L L
nnn
x
nnnC
zx
x y z
V
zyxV
zcysxc
n
L
xsxxce
n
LL
dxdyd
0 0 0 0
*12
,,,
121
2
τ
ς
π
τ
π
τ
( )
( )
( ) ( ) ( )[ ] ( )∫ ×+






−+




+
t
nC
yx
n
z
nL e
n
LL
dxdydzdzc
n
L
zszTzyxD
V
zyxV
0
22*
2
2
2
1,,,
,,,
τ
π
τ
π
τ
ς
( ) ( )[ ] ( ) ( )[ ] ( ) ( )
( )
∫ ∫ ∫ ×








++






−+






−+×
x y zL L L
n
y
nn
x
n
V
zyxV
V
zyxV
yc
n
L
ysyxc
n
L
xsx
0 0 0
2*
2
2*1
,,,,,,
111
τ
ς
τ
ς
ππ
( ) ( ) ( ) ( ) ( ) 65222
,,,2 nteLLLdxdxcydyczdTzyxDzs nCzyxnnLn πτ −× .
It could be used the same approach to calculate values of parameters an for larger values of the
parameterγ. However the relations became more bulky and will not be present in the paper. The
considered approach gives a possibility to calculate distributions of concentrations of dopant and
radiation defects without joining of the above concentration on interfaces of the considered hete-
rostructure.
We solved equations of the system (4) by using Bubnov-Galerkin approach. To use the approach
we previously transform the differential equations to the following integro-differential form
( ) ( ) ( ) ×+∫ ∫ ∫
∂
∂
=∫ ∫ ∫
zx
t y
L
z
L
I
zy
x
L
y
L
z
Lzyx LL
zx
dvdwd
x
wvxI
TwvxD
LL
zy
udvdwdtwvuI
LLL
zyx
y zx y z 0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ( ) −∫ ∫ ∫
∂
∂
+∫ ∫ ∫
∂
∂
×
t x
L
y
L
I
yx
t x
L
z
L
I
x yx z
dudvd
z
zvuI
TzvuD
LL
yx
dudwd
x
wyuI
TwyuD
00
,,,
,,,
,,,
,,, τ
τ
τ
τ
( ) ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫−
x
L
y
L
z
L
II
zyx
x
L
y
L
z
L
VI
zyx x y zx y z
Twvuk
LLL
zyx
udvdwdtwvuVtwvuITwvuk
LLL
zyx
,,,,,,,,,,,, ,,
( ) ( )∫ ∫ ∫+×
x
L
y
L
z
L
I
zyx x y z
udvdwdwvuf
LLL
zyx
udvdwdtwvuI ,,,,,2
(4a)
( ) ( ) ( ) ×+∫ ∫ ∫
∂
∂
=∫ ∫ ∫
zx
t y
L
z
L
V
zy
x
L
y
L
z
Lzyx LL
zx
dvdwd
x
wvxV
TwvxD
LL
zy
udvdwdtwvuV
LLL
zyx
y zx y z 0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ( ) −∫ ∫ ∫
∂
∂
+∫ ∫ ∫
∂
∂
×
t x
L
y
L
V
yx
t x
L
z
L
V
x yx z
dudvd
z
zvuV
TzvuD
LL
yx
dudwd
x
wyuV
TwyuD
00
,,,
,,,
,,,
,,, τ
τ
τ
τ
( ) ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫−
x
L
y
L
z
L
VV
zyx
x
L
y
L
z
L
VI
zyx x y zx y z
Twvuk
LLL
zyx
udvdwdtwvuVtwvuITwvuk
LLL
zyx
,,,,,,,,,,,, ,,
( ) ( )∫ ∫ ∫+×
x
L
y
L
z
L
V
zyx x y z
udvdwdwvuf
LLL
zyx
udvdwdtwvuV ,,,,,2
.
Now we consider solutions of the above integro-differential equations as the following series
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
7
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Here anρ are coefficients, which should be determined. After substitution of the series into Eqs.
(4a) one can obtain
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
InnnInI
zyx
N
n
nInnn
nI
y z
dvdwdTwvxDzcycea
LLL
zy
tezsysxs
n
azyx
1 01
33
,,, ττ
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∑ ∫ ∫ ∫−×
==
N
n
nnI
zyx
N
n
t x
L
z
L
InnnInnI
zyx
n zsa
LLL
yx
dudwdTwyuDzcxceysa
LLL
zx
xs
x z 11 0
,,,
π
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ 


∑−∫ ∫ ∫×
=
x
L
y
L
z
L
N
n
nInnnnI
zyx
t x
L
y
L
InnnI
x y zx y
tewcvcuca
LLL
zyx
dudvdTzvuDycxce
2
10
,,, ττ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∑ ∑−×
= =
x
L
y
L
z
L
N
n
N
n
nnnnVnInnnnI
zyx
II
x y z
wcvcucatewcvcuca
LLL
zyx
udvdwdTvvuk
1 1
, ,,,
( ) ( ) ( )∫ ∫ ∫+×
x
L
y
L
z
L
I
zyx
VInV
x y z
udvdwdwvuf
LLL
zyx
udvdwdTvvukte ,,,,,, (12)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
VnnnVnV
zyx
N
n
nVnnn
nV
y z
dvdwdTwvxDzcycea
LLL
zy
tezsysxs
n
azyx
1 01
33
,,, ττ
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∑ ∫ ∫ ∫−×
==
N
n
nnV
zyx
N
n
t x
L
z
L
VnnnVnnV
zyx
n zsa
LLL
yx
dudwdTwyuDzcxceysa
LLL
zx
xs
x z 11 0
,,,
π
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ 


∑−∫ ∫ ∫×
=
x
L
y
L
z
L
N
n
nVnnnnV
zyx
t x
L
y
L
VnnnV
x y zx y
tewcvcuca
LLL
zyx
dudvdTzvuDycxce
2
10
,,, ττ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∑ ∑−×
= =
x
L
y
L
z
L
N
n
N
n
nnnnVnInnnnI
zyx
VV
x y z
wcvcucatewcvcuca
LLL
zyx
udvdwdTvvuk
1 1
, ,,,
( ) ( ) ( )∫ ∫ ∫+×
x
L
y
L
z
L
V
zyx
VInV
x y z
udvdwdwvuf
LLL
zyx
udvdwdTvvukte ,,,,,, .
We use orthogonality condition of functions in the above series on scale of the heterostructure to
calculate coefficients anρ. Using the condition gives a possibility to obtain equations for calcula-
tion the above coefficients for any quantity N of terms of considered series
( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nynnI
nI
x
N
n
nI
nIzyx
x y
yc
n
L
ysyLxce
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
π
τ
ππ
( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫



++−−∫






−+×
=
N
n
t L
xn
xnI
y
L
n
z
nI
xz
Lxc
n
L
n
a
L
dxdydzdzc
n
L
zszTzyxD
1 0 0
2
0
12
2
1
1
2
,,,
ππ
τ
π
( )} ( ) ( ) ( )[ ] ( )[ ] ( ) −∫ ∫ −






−+++
y z
L L
nInn
z
nzIn dexdydyczdzc
n
L
zszLTzyxDxsx
0 0
2112
2
2,,,2 ττ
π
( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nxnI
nI
z
x y
yc
n
L
ysyLxc
n
L
xsxLe
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
ππ
τ
π
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
8
( )[ ] ( ) ( ) ( )[ ] ( ) ×∑ ∫






+−+−∫ −×
=
N
n
L
nn
x
xnInI
L
In
xz
xsxxc
n
L
LteadxdydzdTzyxDzc
1 0
2
0
212
2
2,,,21
π
τ
( ) ( )[ ] ( ) ( )[ ] ( ) −∫ ∫






+−+






−++×
y z
L L
nn
z
zIIn
y
ny xdydzdzszzc
n
L
LTzyxkyc
n
L
ysyL
0 0
, 212
2
,,,12
2
2
ππ
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫






−++






−++−
=
N
n
L L
n
y
nyn
x
nxnVnInVnI
x y
yc
n
L
ysyLxc
n
L
xsxLteteaa
1 0 0
12
2
212
2
2
ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫






−++∫






−++×
=
N
n
L
n
x
n
L
n
z
nzVI
xz
xc
n
L
xsxxdydzdzc
n
L
zszLTzyxk
1 00
, 112
2
2,,,
ππ
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ∫






−++






−+×
y z
L L
n
z
nzIn
y
n xdydzdzc
n
L
zszLTzyxfyc
n
L
ysy
0 0
12
2
2,,,1
ππ
(13)
( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nynnV
nV
x
N
n
nV
nVzyx
x y
yc
n
L
ysyLxce
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
π
τ
ππ
( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫



++−−∫






−+×
=
N
n
t L
xn
xnV
y
L
n
z
nV
xz
Lxc
n
L
n
a
L
dxdydzdzc
n
L
zszTzyxD
1 0 0
2
0
12
2
1
1
2
,,,
ππ
τ
π
( )} ( ) ( ) ( )[ ] ( )[ ] ( ) −∫ ∫ −






−+++
y z
L L
nVnn
z
nzVn dexdydyczdzc
n
L
zszLTzyxDxsx
0 0
2112
2
2,,,2 ττ
π
( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nxnV
nV
z
x y
yc
n
L
ysyLxc
n
L
xsxLe
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
ππ
τ
π
( )[ ] ( ) ( ) ( )[ ] ( ) ×∑ ∫






+−+−∫ −×
=
N
n
L
nn
x
xnVnV
L
Vn
xz
xsxxc
n
L
LteadxdydzdTzyxDzc
1 0
2
0
212
2
2,,,21
π
τ
( ) ( )[ ] ( ) ( )[ ] ( ) −∫ ∫






+−+






−++×
y z
L L
nn
z
zVVn
y
ny xdydzdzszzc
n
L
LTzyxkyc
n
L
ysyL
0 0
, 212
2
,,,12
2
2
ππ
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫






−++






−++−
=
N
n
L L
n
y
nyn
x
nxnVnInVnI
x y
yc
n
L
ysyLxc
n
L
xsxLteteaa
1 0 0
12
2
212
2
2
ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫






−++∫






−++×
=
N
n
L
n
x
n
L
n
z
nzVI
xz
xc
n
L
xsxxdydzdzc
n
L
zszLTzyxk
1 00
, 112
2
2,,,
ππ
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ∫






−++






−+×
y z
L L
n
z
nzVn
y
n xdydzdzc
n
L
zszLTzyxfyc
n
L
ysy
0 0
12
2
2,,,1
ππ
.
Final relations for the above parameters takes the form
( )





 −
+−
+
±
+
−=
A
yb
yb
Ab
b
Ab
a nInV
nI
2
3
4
2
3
4
3
4
44
λγ
,
nInI
nInInInInI
nV
a
aa
a
χ
λδγ ++
−=
2
. (14)
Here ( ) ( ) ( ) ( )[ ] ( )∫ ∫ ∫



×++






−++=
x y zL L L
y
ynn
x
nxnn
n
L
Lysyxc
n
L
xsxLTzyxkte
0 0 0
,
2
212
2
2,,,2
ππ
γ ρρρρ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
9
( )[ ]} ( ) ( )[ ] xdydzdzc
n
L
zszLyc n
z
nzn






−++−× 12
2
212
π
, ( ) ( ){∫ ∫ ∫ +=
t L L
nn
x
n
x y
ysye
nL 0 0 0
2
2
1
τ
π
δ ρρ
( )[ ] ( ) ( )[ ] ( ) ( )[ ] ×+∫ −






−+



−+
y
L
nn
z
nn
y
L
dxdxcydzdTzyxDzc
n
L
zszyc
n
L z
π
τ
ππ
ρ
2
1
21,,,1
2
1
2 0
( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ∫



+−−






−++×
t L L L
n
z
nn
x
nxn
x y z
zc
n
L
TzyxDycxc
n
L
xsxLe
n 0 0 0 0
2
12
2
,,,21122
2
1
ππ
τ ρρ
( ) } ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ +






−+++++
t L L
nn
x
xnn
z
zn
x y
ysyxc
n
L
Lxsxe
nL
dxdydzdLzsz
0 0 0
2
122
2
1
2
π
τ
π
τ ρ
( )[ ] ( )[ ] ( ) ( )te
n
LLL
dxdydzdTzyxDzcyc
n
L
L n
zyx
L
nn
y
y
z
ρρ
π
τ
π 65
222
0
,,,211
2
−∫ −



−++ , ( ) ×= tenInIVχ
( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ){∫ ∫ ∫ ++






+−+






−+×
x y zL L L
nzVInn
y
yn
x
nnV zszLTzyxkysyyc
n
L
Lxc
n
L
xsxte
0 0 0
, 2,,,212
2
1
ππ
( )[ ] xdydzdzc
n
L
n
z



−+ 12
2π
, ( ) ( )[ ] ( ) ( )[ ] {∫ ∫ ∫ ×






−+






−+=
x y zL L L
n
y
nn
x
nn zyc
n
L
ysyxc
n
L
xsx
0 0 0
11
ππ
λ ρ
( ) ( )[ ] ( ) xdydzdTzyxfzc
n
L
zs n
z
n ,,,1 ρ
π 


−+× , 22
4 nInInInVb χγγγ −= , −−= 2
3 2 nInInInInVb χδδγγ
nInInV γχδ− , ( ) 22
2 2 nInInVnInInVnInVnInInVb χλλδχδγγλδγ −+−+= , nInInVnInVnIb λχδδγλ −= 21 ,
2
2
3 48 bbyA −+= , 2
4
2
342
9
3
b
bbb
p
−
= , 3
4
2
4132
3
3
54
2792
b
bbbbb
q
+−
= , −++−−+= 3 323 32
qpqqpqy
43 3bb− .
Now we will calculate distributions of concentrations of simplest complexes of radiation defects
as the following functional series
( ) ( ) ( ) ( ) ( )∑=Φ
=
Φ
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ (15)
with not yet known coefficients anΦρ. To calculate these coefficient we transform the Eqs.(6) to
the following integro-differential form
( ) ( )
( )
+∫ ∫ ∫
Φ
=∫ ∫ ∫ Φ Φ
t y
L
z
L
I
I
zy
x
L
y
L
z
L
I
zyx y zx y z
dvdwd
x
wvx
TwvxD
LL
zy
udvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( )
( )
( )
( )
∫ ∫ ∫ ×
Φ
+∫ ∫ ∫
Φ
+ ΦΦ
t x
L
y
L
I
I
t x
L
z
L
I
I
zx x yx z
dudvd
z
zvu
TzvuDdudwd
y
wyu
TwyuD
LL
zx
00
,,,
,,,
,,,
,,, τ
∂
τ∂
τ
∂
τ∂
( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫+×
x
L
y
L
z
L
I
zyx
x
L
y
L
z
L
II
zyxyx x y zx y z
Twvuk
LLL
zyx
udvdwdwvuITwvuk
LLL
zyx
LL
yx
,,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫+× Φ
x
L
y
L
z
L
I
zyx x y z
udvdwdwvuf
LLL
zyx
udvdwdwvuI ,,,,, τ (6a)
( ) ( )
( )
+∫ ∫ ∫
Φ
=∫ ∫ ∫ Φ Φ
t y
L
z
L
V
V
zy
x
L
y
L
z
L
V
zyx y zx y z
dvdwd
x
wvx
TwvxD
LL
zy
udvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( )
( )
( )
( )
∫ ∫ ∫ ×
Φ
+∫ ∫ ∫
Φ
+ ΦΦ
t x
L
y
L
V
V
t x
L
z
L
V
V
zx x yx z
dudvd
z
zvu
TzvuDdudwd
y
wyu
TwyuD
LL
zx
00
,,,
,,,
,,,
,,, τ
∂
τ∂
τ
∂
τ∂
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
10
( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫+×
x
L
y
L
z
L
V
zyx
x
L
y
L
z
L
VV
zyxyx x y zx y z
Twvuk
LLL
zyx
udvdwdwvuVTwvuk
LLL
zyx
LL
yx
,,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫+× Φ
x
L
y
L
z
L
V
zyx x y z
udvdwdwvuf
LLL
zyx
udvdwdwvuV ,,,,, τ .
Further we substitute the previously considered series in the Eqs.(6a). In this situation we obtain
the following equation
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
ΦΦ
=
Φ
N
n
t y
L
z
L
InnInIn
zyx
N
n
nInnn
In
y z
TwvxDvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
,,,
π
π
( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
ΦΦΦ
N
n
t x
L
z
L
InnInnIn
zyx
n
x z
dudwdTwvuDwcucteysna
LLL
zx
dvdwdwc
1 0
,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑ ∫ ∫ ∫−
=
ΦΦΦ
x
L
y
L
z
L
II
N
n
t x
L
y
L
InnInnIn
zyx x y zx y
TwvukdudvdTzvuDvcuctezsan
LLL
yx
,,,,,, ,
1 0
τ
π
( ) ( ) ( ) ×+∫ ∫ ∫−×
zyx
x
L
y
L
z
L
I
zyxzyx LLL
zyx
udvdwdwvuITwvuk
LLL
zyx
LLL
zyx
udvdwdwvuI
x y z
ττ ,,,,,,,,,2
( )∫ ∫ ∫× Φ
x
L
y
L
z
L
I
x y z
udvdwdwvuf ,, (16)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑−
=
ΦΦ
=
Φ
N
n
t y
L
z
L
VnnVnVn
zyx
N
n
nVnnn
Vn
y z
TwvxDvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
,,,
π
π
( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
ΦΦΦ
N
n
t x
L
z
L
VnnVnnVn
zyx
n
x z
dudwdTwvuDwcucteysna
LLL
zx
dvdwdwc
1 0
,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑ ∫ ∫ ∫−
=
ΦΦΦ
x
L
y
L
z
L
VV
N
n
t x
L
y
L
VnnVnnVn
zyx x y zx y
TwvukdudvdTzvuDvcuctezsan
LLL
yx
,,,,,, ,
1 0
τ
π
( ) ( ) ( ) ×+∫ ∫ ∫−×
zyx
x
L
y
L
z
L
V
zyxzyx LLL
zyx
udvdwdwvuVTwvuk
LLL
zyx
LLL
zyx
udvdwdwvuV
x y z
ττ ,,,,,,,,,2
( )∫ ∫ ∫× Φ
x
L
y
L
z
L
V
x y z
udvdwdwvuf ,, .
We use orthogonality condition of functions in the above series on scale of the heterostructure to
calculate coefficients anΦρ. Using the condition gives a possibility to obtain equations for calcula-
tion the above coefficients for any quantity N of terms of considered series
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
=
Φ
=
Φ
Φ
N
n
t L L
n
y
nyn
In
x
N
n
In
Inzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ ++−∫






−+×
=
Φ
ΦΦ
N
n
t L
xn
y
In
L
Inn
z
nI
xz
Lxsx
Ln
a
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ×−∫ ∫






−+−


−
+ ΦΦ
x
L L
Inn
z
nIn
n
x
L
dexdydzdzc
n
L
zszTzyxDyc
n
xc
L
y z
π
ττ
ππ
1
1
2
,,,21
2
12
0 0
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
11
( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×∑ ∫ ∫ ∫ ∫






+−+






−+×
=
ΦΦ
Φ
N
n
t L L L
Iyn
y
nn
x
nIn
In
x y z
TzyxDLyc
n
L
ysyxc
n
L
xsxe
n
a
1 0 0 0 0
2
,,,12
2
21
22 ππ
τ
( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ×∑∫ ∫ ∫






−+






+−+−×
=
Φ
N
n
t L L
n
y
nnn
x
Inn
x y
yc
n
L
ysyxsxxc
n
L
edxdydzdyc
10 0 0
1
2
1
2
21
ππ
ττ
( ) ( ) ( )[ ] ( ) ( ) ( ){∑∫ ∫ +−∫






+−×
=
Φ
Φ
N
n
t L
nIn
L
nn
z
II
In
xz
xsxexdydzdzszzc
n
L
TzyxktzyxI
n
a
10 00
,
2
33
1
2
,,,,,, τ
ππ
( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ]∫ ∫



+−






+−



−+ Φ
y z
L L
n
z
Inn
yIn
n
x
zc
n
L
tzyxITzyxkysyyc
n
L
n
a
xc
n
L
0 0
33
1
2
,,,,,,1
2
1
2 ππππ
( )} ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−+






−+++
=
Φ
Φ
N
n
t L L
n
y
nn
x
nIn
In
n
x y
yc
n
L
ysyxc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2 ππ
τ
π
( )[ ] ( ) ( )∫






+−× Φ
zL
Inn
z
xdydzdzyxfzszzc
n
L
0
,,1
2π
(17)
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
=
Φ
=
Φ
Φ
N
n
t L L
n
y
nyn
Vn
x
N
n
Vn
Vnzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ ++−∫






−+×
=
Φ
ΦΦ
N
n
t L
xn
y
Vn
L
Vnn
z
nV
xz
Lxsx
Ln
a
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( )
( )[ ] ( ) ( ) ( )[ ] ( ) ×−∫ ∫






−+−


−
+ ΦΦ
x
L L
Vnn
z
nVn
n
x
L
dexdydzdzc
n
L
zszTzyxDyc
n
xc
L
y z
π
ττ
ππ
1
1
2
,,,21
2
12
0 0
( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×∑ ∫ ∫ ∫ ∫






+−+






−+×
=
ΦΦ
Φ
N
n
t L L L
Vyn
y
nn
x
nVn
Vn
x y z
TzyxDLyc
n
L
ysyxc
n
L
xsxe
n
a
1 0 0 0 0
2
,,,12
2
21
22 ππ
τ
( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ×∑∫ ∫ ∫






−+






+−+−×
=
Φ
N
n
t L L
n
y
nnn
x
Vnn
x y
yc
n
L
ysyxsxxc
n
L
edxdydzdyc
10 0 0
1
2
1
2
21
ππ
ττ
( ) ( ) ( )[ ] ( ) ( ) ( ){∑∫ ∫ +−∫






+−×
=
Φ
Φ
N
n
t L
nVn
L
nn
z
VV
Vn
xz
xsxexdydzdzszzc
n
L
TzyxktzyxV
n
a
10 00
,
2
33
1
2
,,,,,, τ
ππ
( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ]∫ ∫



+−






+−



−+ Φ
y z
L L
n
z
Vnn
yVn
n
x
zc
n
L
tzyxVTzyxkysyyc
n
L
n
a
xc
n
L
0 0
33
1
2
,,,,,,1
2
1
2 ππππ
( )} ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−+






−+++
=
Φ
Φ
N
n
t L L
n
y
nn
x
nVn
Vn
n
x y
yc
n
L
ysyxc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2 ππ
τ
π
( )[ ] ( ) ( )∫






+−× Φ
zL
Vnn
z
xdydzdzyxfzszzc
n
L
0
,,1
2π
.
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
12
Fig.2a. Spatial distributions of concentration of dopant after infusion and annealing with the same anneal-
ing time before and after interface between layers of heterostructure. Curve 1 is the distribution of concen-
tration of dopant in homogenous sample with averaged dopant diffusion coefficient D0. Curves 2-6 are the
distribution of concentration of dopant in heterostructure with increasing difference between values of dif-
fusion coefficient. Value of dopant diffusion coefficient in the substrate is smaller, than in epitaxial the
layer
3. DISCUSSION
In this section analysis of distributions of concentration of dopant, infused (see Fig. 2a) or im-
planted (see Fig. 2b) into epitaxial layer have been done. Annealing time is the same for all
curves of these figures. One can find from these figures, that absolute value of gradient of con-
centration of dopant increases due to presents an interface between layers of heterostructure. In
this situation dimensions of the considered transistors decreases. At the same time homogeneity of
concentration of dopant in enriched area increases.
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.2b. Spatial distributions of concentration of dopant after implantation and annealing with the same an-
nealing time before and after interface between layers of heterostructure. Annealing time for curves 1 and 3
is equal to Θ = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Annealing time for curves 2 and 4 is equal to Θ = 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 are the distributions of concentration of dopant in homogenous sample.
Curves 3 and 4 are distributions of concentration of dopant in heterostructure under condition, when value
of dopant diffusion coefficient in the substrate is smaller, than in epitaxial the layer
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
13
To estimate optimal annealing time we estimate decreasing of absolute value of gradient of con-
centration of dopant near interface between layers of the heterostructure with increasing of an-
nealing time. Decreasing of annealing time leads to increasing inhomogeneity of distribution of
concentration of dopant. Estimation of the compromise value of annealing time has been done by
using recently introduced criterion [14,15]. To use the criterion we approximate real spatial dis-
tribution of concentration of dopant by idealized step-wise function ψ(x,y,z). After that we esti-
mate the required optimal annealing time by minimization of mean-square error [16-20]
( ) ( )[ ]∫ ∫ ∫ −Θ=
x y zL L L
zyx
xdydzdzyxzyxC
LLL
U
0 0 0
,,,,,
1
ψ . (18)
Minimization of the above mean-squared error leads to dependences of optimal annealing time on
parameters, which are presented on Figs. 3. It should be noted, that radiation defects, generated
during ion implantation, should be annealed. After ideal optimization of annealing time the im-
planted dopant should achieve the interface between layers of heterostructure. If annealing time is
smaller, it is attracted an interest to make additional annealing to achieve the interface. The Fig.
3b shows dependences of additional annealing time.
The figures shows, that optimal annealing time of implanted dopant is smaller in comparison with
optimal annealing time of infused dopant. If the considered heterostructure have been doped by
diffusion, any radiation damage of materials of layers is absent. On the other hand radiation
processing of materials of heterostructure (including of ion implantation) leads to decreasing of
mismatch-induced stress in the processed heterostructure [20].
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
ΘD0L
-2
3
2
4
1
Fig. 3a. Dependences of optimal annealing time of infused dopant on several parameters. Dependence of
the optimal annealing time on normalized thickness of the epitaxial layer a/L describes by curve 1 for ξ=γ=
0 for equal to each other values of dopant diffusion coefficient in both parts of heterostructure. Curve 2
describes dependence of the optimal annealing time on the parameter ε for a/L=1/2 and ξ= γ = 0. Curve 3
describes dependence of the optimal annealing time on the parameter ξ for a/L=1/2 and ε= γ = 0. Curve 4
describes dependence of the optimal annealing time on parameter γ for a/L=1/2 and ε=ξ=0
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
14
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
ΘD0L
-2
3
2
4
1
Fig.3b. Dependences of optimal annealing time of implanted dopant on several parameters. Dependence of
the optimal annealing time on normalized thickness of the epitaxial layer a/L describes by curve 1 for ξ=γ=
0 for equal to each other values of dopant diffusion coefficient in both parts of heterostructure. Curve 2
describes dependence of the optimal annealing time on the parameter ε for a/L=1/2 and ξ= γ = 0. Curve 3
describes dependence of the optimal annealing time on the parameter ξ for a/L=1/2 and ε= γ = 0. Curve 4
describes dependence of the optimal annealing time on parameter γ for a/L=1/2 and ε=ξ=0
4. CONCLUSIONS
In this paper we formulate several recommendations to optimize manufacture heterotransistor
with several source based on prognosis of time varying of spatial distributions of concentrations
of infused and implanted dopants in specific heterostructure. We also introduce analytical ap-
proach to prognosis diffusion and ion types of doping with account variation in space and time
parameters of technological parameters and nonlinearity of mass and heat transport.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russian and
educational fellowship for scientific research of Government of Nizhny Novgorod region of Rus-
sia.
REFERENCES
[1] Z. Ramezani, A.A. Orouji. A silicon-on-insulator metal semiconductor field-effect transistor with an L-
shaped buried oxide for high output-power density. Mat. Sci. Sem. Proc. Vol. 19. P. 124-129 (2014).
[2] Ch. Dong, J. Shi, J. Wu, Y. Chen, D. Zhou, Z. Hu, H. Xie, R. Zhan, Zh. Zou. Improvements in passiva-
tion effect of amorphous InGaZnO thin film transistors. Mat. Sci. Sem. Proc. Vol. 20. P. 7-11 (2014).
[3] V. Papageorgiou, A. Khalid, C. Li, M.J. Steer, D.R.S. Cumming. Integration techniques of pHEMTs
and planar Gunn diodes on GaAs substrates. Solid-State Electronics. Vol. 102. P. 87-92 (2014).
[4] R. Grassi, A. Gnudi, V. Di Lecce, E. Gnani, S. Reggiani, G. Baccarani. Boosting the voltage gain of
graphene FETs through a differential amplifier scheme with positive feedback. Solid-State Electronics.
Vol. 100. P. 54-60 (2014).
[5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin,
V.V. Milenin, A.V. Sachenko. Au-TiBx-n-6H-SiC Schottky barrier diodes: Specific features of charge
transport in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[6] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016
15
[7] T.T.A. Tuan, D.-H. Kuo, C.-C. Li, G.-Z. Li. Effect of temperature dependence on electrical characteri-
zation of p-n GaN diode fabricated by RF magnetron sputtering. Mat. Sci. Appl. Vol. 6. P. 809-817
(2015).
[8] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[9] R. Pal, R. Pandey, N. Pandey, R.Ch. Tiwari. Single CDBA Based Voltage Mode Bistable Multivibrator
and Its Applications. Circuits and Systems. Vol. 6 (11). P. 237-251 (2015).
[10] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[11] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[12] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys.
Vol. 61 (2). P. 289-388 (1989).
[13] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976).
[14] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007).
[15] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer structure
by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–
197 (2008).
[16] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[17] E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease
surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12
(2015).
[18] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[19] E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using
radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).
[20] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor heterostructure by
radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).
Authors:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical
Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of
Nizhny Novgorod State University. He has 155 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 103 published papers in area of her researches.

More Related Content

What's hot

ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...jedt_journal
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inijcsa
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...ijcsitcejournal
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain propertiesUniversity of Glasgow
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 

What's hot (12)

ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects in
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD Presentation
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain properties
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 

Similar to ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES

On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sourcesmsejjournal
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersZac Darcy
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...msejjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logicalijcsa
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseijaceeejournal
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...BRNSSPublicationHubI
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...msejjournal
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double basemsejjournal
 

Similar to ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES (20)

On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logical
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebase
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double base
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 

More from msejjournal

Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...msejjournal
 
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...msejjournal
 
International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp FabricFlammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp Fabricmsejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal ...
     Advances in Materials Science and Engineering: An International Journal ...     Advances in Materials Science and Engineering: An International Journal ...
Advances in Materials Science and Engineering: An International Journal ...msejjournal
 

More from msejjournal (20)

Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...
 
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
 
International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp FabricFlammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal ...
     Advances in Materials Science and Engineering: An International Journal ...     Advances in Materials Science and Engineering: An International Journal ...
Advances in Materials Science and Engineering: An International Journal ...
 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 

Recently uploaded (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 

ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES

  • 1. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 DOI:10.5121/msej.2016.3301 1 ON DECREASING OF DIMENSIONS OF FIELD- EFFECT TRANSISTORS WITH SEVERAL SOURCES E.L. Pankratov, E.A. Bulaeva Nizhny Novgorod State University, 2 Gagarin avenue, Nizhny Novgorod, 603950, Russia ABSTRACT We analyzed mass and heat transport during manufacturing field-effect heterotransistors with several sources to decrease their dimensions. Framework the result of manufacturing it is necessary to manufacture heterostructure with specific configuration. After that it is necessary to dope required areas of the hetero- structure by diffusion or ion implantation to manufacture the required type of conductivity (p or n). After the doping it is necessary to do optimize annealing. We introduce an analytical approach to prognosis mass and heat transport during technological processes. Using the approach leads to take into account nonlineari- ty of mass and heat transport and variation in space and time (at one time) physical parameters of these processes KEYWORDS Field-effect transistor, transistor with several channels, increasing of compactness of transistors 1. INTRODUCTION Now several problems of solid state electronic intensively solving. The problems are increasing of density of elements of integrated circuits and at the same time decreasing of dimensions of these elements [1-4], increasing performance [5-7] and increasing reliability [8,9]. Now one can find intensive development of both power electronic devices and logical elements. In this paper we consider an approach to manufacture more compact field-effect heterotransistor with several sources. Framework the approach it is necessary to manufacture a heterostructure. The hetero- structure consist of a substrate and an epitaxial layer (see Fig. 1). Several sections have been manufactured into the epitaxial layer. These sections manufactured by using other materials (see Fig. 1). The sections have been doped by diffusion or ion implantation to obtain required type of conductivity (n or p). After the doping one can manufacture a field-effect transistor framework the considered heterostructure so as it is shown on the Fig. 1. The doping should be finished by annealing of dopant and/or radiation defects. The annealing should be optimized. The optimiza- tion attracted an interest to manufacture more compact distributions of concentrations of dopant. Framework the paper we formulate conditions to increase compactness and at the same time to increase homogeneity of distribution of concentration of dopant in enriched by the dopant area. Fig. 1. Structure of a field-effect heterotransistor. Top side of the structure
  • 2. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 2 2. METHOD OF SOLUTION To solve our aim we determine distribution of concentration of dopant C(x,y,z,t) in space and time. To determine the distribution we solve the following boundary problem ( ) ( ) ( ) ( )       ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC ,,,,,,,,,,,, (1) ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C(x,y,z,0)=fC(x,y,z). (2) Here T is the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient takes another value in other materials. Heating and cooling of heterostructure (see Arrhenius law) also leads to changing of value of diffusion coefficient. We consider following approximation of concentrational dependences of dopant diffusion coefficient [10-12] ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ . (3) Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate and temperature; function P (x,y,z,T) describes dependences of limit of solubility on coordinate and temperature; parameter γ ∈[1,3] is integer and depends on properties of materials; function V (x,y,z,t) describes distribution of concentration of radiation vacancies on space and time with equilibrium distribution V* . Dependence of dopant diffusion coefficient on concentration of do- pant has been investigated and described in details in [10]. Diffusion of dopant gives a possibility to dope materials without generation radiation defects. In this situation ζ1= ζ2= 0. Ion doping of dopant leads to generation radiation defects. Distributions of concentrations of point radiation defects have been determined by solving the following boundary problem [11,12] ( ) ( ) ( ) ( ) ( ) ( ) ×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI IIII ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxI TzyxD z tzyxI VII ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× (4) ( ) ( ) ( ) ( ) ( ) ( ) ×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VVVV ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxV TzyxD z tzyxV VIV ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ ∂ = zLz z tzyxρ , ρ(x,y,z,0)=fρ (x,y,z). (5)
  • 3. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 3 Here ρ=I,V; distribution of concentration of radiation interstitials in space and time describes by the function I (x,y,z,t); terms of Eqs.(4) with quadric concentrations of point radiation defects (V2 (x,y,z,t) and I2 (x,y,z,t)) correspond to generation of simplest complexes of radiation defects (divacancies and diinterstitials); temperature and spatial dependences of diffusion coefficients of point radiation defects describe by functions Dρ(x,y,z,T); temperature and spatial dependences of parameter of recombination of point radiation defects describe by function kI,V(x,y,z,T); functions kI,I(x,y,z,T) and kV,V(x,y,z,T) describe spatial and temperature dependences of parameters of gener- ation of simplest complexes of point radiation defects. Concentrations of divacancies ΦV (x,y,z,t) and dinterstitials ΦI (x,y,z,t) have been calculated by solution of the following boundary problem [11,12] ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk z tzyx TzyxD z III I I ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk z tzyx TzyxD z VVV V V ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ ( ) 0 ,,, 0 = ∂ Φ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz z tzyxρ , ΦI(x,y,z,0)=fΦI (x,y,z), ΦV(x,y,z,0)=fΦV (x,y,z). (7) Functions DΦρ(x,y,z,T) describe spatial and temperature dependences of diffusion coefficients of simplest complexes of point radiation defects; functions kI(x,y,z,T) and kV (x,y,z,T) describe spatial and temperature dependences of parameters of decay of the above complexes. Now let us consider equivalent integro-differential form of Eq.(1) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫         ++=∫ ∫ ∫ t y L z L L x L y L z Lzyx y zx y z V wvxV V wvxV TwvxDudvdwdtwvuC LLL zyx 0 2* 2 2*1 ,,,,,, 1,,,,,, τ ς τ ς ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+      +× t x L z L L zxzy x z y wyuC TwyuD LL zx LL zy d x wvxC TwvxP wvxC 0 ,,, ,,, ,,, ,,, ,,, 1 ∂ τ∂ τ ∂ τ∂τ ξ γ γ ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ×+      +         ++× t x L y L L yx x y TzvuD LL yx d TzyxP wyuC V wyuV V wyuV 0 2* 2 2*1 ,,, ,,, ,,, 1 ,,,,,, 1 τ τ ξ τ ς τ ς γ γ ( ) ( ) ( ) ( ) ( ) ( ) ×+      +         ++× zyx LLL zyx d z zvuC TzyxP zvuC V zvuV V zvuV τ ∂ τ∂τ ξ τ ς τ ς γ γ ,,, ,,, ,,, 1 ,,,,,, 1 2* 2 2*1 ( )∫ ∫ ∫× x L y L z Lx y z udvdwdwvuf ,, . (1a)
  • 4. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 4 We used the Bubnov-Galerkin approach [13] to calculate solution of the above equation. To use the approach we consider of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( )∑= = N n nCnnnnC tezcycxcatzyxC 0 0 ,,, . Here ( ) ( )[ ]222 0 22 exp −−− ++−= zyxCnC LLLtDnte π , cn(χ) = cos (π n χ/Lχ). Number of terms N of the above series is finite. The series is almost coincides with solution of Eq.(1) in the linear case (i.e. with ξ = 0) and average value of dopant diffusion coefficient D0. Framework the approach we substitute the above series into Eq.(1a). After the substitution we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ×          ∑+−=∑ == t y L z L N n nCnnnnC N n nCnnn C y z TwvxP ewcvcxcatezsysxs n azyx 0 11 32 ,,, 1 γ γ ξ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑         ++× = zy N n nCnnnnCL LL zy dewcvcxsanTwvxD V wvxV V wvxV 1 2* 2 2*1 ,,, ,,,,,, 1 ττ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫    ×    ∑+         ++− = t x L z L N m mCmmmmC zx x z ewcycuca V wyuV V wyuV LL zx 0 1 2* 2 2*1 1 ,,,,,, 1 γ τ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫−∑    × = t x L y L L yx N n nCnnnnCL x y TzvuD LL yx dewcysucanTwyuD TwyuP 01 ,,,,,, ,,, ττ ξ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×         ++          ∑+× = 2* 2 2*1 1 ,,,,,, 1 ,,, 1 V zvuV V zvuV ezcvcuca TzvuP N n nCnnnnC τ ς τ ςτ ξ γ γ ( ) ( ) ( ) ( ) ( )∫ ∫ ∫+∑× = x L y L z Lzyx N n nCnnnnC x y z udvdwdwvuf LLL zyx dezsvcucan ,, 1 ττ . (8) Here sn(χ)=sin(πnχ/Lχ). To determine coefficients an it is necessary to use orthogonality condi- tion of terms of the above series framework scale of heterostructure. Using the condition leads to the following equations to calculate of coefficients an for any quantity of terms N ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ×          ∑+−=∑− == t L L L N n nCnnnnCL N n nC nCzyx x y z TzyxP ezcycxcaTzyxDte n aLLL 0 0 0 0 11 65 222 ,,, 1,,, γ γ ξ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑       −+         ++× = N n n y nnn nCzy yc n L ysyycxs n a V zyxV V zyxVLL 1 2* 2 2*12 12 ,,,,,, 1 2 π τ ς τ ς π ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫       ∑−       −+× = t L L L N n nCnnnnCn z nnCn x y z ezcycxcadxdydzdzc n L zszezc 0 0 0 0 1 1 γ ττ π τ ( ) ( ) ( ) ( ) ( ) ( )    ++         ++    +× *12* 2 2*1 ,,, 1 ,,,,,, 1,,,1 ,,, V zyxV V zyxV V zyxV TzyxD TzyxP L τ ς τ ς τ ς ξ γ ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )∑ ×       −+       −+     + = N n nnnn z nn x n znC zcysxczc n L zszxc n L xsx n La V zyxV 1 22* 2 2 211 2 ,,, πππ τ ς ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ×          ∑+−× = t L L L N n nCnnnnC yx nC x y z TzyxP ezcycxca LL dxdydzde 0 0 0 0 1 2 ,,, 1 2 γ γ ξ τ π ττ
  • 5. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 5 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑       −+         ++× = N n n x nn nC L xc n L xsxxc n a V zyxV V zyxV TzyxD 1 *12* 2 2 1 ,,,,,, 1,,, π τ ς τ ς ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×       −++       −+× = N n L n x nnCn y nnn x xc n L xsxdxdydzdeyc n L ysyzsyc 1 0 11 π ττ π ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫       −+       −+× y z L L n z nn y n xdydzdzyxfzc n L zszyc n L ysy 0 0 ,,11 ππ . (9) Now we consider several examples. For γ=0 we obtain ( ) ( )[ ] ( ) ( )[ ] ( ) ( )∫ ∫ ∫    ×+       −+       −+= x y zL L L x nn y nn y nnC n L xsxydzdzyxfzc n L zszyc n L ysya 0 0 0 ,,11 πππ ( )[ ]} ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ){        ∫ ∫ ∫ ∫ +       −+−× t L L L nn y nLnnnn x y z ysyzc n L zszTzyxDzcycxs n xdxc 0 0 0 0 1,,,2 2 1 π ( )[ ] ( ) ( ) ( ) ( ) ( ) ×      +         ++    −+ xdydzdzc TzyxPV zyxV V zyxV yc n L nn y ,,, 1 ,,,,,, 11 2* 2 2*1 γ ξτ ς τ ς π ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ×∫ ∫ ∫ ∫       −+       −++× t L L L n y nnnn y nnnCnC x y z zc n L zszzcysxc n L xsxxcede 0 0 0 0 121 ππ τττ ( ) ( ) ( ) ( ) ( ) +         ++      +× τ τ ς τ ς ξ γ dxdydzd V zyxV V zyxV TzyxP TzyxDL 2* 2 2*1 ,,,,,, 1 ,,, 1,,, ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ×∫ ∫ ∫ ∫       −+       −++ t L L L Ln y nnn x nnnC x y z TzyxDyc n L ysyycxc n L xsxxce 0 0 0 0 ,,,11 ππ τ ( ) ( ) ( ) ( ) ( ) 1 65 222 *12* 2 2 ,,,,,, 1 ,,, 12 −     −             ++      +× n LLL dxdydzd V zyxV V zyxV TzyxP zs zzz n π τ τ ς τ ς ξ γ .(10) For γ=1 calculation of parameters an leads to the following results ( ) ( ) ( ) ( )∫ ∫ ∫+±−= x y zL L L nnnnn n n nC xdydzdzyxfzcycxca 0 0 0 2 ,,4 2 αβ α β . (11) Here ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×         ++= t L L L L nn zy n x y z V zyxV V zyxV TzyxP TzyxD ycxs n LL 0 0 0 0 2* 2 2*12 ,,,,,, 1 ,,, ,,, 2 2 τ ς τ ς π ξ α ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×+       −+       −+× n LL dexdydzdzc n L zszyc n L ysyzc zx nCn z nn y nn 2 2 11 π ξ ττ ππ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ×∫ ∫ ∫ ∫       −−       −+× t L L L n z n L nn x nnnC x y z zc n L zsz TzyxP TzyxD ysxc n L xsxxce 0 0 0 0 1 ,,, ,,, 21 ππ τ ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫+         ++× t L L nnnC yx n x y ycxce n LL dxdydzd V zyxV V zyxV zc 0 0 0 22* 2 2*1 2 ,,,,,, 1 τ π ξ τ τ ς τ ς
  • 6. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 6 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ){∫ ×       −+         ++× zL nn x n L n ysxc n L xsx V zyxV V zyxV TzyxP TzyxD zs 0 2* 2 2*1 1 ,,,,,, 1 ,,, ,,, 2 π τ ς τ ς ( )[ ] τ π dxdydzdyc n L y n y    −+× 1 , ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫= t L L L LnnnnC zy n x y z TzyxDzcycxse n LL 0 0 0 0 2 ,,,2 2 τ π β ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( ) ×       +−       −+         ++× ysyyc n L zdzc n L zsz V zyxV V zyxV nn y n z n 11 ,,,,,, 1 2* 2 2*1 ππ τ ς τ ς ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ∫ ∫ ∫ ∫    ++       −++× t L L L nnn x nnnC zx x y z V zyxV zcysxc n L xsxxce n LL dxdyd 0 0 0 0 *12 ,,, 121 2 τ ς π τ π τ ( ) ( ) ( ) ( ) ( )[ ] ( )∫ ×+       −+     + t nC yx n z nL e n LL dxdydzdzc n L zszTzyxD V zyxV 0 22* 2 2 2 1,,, ,,, τ π τ π τ ς ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ∫ ∫ ∫ ×         ++       −+       −+× x y zL L L n y nn x n V zyxV V zyxV yc n L ysyxc n L xsx 0 0 0 2* 2 2*1 ,,,,,, 111 τ ς τ ς ππ ( ) ( ) ( ) ( ) ( ) 65222 ,,,2 nteLLLdxdxcydyczdTzyxDzs nCzyxnnLn πτ −× . It could be used the same approach to calculate values of parameters an for larger values of the parameterγ. However the relations became more bulky and will not be present in the paper. The considered approach gives a possibility to calculate distributions of concentrations of dopant and radiation defects without joining of the above concentration on interfaces of the considered hete- rostructure. We solved equations of the system (4) by using Bubnov-Galerkin approach. To use the approach we previously transform the differential equations to the following integro-differential form ( ) ( ) ( ) ×+∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ zx t y L z L I zy x L y L z Lzyx LL zx dvdwd x wvxI TwvxD LL zy udvdwdtwvuI LLL zyx y zx y z 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∂ ∂ +∫ ∫ ∫ ∂ ∂ × t x L y L I yx t x L z L I x yx z dudvd z zvuI TzvuD LL yx dudwd x wyuI TwyuD 00 ,,, ,,, ,,, ,,, τ τ τ τ ( ) ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫− x L y L z L II zyx x L y L z L VI zyx x y zx y z Twvuk LLL zyx udvdwdtwvuVtwvuITwvuk LLL zyx ,,,,,,,,,,,, ,, ( ) ( )∫ ∫ ∫+× x L y L z L I zyx x y z udvdwdwvuf LLL zyx udvdwdtwvuI ,,,,,2 (4a) ( ) ( ) ( ) ×+∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ zx t y L z L V zy x L y L z Lzyx LL zx dvdwd x wvxV TwvxD LL zy udvdwdtwvuV LLL zyx y zx y z 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∂ ∂ +∫ ∫ ∫ ∂ ∂ × t x L y L V yx t x L z L V x yx z dudvd z zvuV TzvuD LL yx dudwd x wyuV TwyuD 00 ,,, ,,, ,,, ,,, τ τ τ τ ( ) ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫− x L y L z L VV zyx x L y L z L VI zyx x y zx y z Twvuk LLL zyx udvdwdtwvuVtwvuITwvuk LLL zyx ,,,,,,,,,,,, ,, ( ) ( )∫ ∫ ∫+× x L y L z L V zyx x y z udvdwdwvuf LLL zyx udvdwdtwvuV ,,,,,2 . Now we consider solutions of the above integro-differential equations as the following series
  • 7. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 7 ( ) ( ) ( ) ( ) ( )∑= = N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Here anρ are coefficients, which should be determined. After substitution of the series into Eqs. (4a) one can obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L InnnInI zyx N n nInnn nI y z dvdwdTwvxDzcycea LLL zy tezsysxs n azyx 1 01 33 ,,, ττ π π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∑ ∫ ∫ ∫−× == N n nnI zyx N n t x L z L InnnInnI zyx n zsa LLL yx dudwdTwyuDzcxceysa LLL zx xs x z 11 0 ,,, π ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫    ∑−∫ ∫ ∫× = x L y L z L N n nInnnnI zyx t x L y L InnnI x y zx y tewcvcuca LLL zyx dudvdTzvuDycxce 2 10 ,,, ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∑ ∑−× = = x L y L z L N n N n nnnnVnInnnnI zyx II x y z wcvcucatewcvcuca LLL zyx udvdwdTvvuk 1 1 , ,,, ( ) ( ) ( )∫ ∫ ∫+× x L y L z L I zyx VInV x y z udvdwdwvuf LLL zyx udvdwdTvvukte ,,,,,, (12) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L VnnnVnV zyx N n nVnnn nV y z dvdwdTwvxDzcycea LLL zy tezsysxs n azyx 1 01 33 ,,, ττ π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∑ ∫ ∫ ∫−× == N n nnV zyx N n t x L z L VnnnVnnV zyx n zsa LLL yx dudwdTwyuDzcxceysa LLL zx xs x z 11 0 ,,, π ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫    ∑−∫ ∫ ∫× = x L y L z L N n nVnnnnV zyx t x L y L VnnnV x y zx y tewcvcuca LLL zyx dudvdTzvuDycxce 2 10 ,,, ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∑ ∑−× = = x L y L z L N n N n nnnnVnInnnnI zyx VV x y z wcvcucatewcvcuca LLL zyx udvdwdTvvuk 1 1 , ,,, ( ) ( ) ( )∫ ∫ ∫+× x L y L z L V zyx VInV x y z udvdwdwvuf LLL zyx udvdwdTvvukte ,,,,,, . We use orthogonality condition of functions in the above series on scale of the heterostructure to calculate coefficients anρ. Using the condition gives a possibility to obtain equations for calcula- tion the above coefficients for any quantity N of terms of considered series ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nynnI nI x N n nI nIzyx x y yc n L ysyLxce n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 π τ ππ ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫    ++−−∫       −+× = N n t L xn xnI y L n z nI xz Lxc n L n a L dxdydzdzc n L zszTzyxD 1 0 0 2 0 12 2 1 1 2 ,,, ππ τ π ( )} ( ) ( ) ( )[ ] ( )[ ] ( ) −∫ ∫ −       −+++ y z L L nInn z nzIn dexdydyczdzc n L zszLTzyxDxsx 0 0 2112 2 2,,,2 ττ π ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nxnI nI z x y yc n L ysyLxc n L xsxLe n a L 1 0 0 0 2 12 2 212 2 2 2 1 ππ τ π
  • 8. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 8 ( )[ ] ( ) ( ) ( )[ ] ( ) ×∑ ∫       +−+−∫ −× = N n L nn x xnInI L In xz xsxxc n L LteadxdydzdTzyxDzc 1 0 2 0 212 2 2,,,21 π τ ( ) ( )[ ] ( ) ( )[ ] ( ) −∫ ∫       +−+       −++× y z L L nn z zIIn y ny xdydzdzszzc n L LTzyxkyc n L ysyL 0 0 , 212 2 ,,,12 2 2 ππ ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫       −++       −++− = N n L L n y nyn x nxnVnInVnI x y yc n L ysyLxc n L xsxLteteaa 1 0 0 12 2 212 2 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫       −++∫       −++× = N n L n x n L n z nzVI xz xc n L xsxxdydzdzc n L zszLTzyxk 1 00 , 112 2 2,,, ππ ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ∫       −++       −+× y z L L n z nzIn y n xdydzdzc n L zszLTzyxfyc n L ysy 0 0 12 2 2,,,1 ππ (13) ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nynnV nV x N n nV nVzyx x y yc n L ysyLxce n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 π τ ππ ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫    ++−−∫       −+× = N n t L xn xnV y L n z nV xz Lxc n L n a L dxdydzdzc n L zszTzyxD 1 0 0 2 0 12 2 1 1 2 ,,, ππ τ π ( )} ( ) ( ) ( )[ ] ( )[ ] ( ) −∫ ∫ −       −+++ y z L L nVnn z nzVn dexdydyczdzc n L zszLTzyxDxsx 0 0 2112 2 2,,,2 ττ π ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nxnV nV z x y yc n L ysyLxc n L xsxLe n a L 1 0 0 0 2 12 2 212 2 2 2 1 ππ τ π ( )[ ] ( ) ( ) ( )[ ] ( ) ×∑ ∫       +−+−∫ −× = N n L nn x xnVnV L Vn xz xsxxc n L LteadxdydzdTzyxDzc 1 0 2 0 212 2 2,,,21 π τ ( ) ( )[ ] ( ) ( )[ ] ( ) −∫ ∫       +−+       −++× y z L L nn z zVVn y ny xdydzdzszzc n L LTzyxkyc n L ysyL 0 0 , 212 2 ,,,12 2 2 ππ ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫       −++       −++− = N n L L n y nyn x nxnVnInVnI x y yc n L ysyLxc n L xsxLteteaa 1 0 0 12 2 212 2 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫       −++∫       −++× = N n L n x n L n z nzVI xz xc n L xsxxdydzdzc n L zszLTzyxk 1 00 , 112 2 2,,, ππ ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ∫       −++       −+× y z L L n z nzVn y n xdydzdzc n L zszLTzyxfyc n L ysy 0 0 12 2 2,,,1 ππ . Final relations for the above parameters takes the form ( )       − +− + ± + −= A yb yb Ab b Ab a nInV nI 2 3 4 2 3 4 3 4 44 λγ , nInI nInInInInI nV a aa a χ λδγ ++ −= 2 . (14) Here ( ) ( ) ( ) ( )[ ] ( )∫ ∫ ∫    ×++       −++= x y zL L L y ynn x nxnn n L Lysyxc n L xsxLTzyxkte 0 0 0 , 2 212 2 2,,,2 ππ γ ρρρρ
  • 9. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 9 ( )[ ]} ( ) ( )[ ] xdydzdzc n L zszLyc n z nzn       −++−× 12 2 212 π , ( ) ( ){∫ ∫ ∫ += t L L nn x n x y ysye nL 0 0 0 2 2 1 τ π δ ρρ ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ×+∫ −       −+    −+ y L nn z nn y L dxdxcydzdTzyxDzc n L zszyc n L z π τ ππ ρ 2 1 21,,,1 2 1 2 0 ( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ∫    +−−       −++× t L L L n z nn x nxn x y z zc n L TzyxDycxc n L xsxLe n 0 0 0 0 2 12 2 ,,,21122 2 1 ππ τ ρρ ( ) } ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ +       −+++++ t L L nn x xnn z zn x y ysyxc n L Lxsxe nL dxdydzdLzsz 0 0 0 2 122 2 1 2 π τ π τ ρ ( )[ ] ( )[ ] ( ) ( )te n LLL dxdydzdTzyxDzcyc n L L n zyx L nn y y z ρρ π τ π 65 222 0 ,,,211 2 −∫ −    −++ , ( ) ×= tenInIVχ ( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ){∫ ∫ ∫ ++       +−+       −+× x y zL L L nzVInn y yn x nnV zszLTzyxkysyyc n L Lxc n L xsxte 0 0 0 , 2,,,212 2 1 ππ ( )[ ] xdydzdzc n L n z    −+ 12 2π , ( ) ( )[ ] ( ) ( )[ ] {∫ ∫ ∫ ×       −+       −+= x y zL L L n y nn x nn zyc n L ysyxc n L xsx 0 0 0 11 ππ λ ρ ( ) ( )[ ] ( ) xdydzdTzyxfzc n L zs n z n ,,,1 ρ π    −+× , 22 4 nInInInVb χγγγ −= , −−= 2 3 2 nInInInInVb χδδγγ nInInV γχδ− , ( ) 22 2 2 nInInVnInInVnInVnInInVb χλλδχδγγλδγ −+−+= , nInInVnInVnIb λχδδγλ −= 21 , 2 2 3 48 bbyA −+= , 2 4 2 342 9 3 b bbb p − = , 3 4 2 4132 3 3 54 2792 b bbbbb q +− = , −++−−+= 3 323 32 qpqqpqy 43 3bb− . Now we will calculate distributions of concentrations of simplest complexes of radiation defects as the following functional series ( ) ( ) ( ) ( ) ( )∑=Φ = Φ N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ (15) with not yet known coefficients anΦρ. To calculate these coefficient we transform the Eqs.(6) to the following integro-differential form ( ) ( ) ( ) +∫ ∫ ∫ Φ =∫ ∫ ∫ Φ Φ t y L z L I I zy x L y L z L I zyx y zx y z dvdwd x wvx TwvxD LL zy udvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( ) ( ) ∫ ∫ ∫ × Φ +∫ ∫ ∫ Φ + ΦΦ t x L y L I I t x L z L I I zx x yx z dudvd z zvu TzvuDdudwd y wyu TwyuD LL zx 00 ,,, ,,, ,,, ,,, τ ∂ τ∂ τ ∂ τ∂ ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫+× x L y L z L I zyx x L y L z L II zyxyx x y zx y z Twvuk LLL zyx udvdwdwvuITwvuk LLL zyx LL yx ,,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫+× Φ x L y L z L I zyx x y z udvdwdwvuf LLL zyx udvdwdwvuI ,,,,, τ (6a) ( ) ( ) ( ) +∫ ∫ ∫ Φ =∫ ∫ ∫ Φ Φ t y L z L V V zy x L y L z L V zyx y zx y z dvdwd x wvx TwvxD LL zy udvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( ) ( ) ∫ ∫ ∫ × Φ +∫ ∫ ∫ Φ + ΦΦ t x L y L V V t x L z L V V zx x yx z dudvd z zvu TzvuDdudwd y wyu TwyuD LL zx 00 ,,, ,,, ,,, ,,, τ ∂ τ∂ τ ∂ τ∂
  • 10. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 10 ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫+× x L y L z L V zyx x L y L z L VV zyxyx x y zx y z Twvuk LLL zyx udvdwdwvuVTwvuk LLL zyx LL yx ,,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫+× Φ x L y L z L V zyx x y z udvdwdwvuf LLL zyx udvdwdwvuV ,,,,, τ . Further we substitute the previously considered series in the Eqs.(6a). In this situation we obtain the following equation ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = ΦΦ = Φ N n t y L z L InnInIn zyx N n nInnn In y z TwvxDvctexsan LLL zy tezsysxs n a zyx 1 01 33 ,,, π π ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = ΦΦΦ N n t x L z L InnInnIn zyx n x z dudwdTwvuDwcucteysna LLL zx dvdwdwc 1 0 ,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑ ∫ ∫ ∫− = ΦΦΦ x L y L z L II N n t x L y L InnInnIn zyx x y zx y TwvukdudvdTzvuDvcuctezsan LLL yx ,,,,,, , 1 0 τ π ( ) ( ) ( ) ×+∫ ∫ ∫−× zyx x L y L z L I zyxzyx LLL zyx udvdwdwvuITwvuk LLL zyx LLL zyx udvdwdwvuI x y z ττ ,,,,,,,,,2 ( )∫ ∫ ∫× Φ x L y L z L I x y z udvdwdwvuf ,, (16) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑− = ΦΦ = Φ N n t y L z L VnnVnVn zyx N n nVnnn Vn y z TwvxDvctexsan LLL zy tezsysxs n a zyx 1 01 33 ,,, π π ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = ΦΦΦ N n t x L z L VnnVnnVn zyx n x z dudwdTwvuDwcucteysna LLL zx dvdwdwc 1 0 ,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑ ∫ ∫ ∫− = ΦΦΦ x L y L z L VV N n t x L y L VnnVnnVn zyx x y zx y TwvukdudvdTzvuDvcuctezsan LLL yx ,,,,,, , 1 0 τ π ( ) ( ) ( ) ×+∫ ∫ ∫−× zyx x L y L z L V zyxzyx LLL zyx udvdwdwvuVTwvuk LLL zyx LLL zyx udvdwdwvuV x y z ττ ,,,,,,,,,2 ( )∫ ∫ ∫× Φ x L y L z L V x y z udvdwdwvuf ,, . We use orthogonality condition of functions in the above series on scale of the heterostructure to calculate coefficients anΦρ. Using the condition gives a possibility to obtain equations for calcula- tion the above coefficients for any quantity N of terms of considered series ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− = Φ = Φ Φ N n t L L n y nyn In x N n In Inzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ ++−∫       −+× = Φ ΦΦ N n t L xn y In L Inn z nI xz Lxsx Ln a dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ×−∫ ∫       −+−   − + ΦΦ x L L Inn z nIn n x L dexdydzdzc n L zszTzyxDyc n xc L y z π ττ ππ 1 1 2 ,,,21 2 12 0 0
  • 11. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 11 ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×∑ ∫ ∫ ∫ ∫       +−+       −+× = ΦΦ Φ N n t L L L Iyn y nn x nIn In x y z TzyxDLyc n L ysyxc n L xsxe n a 1 0 0 0 0 2 ,,,12 2 21 22 ππ τ ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ×∑∫ ∫ ∫       −+       +−+−× = Φ N n t L L n y nnn x Inn x y yc n L ysyxsxxc n L edxdydzdyc 10 0 0 1 2 1 2 21 ππ ττ ( ) ( ) ( )[ ] ( ) ( ) ( ){∑∫ ∫ +−∫       +−× = Φ Φ N n t L nIn L nn z II In xz xsxexdydzdzszzc n L TzyxktzyxI n a 10 00 , 2 33 1 2 ,,,,,, τ ππ ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ]∫ ∫    +−       +−    −+ Φ y z L L n z Inn yIn n x zc n L tzyxITzyxkysyyc n L n a xc n L 0 0 33 1 2 ,,,,,,1 2 1 2 ππππ ( )} ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −+       −+++ = Φ Φ N n t L L n y nn x nIn In n x y yc n L ysyxc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 ππ τ π ( )[ ] ( ) ( )∫       +−× Φ zL Inn z xdydzdzyxfzszzc n L 0 ,,1 2π (17) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− = Φ = Φ Φ N n t L L n y nyn Vn x N n Vn Vnzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ ++−∫       −+× = Φ ΦΦ N n t L xn y Vn L Vnn z nV xz Lxsx Ln a dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ×−∫ ∫       −+−   − + ΦΦ x L L Vnn z nVn n x L dexdydzdzc n L zszTzyxDyc n xc L y z π ττ ππ 1 1 2 ,,,21 2 12 0 0 ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×∑ ∫ ∫ ∫ ∫       +−+       −+× = ΦΦ Φ N n t L L L Vyn y nn x nVn Vn x y z TzyxDLyc n L ysyxc n L xsxe n a 1 0 0 0 0 2 ,,,12 2 21 22 ππ τ ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ×∑∫ ∫ ∫       −+       +−+−× = Φ N n t L L n y nnn x Vnn x y yc n L ysyxsxxc n L edxdydzdyc 10 0 0 1 2 1 2 21 ππ ττ ( ) ( ) ( )[ ] ( ) ( ) ( ){∑∫ ∫ +−∫       +−× = Φ Φ N n t L nVn L nn z VV Vn xz xsxexdydzdzszzc n L TzyxktzyxV n a 10 00 , 2 33 1 2 ,,,,,, τ ππ ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ]∫ ∫    +−       +−    −+ Φ y z L L n z Vnn yVn n x zc n L tzyxVTzyxkysyyc n L n a xc n L 0 0 33 1 2 ,,,,,,1 2 1 2 ππππ ( )} ( ) ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −+       −+++ = Φ Φ N n t L L n y nn x nVn Vn n x y yc n L ysyxc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 ππ τ π ( )[ ] ( ) ( )∫       +−× Φ zL Vnn z xdydzdzyxfzszzc n L 0 ,,1 2π .
  • 12. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 12 Fig.2a. Spatial distributions of concentration of dopant after infusion and annealing with the same anneal- ing time before and after interface between layers of heterostructure. Curve 1 is the distribution of concen- tration of dopant in homogenous sample with averaged dopant diffusion coefficient D0. Curves 2-6 are the distribution of concentration of dopant in heterostructure with increasing difference between values of dif- fusion coefficient. Value of dopant diffusion coefficient in the substrate is smaller, than in epitaxial the layer 3. DISCUSSION In this section analysis of distributions of concentration of dopant, infused (see Fig. 2a) or im- planted (see Fig. 2b) into epitaxial layer have been done. Annealing time is the same for all curves of these figures. One can find from these figures, that absolute value of gradient of con- centration of dopant increases due to presents an interface between layers of heterostructure. In this situation dimensions of the considered transistors decreases. At the same time homogeneity of concentration of dopant in enriched area increases. x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.2b. Spatial distributions of concentration of dopant after implantation and annealing with the same an- nealing time before and after interface between layers of heterostructure. Annealing time for curves 1 and 3 is equal to Θ = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Annealing time for curves 2 and 4 is equal to Θ = 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 are the distributions of concentration of dopant in homogenous sample. Curves 3 and 4 are distributions of concentration of dopant in heterostructure under condition, when value of dopant diffusion coefficient in the substrate is smaller, than in epitaxial the layer
  • 13. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 13 To estimate optimal annealing time we estimate decreasing of absolute value of gradient of con- centration of dopant near interface between layers of the heterostructure with increasing of an- nealing time. Decreasing of annealing time leads to increasing inhomogeneity of distribution of concentration of dopant. Estimation of the compromise value of annealing time has been done by using recently introduced criterion [14,15]. To use the criterion we approximate real spatial dis- tribution of concentration of dopant by idealized step-wise function ψ(x,y,z). After that we esti- mate the required optimal annealing time by minimization of mean-square error [16-20] ( ) ( )[ ]∫ ∫ ∫ −Θ= x y zL L L zyx xdydzdzyxzyxC LLL U 0 0 0 ,,,,, 1 ψ . (18) Minimization of the above mean-squared error leads to dependences of optimal annealing time on parameters, which are presented on Figs. 3. It should be noted, that radiation defects, generated during ion implantation, should be annealed. After ideal optimization of annealing time the im- planted dopant should achieve the interface between layers of heterostructure. If annealing time is smaller, it is attracted an interest to make additional annealing to achieve the interface. The Fig. 3b shows dependences of additional annealing time. The figures shows, that optimal annealing time of implanted dopant is smaller in comparison with optimal annealing time of infused dopant. If the considered heterostructure have been doped by diffusion, any radiation damage of materials of layers is absent. On the other hand radiation processing of materials of heterostructure (including of ion implantation) leads to decreasing of mismatch-induced stress in the processed heterostructure [20]. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 ΘD0L -2 3 2 4 1 Fig. 3a. Dependences of optimal annealing time of infused dopant on several parameters. Dependence of the optimal annealing time on normalized thickness of the epitaxial layer a/L describes by curve 1 for ξ=γ= 0 for equal to each other values of dopant diffusion coefficient in both parts of heterostructure. Curve 2 describes dependence of the optimal annealing time on the parameter ε for a/L=1/2 and ξ= γ = 0. Curve 3 describes dependence of the optimal annealing time on the parameter ξ for a/L=1/2 and ε= γ = 0. Curve 4 describes dependence of the optimal annealing time on parameter γ for a/L=1/2 and ε=ξ=0
  • 14. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 14 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 ΘD0L -2 3 2 4 1 Fig.3b. Dependences of optimal annealing time of implanted dopant on several parameters. Dependence of the optimal annealing time on normalized thickness of the epitaxial layer a/L describes by curve 1 for ξ=γ= 0 for equal to each other values of dopant diffusion coefficient in both parts of heterostructure. Curve 2 describes dependence of the optimal annealing time on the parameter ε for a/L=1/2 and ξ= γ = 0. Curve 3 describes dependence of the optimal annealing time on the parameter ξ for a/L=1/2 and ε= γ = 0. Curve 4 describes dependence of the optimal annealing time on parameter γ for a/L=1/2 and ε=ξ=0 4. CONCLUSIONS In this paper we formulate several recommendations to optimize manufacture heterotransistor with several source based on prognosis of time varying of spatial distributions of concentrations of infused and implanted dopants in specific heterostructure. We also introduce analytical ap- proach to prognosis diffusion and ion types of doping with account variation in space and time parameters of technological parameters and nonlinearity of mass and heat transport. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russian and educational fellowship for scientific research of Government of Nizhny Novgorod region of Rus- sia. REFERENCES [1] Z. Ramezani, A.A. Orouji. A silicon-on-insulator metal semiconductor field-effect transistor with an L- shaped buried oxide for high output-power density. Mat. Sci. Sem. Proc. Vol. 19. P. 124-129 (2014). [2] Ch. Dong, J. Shi, J. Wu, Y. Chen, D. Zhou, Z. Hu, H. Xie, R. Zhan, Zh. Zou. Improvements in passiva- tion effect of amorphous InGaZnO thin film transistors. Mat. Sci. Sem. Proc. Vol. 20. P. 7-11 (2014). [3] V. Papageorgiou, A. Khalid, C. Li, M.J. Steer, D.R.S. Cumming. Integration techniques of pHEMTs and planar Gunn diodes on GaAs substrates. Solid-State Electronics. Vol. 102. P. 87-92 (2014). [4] R. Grassi, A. Gnudi, V. Di Lecce, E. Gnani, S. Reggiani, G. Baccarani. Boosting the voltage gain of graphene FETs through a differential amplifier scheme with positive feedback. Solid-State Electronics. Vol. 100. P. 54-60 (2014). [5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au-TiBx-n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [6] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).
  • 15. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 3, September 2016 15 [7] T.T.A. Tuan, D.-H. Kuo, C.-C. Li, G.-Z. Li. Effect of temperature dependence on electrical characteri- zation of p-n GaN diode fabricated by RF magnetron sputtering. Mat. Sci. Appl. Vol. 6. P. 809-817 (2015). [8] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [9] R. Pal, R. Pandey, N. Pandey, R.Ch. Tiwari. Single CDBA Based Voltage Mode Bistable Multivibrator and Its Applications. Circuits and Systems. Vol. 6 (11). P. 237-251 (2015). [10] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [11] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [12] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). [13] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976). [14] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007). [15] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187– 197 (2008). [16] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [17] E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12 (2015). [18] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [19] E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012). [20] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor heterostructure by radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014). Authors: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 155 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 103 published papers in area of her researches.