Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي

110,464 views

Published on

جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
http://www.mlzamty.com/

Published in: Education
  • Follow the link, new dating source: ♥♥♥ http://bit.ly/2Qu6Caa ♥♥♥
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Dating for everyone is here: ❤❤❤ http://bit.ly/2Qu6Caa ❤❤❤
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي

  1. 1. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻌﺮﯾﻒ‬: ‫ﻛﺎﻧﺖ‬ ‫إذا‬‫ﺳﺲ‬،‫ﺻﺺ‬‫ﻣﻦ‬ ‫اﻟﻌﻼﻗﺔ‬ ‫ﻓﺈن‬ ‫ﺧﺎﻟﯿﺘﯿﻦ‬ ‫ﻏﯿﺮ‬ ‫ﻣﺠﻤﻮﻋﺘﯿﻦ‬‫ﺳﺲ‬‫اﻟﻰ‬‫ﺻﺺ‬‫داﻟﺔ‬ ‫ﺗﺴﻤﻰ‬ ‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻋﻨﺼﺮ‬ ‫ﻛﻞ‬ ‫ارﺗﺒﻂ‬ ‫إذا‬‫ﺳﺲ‬‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻓﻘﻂ‬ ‫واﺣﺪ‬ ‫ﺑﻌﻨﺼﺮ‬‫ﺻﺺ‬ ‫د‬ ‫ﺗﻜﺘﺐ‬ ‫و‬:‫ﺳﺲ‬C‫ﺻﺺ‬‫ص‬ ‫أو‬=‫د‬)‫س‬( ‫ﺑﻄﺮﯾﻘﺘﯿﻦ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻋﻦ‬ ‫ﻧﻌﺒﺮ‬: )١(‫اﻟﻤﺮﺗ‬ ‫اﻻزواج‬ ‫ﻣﻦ‬ ‫ﻛﻤﺠﻤﻮﻋﺔ‬‫ﺒﺔ‬)‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎن‬(‫د‬:‫ﺳﺲ‬C‫ﺻﺺ‬ )٢(‫اﻟﺪاﻟﺔ‬ ‫ﻗﺎﻋﺪة‬ ‫ﺗﺴﻤﻰ‬ ‫رﯾﺎﺿﯿﺔ‬ ‫ﺑﻘﺎﻋﺪة‬)‫اﻟﺪاﻟﺔ‬ ‫ﺗﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺼﻮر‬: (‫ص‬=‫د‬)‫س‬( ‫اﻟﻤﺪى‬ ‫و‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﻤﺠﺎل‬ ‫و‬ ‫اﻟﻤﺠﺎل‬: ‫ﻣﺎ‬ ‫ﻟﺪاﻟﺔ‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻣﻦ‬: ‫اﻟﻤﺠﺎل‬: ‫ھﻮ‬‫اﻟﻌﻨ‬ ‫ﻣﺠﻤﻮﻋﺔ‬‫ﺎﺻ‬‫اﻟﻤﺘﻐ‬ ‫ﯾﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫ﺮ‬‫ـ‬‫اﻟﻨ‬ ‫ﯾﻜـﻮن‬ ‫ﺑﺤﯿﺚ‬ ‫س‬ ‫ﯿﺮ‬‫ﺎﺗﺞ‬ ‫ﻣﻌﺮﻓﺔ‬ ‫ﻛﻤﯿﺔ‬"‫ﺣﻘﯿﻘﻰ‬ ‫ﻋـﺪد‬. "‫ﺳﺲ‬=}١،٢،٣،٤{ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﻗﯿﻤﮫ‬ ‫ﺗﻜﻮن‬ ‫و‬)‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫ﻟﻠﺸﻜﻞ‬ ‫اﻟﻤﻘﺎﺑﻠﺔ‬ ‫اﻟﻔﺘﺮة‬( ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﻤﺠﺎل‬:‫ﺗﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻷﻋﺪاد‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻮ‬‫ﺻﺺ‬=}٥،٦،٧،٨،٩{ ‫اﻟﻤﺪى‬:}٦،٨،٩{ ‫ﻋﻨﺎ‬ ‫ﺻﻮر‬ ‫ﻣﺠﻤﻮﻋﺔ‬‫ﺻﺮ‬‫ﺳﺲ‬‫ﻓﻰ‬‫ﺻﺺ‬ )‫س‬ ‫ﺑﻌﻨﺎﺻﺮ‬ ‫اﻟﻤﺮﺗﺒﻄﺔ‬ ‫ص‬ ‫ﻓﻰ‬ ‫اﻟﻌﻨﺎﺻﺮ‬( ‫ص‬ ‫اﻟﻤﺘﻐﯿﺮ‬ ‫ﯾﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﻌﻨﺎﺻﺮ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻮ‬ ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﻣﻦ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻋﻠﯿﮫ‬ ‫وﻧﺤﺼﻞ‬ ][‫ﻗﯿﻤﺔ‬ ‫أﺳﻔﻞ‬،‫ﻗﯿﻤﺔ‬ ‫أﻋﻠﻰ‬][ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬:‫ﻣﻦ‬ ‫ﺟﺰﺋﯿﺔ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫و‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫داﻟﺔ‬ ‫ھﻰ‬‫ح‬ ‫اﻷوﻟﻰ‬ ‫اﻟﻮﺣﺪة‬:‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪوال‬
  2. 2. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢ ‫اﻟﻌ‬‫ﺑﯿﺎﻧﯿﺎ‬ ‫داﻟﺔ‬ ‫ﺗﻜﻮن‬ ‫ﻼﻗﺔ‬)‫اﻟﺮأﺳﻰ‬ ‫اﻟﺨﻂ‬ ‫اﺧﺘﺒﺎر‬: ( ‫اﻟﺮأﺳﻲ‬ ‫اﻟﺨﻂ‬ ‫ﻗﻄﻊ‬ ‫و‬ ‫ﻣﺘﻌﺎﻣﺪ‬ ‫اﺣﺪاﺛﻰ‬ ‫ﻣﺴﺘﻮى‬ ‫ﻓﻰ‬ ‫اﻟﻨﻘﺎط‬ ‫ﻣﻦ‬ ‫ﺑﻤﺠﻤﻮﻋﺔ‬ ‫ﻋﻼﻗﺔ‬ ‫ﻣﺜﻠﺚ‬ ‫إذا‬ ‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬ ‫اﻟﻌﻼﻗﺔ‬ ‫ھﺬه‬ ‫ﻓﺈن‬ ‫ﻓﻘﻂ‬ ‫ﻧﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫ﺗﻤﺜﯿﻠﯿﮭﻤﺎ‬ ‫اﻟﻤﺠﺎل‬ ‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻋﻨﺼﺮ‬ ‫ﻛﻞ‬ ‫ﻋﻨﺪ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﯾﻤﺜﻞ‬ ‫اﻵﺗﯿﺔ‬ ‫اﻻﺷﻜﺎل‬ ‫ﻣﻦ‬ ‫أﯾﺎ‬‫؟‬ ‫ﻟﻤﺎذا‬ ‫و‬ ‫س‬ ‫ﻓﻰ‬ ‫اﻟﺔ‬ -٢ ]١[ -١ ١ ٢ ‫س‬ ‫ص‬ ٢ ١ -١ -١ ١ ٢ ‫س‬ ‫ص‬ ٢ ١ -١ -١ ١ ٢ ‫س‬ ‫ص‬ ٢ ١ -١ -٢ -٢ -١ ١ ٢ ‫س‬ ‫ص‬ ٢ ١ -١ -٢ -٢ -١ ١ ٢ ‫س‬ ‫ص‬ ٢ ١ -١ -١ ١ ٢ ‫س‬ ‫ص‬ ٢ ١ -١ -٢-٢ ]٢[]٣[ ]٦[ ]٥[ ]٤[
  3. 3. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٣ ‫اﻟﺤﻞ‬: ‫اﻟﺸﻜﻞ‬]١: [ ‫ﺑﺎﻟﻨﻘﻄﺔ‬ ‫اﻟﻤﺎر‬ ‫اﻟﺮأﺳﻰ‬ ‫اﻟﺨﻂ‬ ‫ﻷن‬ ‫داﻟﺔ‬ ‫ﯾﻤﺜﻞ‬ ‫ﻻ‬)٠،٠(‫ﻧﻘﻄﺘﯿﻦ‬ ‫ﻓﻰ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﯾﻘﻄﻊ‬ ‫اﻟﺸﻜﻞ‬]٢: [ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﻧﻘﻄﺔ‬ ‫ﻛﻞ‬ ‫ﻋﻨﺪ‬ ‫اﻟﺮأﺳﻲ‬ ‫اﻟﺨﻂ‬ ‫ﻷن‬ ‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬)‫اﻟﻤﺠﺎل‬(‫ﻓﻰ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ﯾﻘﻄﻊ‬ ‫واﺣ‬ ‫ﻧﻘﻄﺔ‬‫ﻓﻘﻂ‬ ‫ﺪة‬. ‫اﻟﺸﻜﻞ‬]٣: [‫ﻧﻘﻄﺔ‬ ‫ﻣﻦ‬ ‫أﻛﺜﺮ‬ ‫ﻓﻰ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ﯾﻘﻄﻊ‬ ‫رأﺳﻲ‬ ‫ﺧﻂ‬ ‫ﯾﻮﺟﺪ‬ ‫ﻷن‬ ‫داﻟﺔ‬ ‫ﯾﻤﺜﻞ‬ ‫ﻻ‬. ‫اﻻﺷﻜﺎل‬]٤،٥،٦: [‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــ‬ *‫اﻟﻤﺠﺎل‬ ‫ﻟﺘﻌﯿﯿﻦ‬ ‫ھـــﺎﻣﺔ‬ ‫ﻗـﻮاﻋــــﺪ‬: ١(‫أى‬ ‫ﻣﺠﺎل‬‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫داﻟﺔ‬‫درﺟﺘﮭﺎ‬ ‫ﻛﺎن‬ ‫ﻣﮭﻤﺎ‬=‫ح‬. ‫ﻣﺜﻞ‬ ‫اﻟﻤﻘﺎم‬ ‫ﻓﻰ‬ ‫ﻣﺘﻐﯿﺮ‬ ‫ﻋﻠﻰ‬ ‫ﺗﺤﺘﻮى‬ ‫ﻻ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻰ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫اﻟﺪاﻟﺔ‬: ‫د‬)‫س‬= (٥‫د‬ ،)‫س‬= (٣‫د‬ ، ‫س‬)‫س‬= (٢‫ــ‬ ‫س‬٥‫د‬ ،)‫س‬= (‫س‬٢ +‫س‬+١ ‫د‬)‫س‬= (‫س‬٣ ‫ــ‬٢‫س‬+٤‫د‬ ،)‫س‬= ( ٢(‫ﻣﺠﺎل‬‫اﻟﻜﺴﺮﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬=‫ح‬-‫اﻟﻤﻘــــــــﺎم‬ ‫أﺻﻔـــــــﺎر‬. ‫ﻣﺘﻐﯿﺮ‬ ‫ﻋﻠﻰ‬ ‫ﯾﺤﺘﻮى‬ ‫ﻣﻘﺎﻣﮭﺎ‬ ‫ﯾﻜﻮن‬ ‫اﻟﺘﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻰ‬ ‫اﻟﻜﺴﺮﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻠﺤﻮظﺔ‬:‫اﻟﻤﻘﺎم‬ ‫ﺗﺠﻌﻞ‬ ‫اﻟﺘﻰ‬ ‫س‬ ‫ﻗﯿﻢ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻰ‬ ‫اﻟﻤﻘﺎم‬ ‫أﺻﻔﺎر‬ ‫ﻣﺠﻤﻮﻋﺔ‬=‫ﺻﻔﺮ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬ ‫ﻟﻤﻌﺮﻓﺔ‬ ‫ﻣﺜﻼ‬)‫س‬= (‫اﻟﻤﻘﺎم‬ ‫أﺻﻔﺎر‬ ‫ﻧﻮﺟﺪ‬ ‫س‬ ‫ﺑﻮﺿﻊ‬٢ ‫ــ‬٩=٠B‫س‬٢ =٩B‫س‬=±٣B‫د‬ ‫ﻣﺠﺎل‬)‫س‬= (‫ــ‬ ‫ح‬}٣‫ــ‬ ،٣{ ‫ﺧـــــﺎﺻﺔ‬ ‫ﺣـــﺎﻟﺔ‬:‫اﻟﻜﺴﺮﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬=‫اﻷﺗﯿﺔ‬ ‫اﻟﺤﺎﻻت‬ ‫ﻓﻰ‬ ‫ح‬: *‫ﺛﺎﺑﺘﺔ‬ ‫داﻟﺔ‬ ‫اﻟﻤﻘﺎم‬. *‫س‬ ‫اﻟﺼﻮرة‬ ‫ﻋﻠﻰ‬ ‫اﻟﻤﻘﺎم‬‫ن‬ +‫أ‬‫ن‬ ‫ﺣﯿﺚ‬←‫زوﺟﻰ‬،‫أ‬Э‫ح‬+ *‫س‬ ‫أ‬ ‫اﻟﺼﻮرة‬ ‫ﻋﻠﻰ‬ ‫اﻟﻤﻘﺎم‬٢ +‫س‬ ‫ب‬+‫ﺟـ‬:‫ﺳﺎﻟﺒﺎ‬ ‫ﯾﻜﻮن‬ ‫اﻟﻤﻤﯿﺰ‬ ‫ﺣﯿﺚ‬ً. ‫ﻣﺜﻼ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬)‫س‬= ( ‫س‬ ‫ﻧﻀﻊ‬٢ +٩=٠‫ﺣﯿﺚ‬‫ا‬=١،‫ب‬=٠،‫ج‬=٩ ‫ــ‬ ‫س‬٣ ٢ ‫ــ‬ ‫س‬٢ ‫س‬٢ ‫ــ‬٩ ‫ــ‬ ‫س‬٢ ‫س‬٢ +٩
  4. 4. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٤ ‫اﻟﻤﻤﯿﺰ‬=‫ب‬٢ ‫ــ‬٤‫ج‬ ‫ا‬=)٠(٢ ‫ــ‬٤×١×٩=‫ــ‬٣٦>٠)‫ﺳﺎ‬ ‫ﻛﻤﯿﺔ‬‫ﻟﺒﺔ‬( B‫د‬ ‫ﻣﺠﺎل‬)‫س‬= (‫ح‬ ٣(‫اﻟﺠﺬرﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬: )‫اﻟﺘﺮﺑﯿﻌﻰ‬ ‫اﻟﺠﺬر‬ ‫ﻋﻠﻰ‬ ‫ﺗﺸﺘﻤﻞ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﺎﻋﺪة‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺟﺬرﯾﺔ‬ ‫داﻟﺔ‬ ‫ﯾﻘﺎل‬( ‫أوﻻ‬:‫اﻟﺒﺴﻂ‬ ‫ﻓﻰ‬ ‫اﻟﺠﺬر‬ ‫ﻛﺎن‬ ‫إذا‬:‫اﻟﺠﺬر‬ ‫ﺗﺤﺖ‬ ‫ﻣﺎ‬ ‫اﻟﻔﺘﺮة‬ ‫ھﻮ‬ ‫اﻟﻤﺠﺎل‬X٠ ‫ﺛﺎﻧﯿﺎ‬:‫اﻟﻤﻘﺎم‬ ‫ﻓﻰ‬ ‫اﻟﺠﺬر‬ ‫ﻛﺎن‬ ‫إذا‬:‫اﻟﺠﺬر‬ ‫ﺗﺤﺖ‬ ‫ﻣﺎ‬ ‫اﻟﻔﺘﺮة‬ ‫ھﻮ‬ ‫اﻟﻤﺠﺎل‬<٠ ‫ﺧﺎﺻﺔ‬ ‫ﺣﺎﻟﺔ‬: ‫د‬ ‫اﻟﺪاﻟﺔ‬)‫س‬= (‫ن‬ ‫؟‬‫ھـ‬)"‫س‬"("‫ﺣﯿﺚ‬‫ن‬g‫ﺻﺺ‬+‫ھـ‬ ،)‫س‬(‫ﺣﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫أوﻻ‬:‫ﻋﻨﺪﻣﺎ‬‫ن‬‫ﻓﺈن‬ ‫ﻓﺮدى‬ ‫ﻋﺪد‬:‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬=‫ح‬،‫ن‬‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬ ‫ﺗﺴﻤﻰ‬ ‫ﺛﺎﻧﯿﺎ‬:‫ﻋﻨﺪﻣﺎ‬‫ن‬‫ﻓﺈن‬ ‫زوﺟﻰ‬ ‫ﻋﺪد‬:‫ھـ‬ ‫ﺗﺠﻌﻞ‬ ‫اﻟﺘﻰ‬ ‫س‬ ‫ﻗﯿﻢ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻮ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬)‫س‬(X٠ ‫أوﻻ‬ً:‫ﯾﻜ‬ ‫ﻋﻨﺪﻣﺎ‬‫ﻓــﺮدﯾﺎ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬ ‫ﻮن‬ً: ‫ﻣﺜﻼ‬‫د‬)‫س‬= (←‫د‬ ‫ﻣﺠﺎل‬)‫س‬= (‫ح‬ ‫ﺛﺎﻧﯿﺎ‬ً:‫زوﺟﯿﺎ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬ ‫ﯾﻜﻮن‬ ‫ﻋﻨﺪﻣﺎ‬: ‫ﻣﺜﻼ‬:‫د‬)‫س‬= ( ˙.˙‫س‬‫ــ‬٥٠←‫س‬٥←‫د‬ ‫ﻣﺠﺎل‬)‫س‬] = (٥،] ‫ﻣﺜﺎل‬:‫ﻣﺠﺎل‬ ‫ﻋﯿﻦ‬‫د‬)‫س‬= ( ‫اﻟﺤ‬‫ﻞ‬: ‫ﺑﻮﺿﻊ‬‫س‬٢ -‫س‬-١٢=٠ )‫س‬-٤)(‫س‬+٣= (٠ ‫س‬-٤=٠‫س‬+٣=٠ ‫س‬=٤‫س‬=-٣ ٤-٣
  5. 5. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٥ ˙.˙‫ﺳﺎﻟﺒﺔ‬ ‫ﻏﯿﺮ‬ ‫ﻛﻤﯿﺔ‬ ‫اﻟﺠﺬرﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬)٠( .˙.‫د‬ ‫ﻣﺠﺎل‬)‫س‬] = (٤،]‫ﺑﻶ‬[-،-٣[ =‫ح‬-[‫ــ‬٣،٤] ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫اﻵﺗﯿﺔ‬ ‫ﺑﺎﻟﻘﻮاﻋﺪ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬ ‫ﻋﯿﻦ‬: ]١[‫د‬١)‫س‬= (‫؟‬‫س‬"+"٤"]٢[‫د‬٢)‫س‬= (‫؟‬‫س‬٢ "‫ــ‬"٩" ]٣[‫د‬٣)‫س‬] = (٤[‫د‬٤)‫س‬= ( ]٥[‫د‬٥)‫س‬] = (٦[‫د‬٦)‫س‬= (٣ ‫؟‬‫س‬"+"٣" ‫اﻟﺤﻞ‬: ]١[A‫زوﺟﻰ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬B‫س‬+٤X٠C‫س‬X–٤ B‫اﻟﻤﺠﺎل‬=‫ح‬–]-٤،‫ﺿﺾ‬] ]٢[A‫زوﺟﻰ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬B‫س‬٢ –٩X٠C‫س‬٢ X٩C‫س‬X±٣ B‫اﻟﻤﺠﺎل‬[ =-‫ﺿﺾ‬،-٣[‫ﺑﻶ‬]٣،‫ﺿﺾ‬= ]‫ح‬-[–٣،٣] ]٣[‫س‬ ‫ﻧﻀﻊ‬٢ ‫ــ‬٣‫س‬+٢=٠B)‫س‬–٢)(‫س‬–١= (٠C‫س‬=٢،‫أ‬١ B‫اﻟﻤﺠﺎل‬=‫ح‬–}١،٢{ ]٤[‫س‬ ‫ﻧﻀﻊ‬٢ +٩=٠‫ﺳﺎﻟﺒﺔ‬ ‫ﻛﻤﯿﺔ‬ ‫اﻟﻤﻤﯿﺰ‬ ‫ﻓﯿﻜﻮن‬B‫اﻟﻤﺠﺎل‬=‫ح‬ ]٥[‫س‬ ‫ﻧﻀﻊ‬٢ –٩<٠B)‫س‬–٣)(‫س‬+٣= (٠C‫س‬=٣‫س‬ ،=-٣ A‫اﻟﺠﺬر‬ ‫ﺗﺤﺖ‬ ‫ﻣﺎ‬ ‫اﻟﻔﺘﺮة‬ ‫ھﻮ‬ ‫اﻟﻤﺠﺎل‬<٠B‫اﻟﻤﺠﺎل‬=‫ح‬–]-٣،٣[ ]٦[A‫ﻓﺮدى‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬B‫اﻟﻤﺠﺎل‬=‫ح‬ ‫ــ‬ ‫س‬٢ ‫س‬٢ +٩ ٢‫س‬+٣ ‫س‬٢ ‫ــ‬٣‫س‬+٢ ١ ‫؟‬‫س‬٢ "‫ــ‬"٩"
  6. 6. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٦ *‫ﻗﺎﻋﺪة‬ ‫ﻣﻦ‬ ‫ﺑﺄﻛﺜﺮ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻤﺪى‬ ‫و‬ ‫اﻟﻤﺠﺎل‬ ‫اﯾﺠﺎد‬: ‫ﻣﺜﺎل‬:‫ﻣﺪاھﺎ‬ ‫و‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫اذﻛﺮ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬ )‫أ‬(‫د‬)‫س‬= ()‫ب‬(‫د‬)‫س‬= ( ‫اﻟﺤﻞ‬: )‫أ‬(‫س‬ ‫ﻋﻨﺪ‬>٠‫ﻣﻦ‬ ‫ﯾﺒﺪأ‬ ‫و‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﯾﻮازى‬ ‫ﺷﻌﺎع‬ ‫ﺗﻤﺜﻞ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫داﻟﺔ‬)٠،-١( ‫س‬ ‫ﻋﻨﺪ‬<٠‫ﻣﻦ‬ ‫ﯾﺒﺪأ‬ ‫و‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﯾﻮازى‬ ‫ﺷﻌﺎع‬ ‫ﺗﻤﺜﻞ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫داﻟﺔ‬)٠،١( ‫اﻟﻤﺠﺎل‬=‫ــ‬ ‫ح‬}٠{ ‫اﻟﻤﺪى‬=}١،-١{ )‫ب‬(‫ﻗﺎﻋﺪة‬ ‫ﻟﻜﻞ‬ ‫ﺟﺪول‬ ‫ﻧﺮﺳﻢ‬ ‫س‬>٠ ‫س‬X٠ ‫اﻟﻤﺠﺎل‬=‫اﻟﻤﺪى‬ ، ‫ح‬=‫ــ‬ ‫ح‬]-٢،٢] ‫س‬ ٠-١-٢ ‫د‬)‫س‬(-٢-٣-٤ ‫س‬ ٠١٢ ‫د‬)‫س‬(٢٣٤ ‫ــ‬١‫س‬>٠ ١‫س‬<٠ ‫س‬+٢‫س‬X٠ ‫س‬–٢‫س‬>٠  ٣ -٢ -١ ١ ٢ ٣  ١ -١ ٢ -٢ -١ ١ ٢ ٣ ٤  ٣ ٢ ١ -١ -٢ -٣ 
  7. 7. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٧ ‫ﻣﺜﺎل‬:‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= ( ‫اﻟﺒﯿ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬ ‫اﺳﺘﻨﺘﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫ﺎﻧﻰ‬ ‫اﻟﺤﻞ‬: ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬:‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬] =-٢،∞] ‫اﻟﻤﺪى‬[ =-١،∞] ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:٣–‫ﻋﻨﺪﻣﺎ‬ ‫س‬-٢Y‫س‬>٢ ‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= ( ‫ﻋﻨﺪﻣﺎ‬ ‫س‬٢Y‫س‬Y٥ ‫ا‬ ‫ارﺳﻢ‬‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫اﺳﺘﻨﺞ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫ﻟﺸﻜﻞ‬ ‫ﻣﺪاھﺎ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬ ‫اﻟﺤﻞ‬: ‫اﻟﻤﺠﺎل‬] =-٢،٥[‫اﻟﻤﺪى‬ ،[ =١،٥[ ‫س‬-٢-١٠٠١٢ ‫د‬)‫س‬(٣٠-١١٢٣ ‫س‬٢ -١-٢Y‫س‬>٠ ‫س‬+١‫س‬X٠ ‫س‬٢ –١‫س‬+١ -٢ -١ ١ ٢ ٣ ٤  ٤ ٣ ٢ ١ -١ -٢ 
  8. 8. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٨ ‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬] :-٢،٤[C‫ﺣﯿﺚ‬ ‫ح‬ ٢‫س‬+٣‫ﻋﻨﺪﻣﺎ‬-٢Y‫س‬>٠ ‫د‬)‫س‬= ( ١‫ﻋﻨﺪﻣﺎ‬ ‫س‬ ‫ــ‬٠Y‫س‬Y٤ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬ ‫اﺳﺘﻨﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫د‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬ ‫اﻟﺤﻞ‬: -٢Y‫س‬>٠٠Y‫س‬Y٤ ‫اﻟﻤﺠﺎل‬] =-٢،٤[ ‫اﻟﻤﺪى‬] =-٣،٣] ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫إذا‬‫ح‬ ‫ﺿﻠﻌﮫ‬ ‫طﻮل‬ ‫ﻓﻰ‬ ‫ﻛﺪاﻟﺔ‬ ‫اﻟﻤﺮﺑﻊ‬ ‫ﻣﺤﯿﻂ‬ ‫اﻛﺘﺐ‬ ‫ل‬ ‫ﺿﻠﻌﮫ‬ ‫طﻮل‬ ‫ﻣﺮﺑﻊ‬ ‫ﻣﺤﯿﻂ‬ ‫ح‬ ‫ﻛﺎن‬)‫ل‬( ‫أوﺟﺪ‬ ‫ﺛﻢ‬) :‫أ‬(‫ح‬)٣) (‫ب‬(‫ح‬( ) ‫اﻟﺤﻞ‬: A‫ح‬)‫ل‬= (٤×‫ل‬B‫ح‬)٣= (٤×٣=١٢‫ح‬ ،= ( )٤×=١٥ ‫س‬-٢-١٠٠١٤ ‫ص‬-١١٣١٠-٣ ٢-٢ -١ ١ ٣ ٤ -٣ ٤ ٣ ٢ ١ -١ -٢  -٣ -٤ ١٥ ٤ ١٥ ٤ ١٥ ٤
  9. 9. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٩ ‫اﻟـــ‬ ‫ﻋﻠﻰ‬ ‫اﻟﻌﻤﻠﯿﺎت‬‫ـــــﺪوال‬ ‫أن‬ ‫اﻟﺘﻌﺮﯾﻒ‬ ‫ھﺬا‬ ‫ﻣﻦ‬ ‫ﻧﻼﺣــﻆ‬: ‫ﺟﻤﯿﻊ‬‫م‬ ‫ﯾﺴﺎوى‬ ‫اﻟﺠﺪﯾﺪة‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻌﻤﻠﯿﺎت‬١‫ﺑﻼ‬‫م‬٢‫اﻟﻤﻘﺎم‬ ‫داﻟﺔ‬ ‫ﺗﺠﻌﻞ‬ ‫اﻟﺘﻰ‬ ‫اﻟﻘﯿﻢ‬ ‫ﻋﺪا‬ ‫ﻣﺎ‬=‫ﻓﻰ‬ ‫ﺻﻔﺮ‬ ‫اﻟﻘﺴﻤﺔ‬ ‫ﻋﻤﻠﯿﺔ‬. ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﺣﯿﺚ‬ ‫ﺣﻘﯿﻘﯿﺘﯿﻦ‬ ‫داﻟﺘﯿﻦ‬ ‫ر‬ ، ‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= (‫س‬٢ ‫ــ‬٤‫ر‬ ،)‫س‬= (‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" ‫أوﺟﺪ‬) :‫أ‬(‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬) :‫د‬+‫ر‬(،)‫د‬–‫ر‬(،)‫د‬.‫ر‬(،( )،( ) )‫ب‬(‫اﻟﻌﺪدﯾﺔ‬ ‫اﻟﻘﯿﻢ‬)‫أﻣﻜﻦ‬ ‫إن‬(‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻟﻜﻞ‬: )‫د‬+‫ر‬) (٥(،)‫د‬.‫ر‬) (٢(،)( )٣(،)( )-٢( ‫اﻟﺤﻞ‬: A‫د‬ ‫ﻣﺠﺎل‬=‫م‬١=‫ر‬ ‫ﻣﺠﺎل‬ ، ‫ح‬=‫م‬٢] =١،∞]‫د‬ ‫اﺻﻔﺎر‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ،=}٢،-٢{ ‫ر‬ ‫اﺻﻔﺎر‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ،=}٠{ )‫أ‬) (‫د‬+‫ر‬) (‫س‬= (‫د‬)‫س‬+ (‫ر‬)‫س‬= (‫س‬٢ ‫ــ‬٤+‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" B‫ﻣﺠﺎل‬)‫د‬+‫ر‬= (‫م‬١‫ﺑﻼ‬‫م‬٢=‫ح‬‫ﺑﻼ‬]١،∞] = ]١،∞] )‫ر‬ ‫ــ‬ ‫د‬)(‫س‬= (‫د‬)‫س‬(‫ر‬ ‫ــ‬)‫س‬= (‫س‬٢ ‫ــ‬٤‫ــ‬‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" B‫ﻣﺠﺎل‬)‫ر‬ ‫ــ‬ ‫د‬= (‫م‬١‫ﺑﻼ‬‫م‬٢=‫ح‬‫ﺑﻼ‬]١،∞] = ]١،∞] ( ) ( ) ( ) ‫د‬ ‫ر‬ ‫ر‬ ‫د‬ ‫د‬ ‫ر‬ ‫ر‬ ‫د‬ ‫م‬١ ‫ح‬ ١ ‫م‬٢ ١
  10. 10. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٠ )‫د‬.‫ر‬) (‫س‬= (‫د‬)‫س‬. (‫ر‬)‫س‬) = (‫س‬٢ ‫ــ‬٤(‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" B‫ﻣﺠﺎل‬)‫د‬.‫ر‬= (‫م‬١‫ﺑﻼ‬‫م‬٢=‫ح‬‫ﺑﻼ‬]١،∞] = ]١،∞] ) ( )‫س‬= = ( ‫ﻣﺠﺎل‬) ( )‫س‬= (‫م‬١‫ﺑﻼ‬‫م‬٢‫ص‬ ‫ــ‬)‫ر‬( =‫ح‬‫ﺑﻼ‬]١،∞]‫ــ‬}١{[ =١،∞] ) ( )‫س‬= = ( ‫ﻣﺠﺎل‬) ( )‫س‬= (‫م‬١‫ﺑﻼ‬‫م‬٢‫ص‬ ‫ــ‬)‫د‬( =‫ح‬‫ﺑﻼ‬]١،∞]‫ــ‬}٢،-٢{ =]١،∞]‫ــ‬}٢{‫س‬ ‫ﻋﻨﺪ‬ ‫ﻣﻌﺮﻓﺔ‬ ‫ﻏﯿﺮ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺣﯿﺚ‬=-٢ )‫ب‬()‫د‬+‫ر‬) (‫س‬= (‫س‬٢ ‫ــ‬٤+‫؟‬‫ـ‬ ‫س‬"‫ـ‬١"‫س‬ ‫ﻟﻜﻞ‬g]١،∞] A٥g]١،∞]B)‫د‬+‫ر‬)(٥) = (٥(٢ ‫ــ‬٤+‫؟‬٥–"١"=١٩ )‫د‬.‫ر‬) (‫س‬) = (‫س‬٢ ‫ــ‬٤(‫؟‬‫ـ‬ ‫س‬"‫ـ‬١"‫س‬ ‫ﻟﻜﻞ‬g]١،∞] A٢g]١،∞]B)‫د‬.‫ر‬) (٢) = (٢٢ –٤(‫؟‬٢‫ـ‬"‫ـ‬١"=‫ﺻﻔﺮ‬ ) ( )‫س‬= (‫س‬ ‫ﻟﻜﻞ‬g[١،∞] A٣g[١،∞]B)( )٣= = ( ) ( )‫س‬= (‫س‬ ‫ﻟﻜﻞ‬g]١،∞]‫ــ‬}٢{ A–٢h]١،∞]‫ــ‬}٢{B)( )-٢= = (‫ﻣﻌﺮﻓﺔ‬ ‫ﻏﯿﺮ‬ ‫د‬ ‫ر‬ ‫د‬)‫س‬( ‫ر‬)‫س‬( ‫س‬٢ ‫ــ‬٤ ‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" ‫د‬ ‫ر‬ ‫م‬١ ‫ح‬ ١ ‫م‬٢ ١ ‫ر‬ ‫د‬ ‫ر‬)‫س‬( ‫د‬)‫س‬( ‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" ‫س‬٢ ‫ــ‬٤ ‫ر‬ ‫د‬ ‫ح‬‫م‬١ ١ ‫م‬٢ ٢-٢ -٢ ٢ ‫د‬ ‫ر‬ ‫س‬٢ ‫ــ‬٤ ‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" ‫د‬ ‫ر‬ ٣٢ ‫ــ‬٤ ‫؟‬٣‫ـ‬"‫ـ‬١" ٥ ‫؟‬٢ ‫ر‬ ‫د‬ ‫؟‬‫ـ‬ ‫س‬"‫ـ‬١" ‫س‬٢ ‫ــ‬٤ ‫ر‬ ‫د‬ ‫؟‬-٢"‫ـ‬١" )-٢(٢ –٤ ‫؟‬-٣" ‫ﺻﻔﺮ‬
  11. 11. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١١ ‫ﺗﻮﺿﯿﺤﻰ‬ ‫ﻣﺜﺎل‬: ‫د‬ ‫ﺑﺎﻟﻌﻼﻗﺔ‬ ‫ﯾﻤﺜﻞ‬ ‫و‬ ‫اﻧﺘﺎﺟﮫ‬ ‫ﻣﻦ‬ ‫ﺟﺰء‬ ‫ﺑﺘﺼﺪﯾﺮ‬ ‫ﯾﻘﻮم‬ ‫ﻣﺼﻨﻊ‬ ‫ھﻨﺎك‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬(=‫س‬ ‫ﺣﯿﺚ‬ ‫س‬ ‫ﯾﻌﻄﻰ‬ ‫اﻟﺘﺎﻟﻰ‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﺼﺪرة‬ ‫اﻟﻮﺣﺪات‬ ‫ﻋﺪد‬ ‫ﻛﺎن‬ ‫و‬ ، ‫اﻷول‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﻨﺘﺠﺔ‬ ‫اﻟﻮﺣﺪات‬ ‫ﻋﺪد‬ ‫ﯾﻤﺜﻞ‬ ‫ﺑﺎﻟﻌﻼﻗﺔ‬‫ر‬)‫د‬= (‫د‬+١٥٠٠‫اﻷول‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﺼﺪرة‬ ‫اﻟﻮﺣﺪات‬ ‫ﻋﺪد‬ ‫د‬ ‫ﺣﯿﺚ‬.‫ﻋﺪد‬ ‫ﯾﻜﻮن‬ ‫ﻛﻢ‬ ‫اﻷول‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﺼﻨﻊ‬ ‫اﻧﺘﺎج‬ ‫ﻛﺎن‬ ‫إذا‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﺼﺪرة‬ ‫اﻟﻮﺣﺪات‬: )‫أ‬(٢٠٠٠٠‫وﺣﺪة‬)‫ب‬(٨٠٠٠٠‫وﺣﺪة‬ ‫اﻟﺤﻞ‬:‫ﻛﺎﻟﺘﺎﻟﻰ‬ ‫اﻟﺘﺼﺪﯾﺮ‬ ‫و‬ ‫اﻻﻧﺘﺎج‬ ‫ﯾﻮﺿﺢ‬ ‫رﺳﻢ‬ ‫ﻋﻤﻞ‬ ‫ﯾﻤﻜﻦ‬: A‫د‬)‫س‬= (، ‫اﻻول‬ ‫اﻟﻌﺎم‬ ‫اﻟﺘﺼﺪﯾﺮ‬ ‫داﻟﺔ‬ ‫س‬‫ر‬)‫د‬= (‫د‬+١٥٠٠‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﻌﺎم‬ ‫اﻟﺘﺼﺪﯾﺮ‬ ‫داﻟﺔ‬ B‫ر‬)‫س‬= (‫س‬+١٥٠٠ ‫س‬ ‫ﻋﻨﺪ‬=٢٠٠٠٠B‫ر‬)×٢٠٠٠٠= (×٢٠٠٠٠+١٥٠٠٠=٦٥٠٠‫وﺣﺪة‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﺼﺪرة‬ ‫اﻟﻮﺣﺪات‬ ‫ﻋﺪد‬=٦٥٠٠‫وﺣﺪة‬ ‫س‬ ‫ﻋﻨﺪ‬=٨٠٠٠٠B‫ر‬)×٨٠٠٠٠= (×٨٠٠٠٠+١٥٠٠٠=٢١٥٠٠‫وﺣﺪة‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﻌﺎم‬ ‫ﻓﻰ‬ ‫اﻟﻤﺼﺪرة‬ ‫اﻟﻮﺣﺪات‬ ‫ﻋﺪد‬=٢١٥٠٠‫وﺣﺪة‬ ‫ﺑ‬ ‫ﻣﺮﺗﺒﻄﺘﺎن‬ ‫داﻟﺘﯿﻦ‬ ‫ھﻨﺎك‬ ‫أن‬ ‫اﻟﺨﻼﺻﺔ‬‫داﻟﺔ‬ ‫ﻓﻰ‬ ‫اﻷول‬ ‫اﻟﻌﺎم‬ ‫ااﻟﺘﺼﺪﯾﺮ‬ ‫ﺑﺪاﻟﺔ‬ ‫ﻧﻌﻮض‬ ‫ﺣﯿﺚ‬ ‫ﺒﻌﺾ‬ ‫داﻟﺘﯿﻦ‬ ‫ﺗﺮﻛﯿﺐ‬ ‫ﻓﻜﺮة‬ ‫ھﺬه‬ ‫و‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﻌﺎم‬ ‫اﻟﺘﺼﺪﯾﺮ‬)‫ﺧﺎرﺟﯿﺔ‬ ‫داﻟﺔ‬ ‫اﯾﺠﺎد‬ ‫ﺛﻢ‬ ‫داﺧﻠﯿﺔ‬ ‫داﻟﺔ‬ ‫اﯾﺠﺎد‬( ‫اﻟــــﺪوال‬ ‫ﺗﺮﻛﯿﺐ‬ ١ ٤ ١ ٤ ١ ٤ ١ ٤ ١ ٤ ١ ٤ ١ ٤ ١ ٤
  12. 12. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٢ ‫ﺗﻌﺮﯾﻒ‬: ‫ر‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬ ‫ﻣﻦ‬ ‫ﺟﺰﺋﯿﺔ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫وﻛﺎن‬ ‫داﻟﺘﯿﻦ‬ ‫د‬ ،‫ر‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫اﻟﺘﺮﻛﯿﺐ‬ ‫داﻟﺔ‬ ‫اﯾﺠﺎد‬ ‫ﯾﻤﻜﻦ‬ ‫ﻓﺈﻧﮫ‬‫ع‬‫اﻟﺠﺪ‬، ‫د‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﻣﻦ‬ ‫ﺗﺘﺮﻛﺐ‬ ‫ﯾﺪة‬‫ر‬‫ھﻰ‬ ‫ع‬)‫س‬) =(‫ر‬º‫د‬) (‫س‬= (‫ر‬]‫د‬)‫س‬[ ( ‫ﺗﻘﺮأ‬ ‫و‬‫ر‬‫د‬ ‫ﺗﺮﻛﯿﺐ‬‫أو‬‫ر‬‫د‬ ‫ﺑﻌﺪ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺛﻢ‬ ‫أوﻻ‬ ‫د‬ ‫ﺗﻄﺒﻖ‬ ‫ﺣﯿﺚ‬‫ر‬ ‫ﻣﻠﺤﻮظﺔ‬:‫اﻟﺪاﻟﺔ‬ ‫ﺗﻜﻮن‬ ‫أن‬ ‫ﻣﻤﻜﻦ‬)‫ر‬º‫د‬) (‫س‬( ‫ﻣﻌﺮﻓﺔ‬ ‫ﻏﯿﺮ‬ ‫أو‬ ‫ﻣﻌﺮﻓﺔ‬]‫ﻣﻌﯿﻨﺔ‬ ‫ﻗﯿﻤﺔ‬ ‫ﻟﮭﺎ‬‫أو‬‫ﻗﯿﻤﺔ‬ ‫ﻟﮭﺎ‬ ‫ﻟﯿﺲ‬[ ‫ﻋﻨﺪ‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﺗﺮﺗﯿﺐ‬ ‫ﻟﺬﻟﻚ‬ ‫و‬‫ﻣﮭﻢ‬ ‫ﺗﺮﻛﯿﺒﮭﻤﺎ‬. ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬= (٤‫س‬٢ ‫ر‬ ،)‫س‬= (٢‫أوﺟﺪ‬ ‫س‬) :‫د‬º‫ر‬)(‫س‬(،)‫ر‬º‫د‬)(‫س‬( ‫ﻣﺎ‬ ‫و‬‫ﺗﻼﺣﻆ‬ ‫ذا‬. ‫اﻟﺤﻞ‬) :‫د‬º‫ر‬)(‫س‬= (‫د‬]‫ر‬)‫س‬= [(‫د‬)٢‫س‬= (٤×)٢‫س‬(٢ =١٦‫س‬٢ )‫ر‬º‫د‬)(‫س‬(=‫ر‬]‫د‬)‫س‬= [ (‫ر‬)٤‫س‬٢ = (٢×)٤‫س‬٢ = (٨‫س‬٢ ‫أن‬ ‫ﯾﻼﺣﻆ‬) :‫د‬º‫ر‬)(‫س‬(})‫ر‬º‫د‬)(‫س‬()‫اﺑﺪاﻟﻰ‬ ‫ﻟﯿﺲ‬ ‫اﻟﺪوال‬ ‫ﺗﺮﻛﯿﺐ‬( ‫ﻣﻠﺤﻮظﺔ‬:‫ﻻﯾﺠﺎد‬)‫ر‬º‫د‬)(‫س‬(‫ر‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻓﻰ‬ ‫س‬ ‫اﻟﻤﺘﻐﯿﺮ‬ ‫ﻣﻦ‬ ‫ﺑﺪﻻ‬ ‫د‬ ‫ﺑﺎﻟﺪاﻟﺔ‬ ‫ﻧﻌﻮض‬ ‫ر‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺛﻢ‬ ‫أوﻻ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻧﻮﺟﺪ‬. ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬= (‫س‬٢ +٦‫ر‬ ،)‫س‬= (٣‫س‬ ‫أوﻻ‬:‫أوﺟﺪ‬)‫د‬º‫ر‬) (٣(‫ﺛﺎﻧﯿﺎ‬:‫ﺗﺠﻌﻞ‬ ‫اﻟﺘﻰ‬ ‫س‬ ‫ﻗﯿﻢ‬ ‫ﺣﺪد‬)‫د‬º‫ر‬) (‫س‬= (٤٢ ‫د‬ ‫ﻣﺪى‬ ‫ﻣﺠﺎل‬‫ر‬ ‫س‬ ‫د‬)‫س‬( ‫ر‬]‫د‬)‫س‬[( ‫د‬ ‫ﻣﺠﺎل‬ ‫ر‬]‫د‬)‫س‬[( ‫ر‬ ‫ﻣﺪى‬
  13. 13. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٣ ‫اﻟﺤﻞ‬: ‫أوﻻ‬) :‫د‬º‫ر‬) (‫س‬= (‫د‬]‫ر‬)‫س‬= [ (‫د‬)٣‫س‬) = (٣‫س‬(٢ +٦=٩‫س‬٢ +٦ B)‫د‬º‫ر‬) (٣= (٩)٣(٢ +٦=٨٧ ‫آﺧﺮ‬ ‫ﺣﻞ‬:A‫ر‬)٣= (٣×٣=٩B)‫د‬º‫ر‬) (٣= (‫د‬]‫ر‬)٣) = [ (٩(٢ +٦=٨٧ ‫ﺛﺎﻧﯿﺎ‬:A)‫د‬º‫ر‬) (‫س‬= (٤٢B٩‫س‬٢ +٦=٤٢B٩‫س‬٢ =٣٦‫ﺑﺎﻟﻘﺴﻤﺔ‬٩ B‫س‬٢ =٤B‫س‬=±٢ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬= (‫س‬٢ +١‫ر‬ ،)‫س‬= (‫؟‬‫ــ‬ ‫س‬"٣" ‫أوﺟﺪ‬) :‫د‬º‫ر‬)(‫س‬(‫أوﺟﺪ‬ ‫ﺛﻢ‬ ‫اﻟﻤﺠﺎل‬ ‫ﻣﺤﺪدا‬ ‫ﺻﻮرة‬ ‫أﺑﺴﻂ‬ ‫ﻓﻰ‬)‫د‬º‫ر‬) (٣( ‫اﻟﺤﻞ‬: )‫د‬º‫ر‬)(‫س‬= (‫د‬]‫ر‬)‫س‬= [ (‫د‬)‫؟‬‫ــ‬ ‫س‬"٣") = (‫؟‬‫ــ‬ ‫س‬"٣"(٢ +١ =‫س‬–٣+١=‫س‬–٢ ‫ﻣﺠﺎل‬)‫د‬º‫ر‬)(‫س‬= (}‫س‬:‫س‬X٣‫س‬ ،g‫ح‬{] =٣،∞] )‫د‬º‫ر‬) (٣= (٣–٢=١ ‫آﺧﺮ‬ ‫ﺣﻞ‬) :‫د‬º‫ر‬) (٣= (‫د‬]‫ر‬)٣= [(‫د‬)‫؟‬٣‫ــ‬"٣"= (‫د‬)٠) = (٠(٢ +١=١ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻟﻠﺘﻔﻜﯿﺮ‬ ‫ﺳﺆال‬:‫ع‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬= (‫؟‬‫س‬٣ ""–"٤"‫ﯾ‬ ‫ﺑﺤﯿﺚ‬ ‫ر‬ ، ‫د‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﻓﺄوﺟﺪ‬‫ﻜﻮن‬ ‫ع‬)‫س‬) = (‫د‬º‫ر‬)(‫س‬( ‫اﻟﺤﻞ‬) :‫اﻟﺴﺆال‬ ‫ﻟﮭﺬا‬ ‫ﺣﻞ‬ ‫ﻣﻦ‬ ‫أﻛﺜﺮ‬ ‫ھﻨﺎك‬( A‫ع‬)‫س‬= (‫؟‬‫س‬٣ ""–"٤"=‫؟‬)‫س‬٣ "‫ــ‬"١("‫ــ‬"٣" B‫ر‬)‫س‬(=‫س‬٣ ‫ــ‬١‫د‬ ،)‫س‬= (‫؟‬‫س‬"–"٣"‫ﺗﺤﻘﻖ‬‫ع‬)‫س‬) = (‫د‬º‫ر‬)(‫س‬( ‫آﺧﺮ‬ ‫ﺣﻞ‬:A‫ع‬)‫س‬(=‫؟‬‫س‬٣ ""–"٤"=‫؟‬)‫س‬٣ "‫ــ‬"٢("‫ــ‬"٢" B‫ر‬)‫س‬(=‫س‬٣ ‫ــ‬٢‫د‬ ،)‫س‬= (‫؟‬‫س‬"–"١"‫ﺗﺤﻘﻖ‬‫ع‬)‫س‬) = (‫د‬º‫ر‬)(‫س‬( ‫آﺧﺮ‬ ‫ﺣﻞ‬:A‫ع‬)‫س‬= (‫؟‬‫س‬٣ ""–"٤" B‫ر‬)‫س‬= (‫س‬٣ ‫ــ‬٤‫د‬ ،)‫س‬= (‫؟‬‫س‬‫ﺗﺤﻘﻖ‬‫ع‬)‫س‬) = (‫د‬º‫ر‬)(‫س‬(
  14. 14. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٤ ]١[‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬ ‫ﻻ‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﻌﻼﻗﺎت‬ ‫ﻣﻦ‬ ‫اﯾﺎ‬: ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــ‬ ]٢[‫اﻟﻌﻼﻗﺔ‬ ‫ﻋﺪا‬ ‫ﻣﺎ‬ ‫ﻓﻰ‬ ‫داﻟﺔ‬ ‫ص‬ ‫ﻓﯿﮭﺎ‬ ‫ﺗﻜﻮن‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﻌﻼﻗﺎت‬ ‫ﺟﻤﯿﻊ‬: )١(‫ص‬=٢‫ــ‬ ‫س‬٣)٢(‫ص‬=‫س‬٢ ‫ــ‬٤)٣(‫س‬=‫ص‬٢ –٢)٤(‫ص‬=‫س‬ ‫ﺣﺎ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــ‬ ]٣[‫اﻻﺗﯿﺔ‬ ‫ﺑﺎﻟﻘﻮاﻋﺪ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬ ‫ﻋﯿﻦ‬: )١(‫د‬)‫س‬= (‫س‬٢ ‫ــ‬٢‫س‬)٢(‫د‬)‫س‬= (‫ــ‬٥)٣(‫د‬)‫س‬= (‫؟‬٢‫س‬"‫ــ‬٣" )٤(‫د‬)‫س‬) = (٥(‫د‬)‫س‬= (‫؟‬٤‫ــ‬""‫س‬٢ "")٦(‫د‬)‫س‬= ( ‫ﺗﻤﺎرﯾﻦ‬)١( ‫س‬٢ -٩ ‫س‬–٣ ٣‫س‬+٢ ‫؟‬‫س‬"+"٢"
  15. 15. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٥ ‫ــ‬٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬>٢ ٤‫س‬ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬ ‫ـ‬X٢ )٧(‫د‬)‫س‬) = (٨(‫د‬)‫س‬= ( )٩(‫د‬)‫س‬) = (١٠(‫د‬)‫س‬= (٣ ‫؟‬‫س‬" ٢ +""‫س‬"-"٦" ‫ـــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ]٤[‫ﻣﺪاھﺎ‬ ‫ﻋﯿﻦ‬ ‫و‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫اﻻﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﺜﻞ‬: )١(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬] :-١،٥[C‫د‬ ، ‫ح‬)‫س‬= ( ‫د‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫ﻓﺄوﺟﺪ‬)-١(‫د‬ ،)٠(‫د‬ ،)١(‫د‬ ،)٢(‫د‬ ،)٣(‫د‬ ،)٤(‫د‬ ،)٥( ‫ﻣﺪاھﺎ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫اﺳﺘﻨﺘﺞ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬ ‫ﺛﻢ‬. ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ )٢(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= ( ‫د‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫ﻓﺎوﺟﺪ‬)٢(‫د‬ ،)٣(‫د‬ ،)٤(‫د‬ ،)١(‫د‬ ،)٠(‫د‬ ،)-١(‫د‬ ،)-٤( ‫ﻣﺪاھﺎ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫اﺳﺘﻨﺘﺞ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬ ‫ﺛﻢ‬. ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــ‬ )٣(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬] :-٣،٣[C‫ﺣﯿﺚ‬ ‫ح‬ ‫د‬)‫س‬= ( ‫اﻟﺪاﻟﺔ‬ ‫ھﺬه‬ ‫ﻣﺪى‬ ‫اﺳﺘﻨﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ )٤(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬١:‫ح‬C‫د‬ ‫ﺣﯿﺚ‬ ‫ح‬١)‫س‬= (٣‫س‬–١ ‫د‬٢] :-٢،٣[C‫د‬ ‫ﺣﯿﺚ‬ ‫ح‬٢)‫س‬= (٢‫س‬+٤ ‫أوﺟﺪ‬) :‫د‬١+‫د‬٢) (‫س‬(،)‫د‬١‫د‬ ‫ــ‬٢) (‫س‬(‫ﻛ‬ ‫ﻣﺠﺎل‬ ‫ﻣﺒﯿﺎ‬‫داﻟﺔ‬ ‫ﻞ‬. ‫ــ‬ ‫س‬٢ ‫س‬٢ ‫ــ‬٥‫س‬+٦ ‫؟‬‫ــ‬ ‫س‬"٢" ‫س‬٢ ‫ــ‬١ ٤-‫ﻋﻨﺪﻣﺎ‬ ‫س‬-١Y‫س‬>٢ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬٢Y‫س‬Y٥ ٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬X٢ ‫س‬+٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬>٢ ‫س‬٢ +١‫ﻋﻨﺪﻣﺎ‬-٣Y‫س‬>٠ ‫س‬+٢‫ﻋﻨﺪﻣﺎ‬٠Y‫س‬Y٣
  16. 16. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٦ )٥(‫ﻛﺎن‬ ‫إذا‬:‫د‬١)‫س‬= (‫س‬+٢‫د‬ ‫ﻣﺠﺎل‬ ‫و‬١] =-٣،٤[‫د‬ ،٢)‫س‬= (‫س‬٢ +٢‫س‬ ‫د‬ ‫ﻣﺠﺎل‬ ‫و‬٢] =-١،٣[‫أوﺟﺪ‬: )‫د‬١+‫د‬٢)(‫س‬(،)‫د‬١‫د‬ ‫ــ‬٢)(‫س‬(،)( )‫س‬(،)( )‫س‬(‫داﻟﺔ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬ ‫ﻣﺒﯿﺎ‬ ‫ــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ )٦(‫ﻛﺎن‬ ‫إذا‬:‫د‬)‫س‬= (٣‫س‬+١‫ر‬ ،)‫س‬= (‫س‬٢ –٥‫ق‬ ،)‫س‬= (‫س‬٢ ‫أوﺟﺪ‬: )‫أ‬) (‫د‬º‫ر‬) (٢) (‫ب‬) (‫ر‬º‫د‬)(‫س‬()‫ﺟـ‬()‫ر‬º‫ق‬)(١()‫د‬()‫ق‬º‫د‬)(-٢( ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ )٧(‫ﻛﺎن‬ ‫إذا‬:‫د‬)‫س‬= (‫ر‬ ،)‫س‬= (‫س‬+٣‫أوﺟﺪ‬: )‫د‬º‫ر‬)(‫س‬(،)‫ر‬º‫د‬)(‫س‬(‫ﻣﻨﮭﻤﺎ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬ ‫ﺣﺪد‬ ‫و‬. ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ )٨(‫د‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬= (‫س‬٢ –٣‫ر‬ ،)‫س‬= (‫؟‬‫ــ‬ ‫س‬"٢" ‫أوﺟﺪ‬) :‫د‬º‫ر‬)(‫س‬(‫أ‬ ‫ﻓﻰ‬‫أوﺟﺪ‬ ‫ﺛﻢ‬ ‫اﻟﻤﺠﺎل‬ ‫ﻣﺤﺪدا‬ ‫ﺻﻮرة‬ ‫ﺑﺴﻂ‬)‫د‬º‫ر‬) (٣( ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫د‬١ ‫د‬٢ ‫د‬٢ ‫د‬١ ١ ‫س‬
  17. 17. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٧ ]١[‫اﻟﺪوال‬ ‫ﻓﻰ‬ ‫اﻟﺘﻤﺎﺛﻞ‬: ‫ﺳﺒﻖ‬ ‫ﻟﻘﺪ‬‫ﻋﻠﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫طﻰ‬ ‫ﯾﻤﻜﻦ‬ ‫ﺣﯿﺚ‬ ‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫و‬ ‫ﻣﺴﺘﻘﯿﻢ‬ ‫ﺣﻮل‬ ‫اﻟﺘﻤﺎﺛﻞ‬ ‫درﺳﻨﺎ‬ ‫أن‬ ‫اﻟﻤﺴﺘﻘﯿﻢ‬)‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫أو‬(‫ﺗﻤﺎﻣﺎ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ﻧﺼﻔﺎ‬ ‫ﻟﯿﻨﻄﺒﻖ‬. )١(‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫اﻟﺘﻤﺎﺛﻞ‬: ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬: ‫اﻟﻨﻘﻄﺔ‬)، ‫س‬-‫ص‬(‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻋﻠﻰ‬ ‫اﻟﻮاﻗﻌﺔ‬ ‫اﻟﻨﻘﻄﺔ‬ ‫ﺻﻮرة‬ ‫ھﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻟﻤﻨﺤﻨﻰ‬)، ‫س‬‫ص‬( ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﺑﺎﻻﻧﻌﻜﺎس‬ ‫اﯾﻀﺎ‬ ‫ﻋﻠﯿﮫ‬ ‫اﻟﻮاﻗﻌﺔ‬ )٢(‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫اﻟﺘﻤﺎﺛﻞ‬: ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬: ‫اﻟﻨﻘﻄﺔ‬)-‫ص‬ ، ‫س‬(‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻋﻠﻰ‬ ‫اﻟﻮاﻗﻌﺔ‬ ‫اﻟﻨﻘﻄﺔ‬ ‫ﺻﻮرة‬ ‫ھﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻟﻤﻨﺤﻨﻰ‬)‫ص‬ ، ‫س‬( ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﺑﺎﻻﻧﻌﻜﺎس‬ ‫أﯾﻀﺎ‬ ‫ﻋﻠﯿﮫ‬ ‫اﻟﻮاﻗﻌﺔ‬ ‫ﻣﺜﻼ‬:‫اﻟﻨﻘﻄﺔ‬)-١،٠(‫اﻟﻨﻘﻄﺔ‬ ‫ﺻﻮرة‬)١،٠( ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﺑﺎﻻﻧﻌﻜﺎس‬ ‫اﻟﺪوال‬ ‫ﺧﻮاص‬ ‫ﺑﻌﺾ‬
  18. 18. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٨ )٣(‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫اﻟﺘﻤﺎﺛﻞ‬: ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬: ‫اﻟﻨﻘﻄﺔ‬)-، ‫س‬-‫ص‬(‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻋﻠﻰ‬ ‫اﻟﻮاﻗﻌﺔ‬ ‫اﻟﻨﻘﻄﺔ‬ ‫ﺻﻮرة‬ ‫ھﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻟﻤﻨﺤﻨﻰ‬)‫ص‬ ، ‫س‬( ‫ﺑﺎﻻﻧﻌﻜﺎس‬ ‫أﯾﻀﺎ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ﻧﻔﺲ‬ ‫ﻋﻠﻰ‬ ‫اﻟﻮاﻗﻌﺔ‬ ‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬: ‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻞ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫اﻟﻨﻘﻄﺔ‬ ‫ﻣﺜﻼ‬)١،١(‫اﻟﻨﻘﻄﺔ‬ ‫ﺻﻮرة‬)-١،-١( ‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫ﺑﺎﻻﻧﻌﻜﺎس‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ]٢[‫اﻟﻔﺮدﯾﺔ‬ ‫و‬ ‫اﻟﺰوﺟﯿﺔ‬ ‫اﻟﺪوال‬:]‫اﻟﺪوال‬ ‫ﻧﻮع‬[ ‫أوﻻ‬:‫اﻟﺰوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬: ‫ﺟﱪﻳﺎ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬:‫س‬←‫ص‬‫زوﺟﯿﺔ‬ ‫ﺗﻜﻮن‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬:‫د‬)-‫س‬= (‫د‬)‫س‬( ‫س‬،-‫س‬g‫اﻟﻤﺠﺎل‬.]‫اﻟﺮﻣﺰ‬‫ﻟﻜﻞ‬ ‫ﯾﻘﺎل‬[ ‫ﺑﻴﺎﻧﻴﺎ‬:‫اﻟﺼﺎدات‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﮭﺎ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻜﻮن‬. ‫ﻛﺎﻧﺖ‬ ‫ﻓﺈذا‬‫اﻟﻨﻘﻄﺔ‬)‫س‬،‫ص‬(g‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﺈن‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬)-‫س‬،‫ص‬(g‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬.
  19. 19. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ١٩ ‫ﺛﺎﻧﯿﺎ‬ً:‫اﻟﻔﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬: ‫ﺟﱪﻳﺎ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬:‫س‬←‫ﻓﺮدﯾﺔ‬ ‫ﺗﻜﻮن‬ ‫ص‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬:‫د‬)-‫س‬= (-‫د‬)‫س‬(‫س‬،-‫س‬g‫اﻟﻤﺠﺎل‬. ‫ﺑﻴﺎﻧﻴﺎ‬:‫إذا‬ ‫ﻓﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻜﻮن‬‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﮭﺎ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻛﺎن‬. ‫اﻟﻨﻘﻄﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫ﻓﺈذا‬)‫س‬،‫ص‬(‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﺈن‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ﻋﻠﻰ‬ ‫ﺗﻘﻊ‬)-‫س‬،-‫ص‬(‫أﯾﻀﺎ‬ ‫ﺗﻘﻊ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ﻋﻠﻰ‬. ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــ‬ *ً ‫ﺟﺒﺮﯾﺎ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻧﻮع‬ ‫ﺑﺤﺚ‬ ‫ﺧﻄﻮات‬: ١(‫د‬ ‫ﻧﻮﺟﺪ‬)-‫س‬(‫ﻛﻞ‬ ‫ﺑﺎﺳﺘﺒﺪال‬ ‫ﯾﺘﻢ‬ ‫ذﻟﻚ‬ ‫و‬)‫س‬(‫ﺑــ‬)-‫س‬(‫اﻻﺻﻠﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻓﻰ‬ ٢(‫ﻧﻔﻜﮭﺎ‬ ‫و‬ ‫اﻷﻗﻮاس‬ ‫ﻣﻊ‬ ‫ﻧﺘﻌﺎﻣﻞ‬. ٣(‫ﺣﺴ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻧﻮع‬ ‫ﻋﻠﻰ‬ ‫ﻧﺤﻜﻢ‬ ‫و‬ ‫اﻷﺻﻠﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫و‬ ‫اﻟﻨﺎﺗﺠﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﻦ‬ ‫ﻧﻘﺎرن‬‫ﺳﺒﻖ‬ ‫ﻣﺎ‬ ‫ﺐ‬. *‫ﺟﺒﺮﯾﺎ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻧﻮع‬ ‫ﺑﺤﺚ‬ ‫ﻋﻨﺪ‬ ‫ھﺎﻣﺔ‬ ‫ﻣﻼﺣﻈﺎت‬: ١) (-‫س‬(‫زوﺟﻰ‬ ‫ﻋﺪد‬ =‫س‬‫اﻟﺰوﺟﻰ‬ ‫اﻟﻌﺪد‬ ‫ﻧﻔﺲ‬ ،)-‫س‬(‫ﻓﺮدى‬ ‫ﻋﺪد‬ =‫س‬ ‫ــ‬‫اﻟﻔﺮدى‬ ‫اﻟﻌﺪد‬ ‫ﻧﻔﺲ‬ ٢(‫اﻟﺴﺎﻟﺒﺔ‬ ‫اﻟﺰاوﯾﺔ‬)-‫س‬(‫اﻟﻤﺜﻠﺜﯿﺔ‬ ‫اﻟﺪوال‬ ‫إﺷﺎرة‬ ‫ﻓﻰ‬ ‫اﻟﺮاﺑﻊ‬ ‫اﻟﺮﺑﻊ‬ ‫ﻣﻌﺎﻣﻠﺔ‬ ‫ﺗﻌﺎﻣﻞ‬. ‫ﻣﺜﻼ‬:‫ﺣﺎ‬)-‫س‬= (‫ﺣﺎ‬ ‫ــ‬‫طﺎ‬ ، ‫س‬)-‫س‬= (‫ﺣﺘﺎ‬ ، ‫س‬ ‫طﺎ‬ ‫ــ‬)-‫س‬= (‫س‬ ‫ﺣﺘﺎ‬ ٣(‫د‬)‫س‬+ (‫د‬)-‫س‬= (٠ ٤(، ‫س‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ﻓﺮدﯾﺔ‬ ‫ﻟﯿﺲ‬ ‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﺜﯿﺮ‬-‫س‬h‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬ ‫د‬ ‫اﯾﺠﺎد‬ ‫دون‬)-‫س‬( ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫أى‬ ‫اﺑﺤﺚ‬ ‫و‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﺜﻞ‬ ‫اﻟﺮﺳﻮﻣﯿﺔ‬ ‫اﻟﺒﺮاﻣﺞ‬ ‫ﺑﺎﺳﺘﺨﺪام‬ ‫ﺟﺒﺮﯾﺎ‬ ‫اﺟﺎﺑﺘﻚ‬ ‫ﻣﻦ‬ ‫ﺗﺤﻘﻖ‬ ‫ﺛﻢ‬ ‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ً. )١(‫د‬)‫س‬= (‫س‬٢ –٤‫س‬)٢(‫د‬)‫س‬= (‫س‬٣ +‫س‬ )٣(‫د‬)‫س‬= (‫س‬ ‫ﺣﺎ‬ ‫س‬
  20. 20. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٠ ‫اﻟﺤﻞ‬: )١(‫اﻟﺠﺪول‬ ‫ﻧﻜﻮن‬:‫د‬)‫س‬= (‫س‬٢ –٤‫س‬ ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﯿﺲ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﯿﺲ‬ ‫و‬ ‫د‬)-‫س‬) = (-‫س‬(٢ –٤×)-‫س‬( =‫س‬٢ +٤‫س‬}‫د‬ ‫ــ‬)‫س‬( B‫ﻓﺮدﯾﺔ‬ ‫ﻻ‬ ‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻻ‬ ‫اﻟﺪاﻟﺔ‬ )٢(‫د‬)‫س‬= (‫س‬٣ +‫س‬ ‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻞ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫د‬ ،)-‫س‬) = (-‫س‬(٣ ) +-‫س‬( =-‫س‬٣ –‫س‬=-)‫س‬٣ +‫س‬( =‫د‬ ‫ــ‬)‫س‬( B‫ﻓﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫س‬-١٠١٢٣ ‫د‬)‫س‬(٥٠-٣-٤-٣ ‫س‬-٢-١٠١٢ ‫د‬)‫س‬(-١٠-٢٠٢١٠  ‫ﺳﺲ‬
  21. 21. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢١ )٣(‫د‬)‫س‬= (‫س‬ ‫ﺣﺎ‬ ‫س‬ ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ A‫د‬)-‫س‬= (-‫ﺣﺎ‬ ‫س‬)-‫س‬= (‫س‬ ‫ﺣﺎ‬ ‫س‬=‫د‬)‫س‬( B‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬. ‫ــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫ﺣﯿﺚ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻣﺜﻞ‬ ‫د‬)‫س‬= ( ‫ﺟﺒﺮﯾﺎ‬ ‫ذﻟﻚ‬ ‫ﻣﻦ‬ ‫ﺗﺤﻘﻖ‬ ‫و‬ ‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أم‬ ‫ﻓﺮدﯾﺔ‬ ‫أم‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻞ‬ ‫ﺑﯿﻦ‬ ‫ﺛﻢ‬. ‫اﻟﺤﻞ‬:‫س‬X–٢‫س‬>-٢ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ A‫د‬)-‫س‬= ( = }-‫د‬)‫س‬( B‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪاﻟﺔ‬‫ﻓﺮدﯾﺔ‬ ‫ﻻ‬ ‫س‬-٢-١٠-٢-١-٣ ‫ص‬٠١٢٠-١١ ‫س‬+٢C‫س‬X-٢ ‫ــ‬ ‫س‬ ‫ــ‬٢C‫س‬>-٢ -‫س‬+٢C-‫س‬X-٢ ‫ــ‬ ‫س‬٢C-‫س‬>-٢ -‫س‬+٢C-‫س‬Y٢ ‫ــ‬ ‫س‬٢C‫س‬<-٢ -٢ ‫ﺳﺲ‬ ‫ﺻﺺ‬ ١ ٢ -١-٣ -١ ٠ ٣ ١ -٣ -٢
  22. 22. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٢ ]*٣[‫اﻷﺣﺎدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬: ‫ﻣﺜﺎل‬:‫أﺣﺎدﯾﺔ‬ ‫داﻟﺔ‬ ‫ر‬ ، ‫د‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫أن‬ ‫أﺛﺒﺖ‬: )١(‫د‬)‫س‬= (‫س‬–٣)٢(‫ر‬)‫س‬= ( ‫اﻟﺤﻞ‬) :١(‫ﻛﺎن‬ ‫إذا‬‫ﺍ‬‫ب‬ ،g‫د‬ ، ‫ح‬)‫ﺍ‬= (‫ﺍ‬–٣‫د‬ ،)‫ب‬= (‫ب‬–٣ ‫د‬ ‫ﺑﻮﺿﻊ‬)‫ﺍ‬= (‫د‬)‫ب‬(B‫ﺍ‬–٣=‫ب‬–٣‫ﺑﺤﺬف‬)-٣(‫اﻟﻄﺮﻓﯿﻦ‬ ‫ﻣﻦ‬ B‫ﺍ‬=‫ﺏ‬B‫أﺣﺎدﯾﺔ‬ ‫داﻟﺔ‬ ‫د‬ )٢(‫ﻛﺎن‬ ‫إذا‬‫ﺍ‬‫ب‬ ،g‫ح‬-}٥{،‫ر‬)‫ﺍ‬= (،‫ر‬)‫ﺏ‬= ( ‫ﺑﻮﺿﻊ‬‫ر‬)‫ﺍ‬= (‫ر‬)‫ب‬(B=‫ﻧﺠﺪ‬ ‫اﻟﺘﺒﺎدﻟﻰ‬ ‫ﺑﺎﻟﻀﺮب‬ )٢‫ﺍ‬–٣) (‫ب‬–٥) = (‫ﺍ‬–٥()٢‫ب‬–٣( ٢‫ﺍ‬‫ب‬–٣‫ب‬–١٠‫ﺍ‬+١٥=٢‫ﺍ‬‫ب‬–١٠‫ب‬–٣‫ﺍ‬+١٥ ١٠‫ب‬–٣‫ب‬=١٠‫ﺍ‬–٣‫ﺍ‬ B٧‫ب‬=٧‫ﺍ‬B‫ﺍ‬=‫ب‬B‫ر‬‫أﺣﺎدﯾﺔ‬ ‫داﻟﺔ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬:‫ﺳﺲ‬C‫ﺻﺺ‬‫أﺣﺎدﯾﺔ‬ ‫داﻟﺔ‬ ‫ﺗﺴﻤﻰ‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬‫ﺍ‬‫ب‬ ،g‫ﺳﺲ‬‫د‬ ،)‫ﺍ‬= (‫د‬)‫ب‬(‫ﻓﺈن‬‫ﺍ‬=‫ب‬ ‫ﻟﻜﻞ‬ ‫أو‬‫ﺍ‬}‫د‬ ‫ﻓﺈن‬ ‫ب‬)‫ﺍ‬(}‫د‬)‫ب‬( ‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎن‬ ‫ﻣﻦ‬ ‫واﺣﺪة‬ ‫ﻧﻘﻄﺔ‬ ‫ﻣﻦ‬ ‫ﺑﺄﻛﺜﺮ‬ ‫ﯾﻤﺮ‬ ‫ﻻ‬ ‫اﻟﺬى‬ ‫اﻷﻓﻘﻰ‬ ‫ﺑﺎﻟﺨﻂ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ذﻟﻚ‬ ‫ﻣﻦ‬ ‫ﯾﺘﺤﻘﻖ‬ ‫و‬ ٢‫س‬–٣ ‫س‬–٥ ٢‫ﺍ‬–٣ ‫ﺍ‬–٥ ٢‫ﺏ‬–٣ ‫ﺏ‬–٥ ٢‫ا‬–٣ ‫ا‬–٥ ٢‫ب‬–٣ ‫ب‬–٥
  23. 23. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٣ *‫اﻷﻓﻘﻰ‬ ‫اﻟﺨﻂ‬ ‫اﺧﺘﺒﺎر‬: ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻜﻮن‬:‫ﺳﺲ‬C‫ﺻﺺ‬‫اﺣﺎدﯾﺔ‬ ‫داﻟﺔ‬‫ﻗﻄﻊ‬ ‫إذا‬‫اﻟ‬‫ﺨﻂ‬‫اﻷ‬‫ﻓﻘﻰ‬)‫اﻟﺴﯿﻨﺎت‬ ‫ﻟﻤﺤﻮر‬ ‫اﻟﻤﻮازي‬( ‫ﻓﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ﯾﻘﻄﻊ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪي‬ ‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻋﻨﺼﺮ‬ ‫ﻛﻞ‬ ‫ﻋﻨﺪ‬‫ﻧﻘﻄﺔ‬‫واﺣﺪة‬. ‫ـــــــــــــــــــــــــــ‬‫ـ‬‫ـ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫أﺣﺎدﯾﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫أن‬ ‫ﺑﯿﻦ‬: )١(‫د‬)‫س‬= (‫س‬٢ +٣)٢(‫ر‬)‫س‬= (‫س‬٢ –٥‫س‬+٦ ‫اﻟﺤﻞ‬: )١(‫د‬)‫س‬= (‫س‬٢ +٣ ‫اﻵﺗﻰ‬ ‫اﻟﺠﺪول‬ ‫ﻧﻜﻮن‬: A‫د‬)١= (١٢ +٣=٤ ‫د‬ ،)-١) = (-١(٢ +٣=٤ B‫د‬)١= (‫د‬)-١( A-١}١B‫أﺣﺎدﯾﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫د‬. ‫ص‬ ‫ﻋﻨﺪ‬ ‫اﻷﻓﻘﻰ‬ ‫اﻟﺨﻂ‬ ‫أن‬ ‫وﻧﻼﺣﻆ‬=٤‫ﯾﻨﺎ‬‫ھﻤﺎ‬ ‫س‬ ‫ﻟﻠﻤﺘﻐﯿﺮ‬ ‫ﻣﺘﺴﺎوﯾﺘﯿﻦ‬ ‫ﻏﯿﺮ‬ ‫ﻗﯿﻤﺘﯿﻦ‬ ‫ظﺮ‬–١،١ )٢(‫ر‬)‫س‬= (‫س‬٢ –٥‫س‬+٦ A‫ر‬)١= (١٢ –٥×١+٦=٢ ،‫ر‬)٤= (٤٢ –٥×٤+٦=٢ B‫ر‬)١= (‫ر‬)٤(A١}٤ B‫ر‬‫أﺣﺎدﯾﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫داﻟﺔ‬ ‫ص‬ ‫ﻋﻨﺪﻣﺎ‬ ‫اﻷﻓﻘﻰ‬ ‫اﻟﺨﻂ‬ ‫أن‬ ‫ﻧﻼﺣﻆ‬ ‫و‬=٢‫ھﻤﺎ‬ ‫س‬ ‫ﻟﻠﻤﺘﻐﯿﺮ‬ ‫ﻣﺘﺴﺎوﯾﺘﯿﻦ‬ ‫ﻏﯿﺮ‬ ‫ﻗﯿﻤﺘﯿﻦ‬ ‫ﯾﻨﺎظﺮ‬١،٤ ‫س‬-٣-٢-١٠١٢ ‫د‬)‫س‬(١٢٧٤٣٤٧ ٤ -2 -1 1 2 3 4 5 -1 1 2 3 ٤ ٣ -١ ١ ٣
  24. 24. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٤ ]٤[)‫اﻟــﺪاﻟـــــــﺔ‬ ‫اطـــــــــﺮاد‬( ‫ﺛﺎﺑﺘﺔ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ١-)‫اﻟﺘﺰاﯾﺪﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬(‫ﻟﻠﺪ‬ ‫ﯾﻘﺎل‬‫اﻟﻔﺘﺮة‬ ‫ﻓﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫أﻧﮭﺎ‬ ‫اﻟﺔ‬]‫ﺍ‬،‫ﺏ‬[ ‫س‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬١،‫س‬٢g]‫ﺍ‬،‫ﺏ‬[‫اﻵﺗﻰ‬ ‫اﻟﺸﺮط‬ ‫ﯾﺘﺤﻘﻖ‬: ‫س‬ ‫ﻛﺎن‬ ‫إذا‬١<‫س‬٢‫د‬)‫س‬١(<‫د‬)‫س‬٢( ‫ﻋﺎﻣــــﺔ‬ ‫وﺑﺼﻔﺔ‬:‫د‬)‫س‬(‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫ﺗﻜﻮن‬: ‫ﺗﺘﺰاﯾﺪ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﯿﻤﺔ‬‫س‬ ‫ﻗﯿﻤﺔ‬ ‫ﺑﺈزدﯾﺎد‬. ‫أﺧﺮى‬ ‫وﺑﻄﺮﯾﻘﺔ‬:‫د‬)‫س‬(‫ﻟﻤﻨﺤﻨﻰ‬ ‫اﻟﻤﻤﺎس‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫ﺗﻜﻮن‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻟﻤﺤﻮر‬ ‫اﻟﻤﻮﺟﺐ‬ ‫اﻻﺗﺠﺎه‬ ‫ﻣﻊ‬ ‫ﺣﺎدة‬ ‫زاوﯾﺔ‬ ‫ﯾﺼﻨﻊ‬ ‫اﻟﺪاﻟﺔ‬. ٢-)‫اﻟﺘﻨﺎﻗﺼﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬(‫اﻟﻔﺘﺮة‬ ‫ﻓﻰ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫أﻧﮭﺎ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫ﯾﻘﺎل‬]‫ﺍ‬،‫ﺏ‬[ ‫س‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬١،‫س‬٢g]‫ﺍ‬،‫ﺏ‬[ ‫اﻵﺗﻰ‬ ‫اﻟﺸﺮط‬ ‫ﯾﺘﺤﻘﻖ‬: ‫س‬ ‫ﻛﺎن‬ ‫إذا‬١<‫س‬٢‫د‬)‫س‬١(>‫د‬)‫س‬٢( ‫ﻋﺎﻣــــﺔ‬ ‫وﺑﺼﻔﺔ‬:‫د‬)‫س‬(‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫ﺗﻜﻮن‬:‫س‬ ‫ﻗﯿﻤﺔ‬ ‫ﺑﺈزدﯾﺎد‬ ‫ﺗﺘﻨﺎﻗﺺ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﯿﻤﺔ‬. ‫أﺧﺮى‬ ‫وﺑﻄﺮﯾﻘﺔ‬:‫د‬)‫س‬(‫اﻟﻤﻤﺎس‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫ﺗﻜﻮن‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻟﻤﻨﺤﻨﻰ‬‫ﻣﻨﻔ‬ ‫زاوﯾﺔ‬ ‫ﯾﺼﻨﻊ‬‫اﻟﻤﻮﺟﺐ‬ ‫اﻻﺗﺠﺎه‬ ‫ﻣﻊ‬ ‫ﺮﺟﺔ‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻟﻤﺤﻮر‬.
  25. 25. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٥ ٣-)‫اﻟﺜﺎﺑﺘﮫ‬ ‫اﻟﺪاﻟﺔ‬(‫اﻟﻔﺘﺮة‬ ‫ﻓﻰ‬ ‫ﺛﺎﺑﺘﮫ‬ ‫أﻧﮭﺎ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫ﯾﻘﺎل‬]‫ﺍ‬،‫ﺏ‬[ ‫س‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬١،‫س‬٢g]‫ﺍ‬،‫ﺏ‬[ ‫اﻵﺗﻰ‬ ‫اﻟﺸﺮط‬ ‫ﯾﺘﺤﻘﻖ‬:‫س‬ ‫ﻛﺎن‬ ‫إذا‬١<‫س‬٢‫د‬)‫س‬١= (‫د‬)‫س‬٢= (‫ﺍ‬ ‫ﻋﺎﻣــــﺔ‬ ‫وﺑﺼﻔﺔ‬:‫د‬)‫س‬(‫س‬ ‫ﻗﯿﻤﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫ﻣﮭﻤﺎ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﯿﻤﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺛﺎﺑﺘﺔ‬ ‫ﺗﻜﻮن‬. ‫اﻟﺨﻼﺻﺔ‬: ‫ﺗﺬﻛﺮ‬‫أن‬:‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﯾﻘﺮأ‬ ‫اﻟﻤﺪى‬ ‫أﻣﺎ‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﺗﻘﺮأ‬ ‫اﻻطﺮاد‬ ‫ﻓﺘﺮات‬ ‫و‬ ‫اﻟﻤﺠﺎل‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫اﻟﻤﺪى‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬ ‫اﻻﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫اطﺮاد‬ ‫اﺑﺤﺚ‬: ‫اﻟﺸﻜﻞ‬)١(‫اﻟﺸﻜﻞ‬)٢(‫اﻟﺸﻜﻞ‬)٣( ٥ ٤ ٣ ٢ ١ -١ -٢  -٢ -١ ٠ ١ ٢ ٣ ٤ ٥  -٢ -١ ٠ ١ ٢ ٣ ٤ ٥  ٥ ٤ ٣ ٢ ١ -١ -٢  -٢ -١ ٠ ١ ٢ ٣ ٤ ٥  ٥ ٤ ٣ ٢ ١ -١ -٢ 
  26. 26. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٦ ‫اﻟﺤﻞ‬: ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬)١: (‫اﻟ‬‫ﻤﺪى‬] =٠،٢[ ‫اﻻطﺮاد‬:‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫اﻟﺪاﻟﺔ‬]-٢،٠[‫ﻓﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ،]٠،٣[‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ،]٣،٥[ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬)٢: (‫اﻟﻤﺪى‬] =-٢،∞] ‫اﻻطﺮاد‬:‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬]١،∞]‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ،[-∞،١[ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬)٣: (‫اﻟﻤﺪى‬[ =–∞،٣[ ‫اﻻطﺮاد‬:‫اﻟﺪاﻟﺔ‬‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬[-∞،٠[‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ،]٣،∞]‫ﻓﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ،]٠،٣[ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬: ‫ـــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ]١[‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫ﺣﯿﺚ‬ ‫ﻣﻦ‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻧﻮع‬ ‫اﺑﺤﺚ‬) .ً ‫ﺟﺒﺮﯾﺎ‬( ]١[‫د‬)‫س‬= (٢–‫س‬٢ ]٢[‫د‬)‫س‬= (٤‫؟‬‫س‬]٣[‫د‬)‫س‬= ( ]٤[‫د‬)‫س‬] = (٥[‫د‬)‫س‬= (‫س‬٣ +‫س‬ ‫ﺣﺘﺎ‬ ]٦[‫د‬)‫س‬= (‫؟‬‫س‬٢ "+"٦"]٧[‫د‬)‫س‬=( ]٨[‫د‬)‫س‬= (‫س‬ ‫ﺣﺘﺎ‬ ‫س‬ ‫اﻟﺪوال‬ ‫ﺧﻮاص‬ ‫ﺑﻌﺾ‬ ‫ﻋﻠﻰ‬ ‫ﺗﻤﺎرﯾﻦ‬ ‫ــ‬ ‫س‬٣C‫س‬<٠ ‫ــ‬ ‫س‬ ‫ــ‬٣C‫س‬>٠ ‫س‬٣ ‫ﺣﺎ‬٣‫س‬ ١+‫س‬٤ ‫ــ‬ ‫س‬١C‫س‬X٠ ٧‫س‬C‫س‬>٠
  27. 27. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٧ ]٢[‫اﻟﺴ‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬ ‫ﯾﻠﻰ‬ ‫ﻛﻤﺎ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻷﺣﺎدﯾﺔ‬ ‫اﻟﺪوال‬ ‫ﺣﺪد‬‫؟‬ ‫ﺒﺐ‬ )١(‫د‬)‫س‬= (٣‫س‬+١)٢(‫د‬)‫س‬= (٢‫س‬٢ –‫س‬–٣ )٣(‫د‬)‫س‬= (‫س‬٤ +٢‫س‬+١)٤(‫د‬)‫س‬= ( ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــ‬ ]٣[‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫ﻛﻮﻧﮭﺎ‬ ‫ﺣﯿﺚ‬ ‫ﻣﻦ‬ ‫ﻧﻮﻋﮭﺎ‬ ‫وﺑﯿﻦ‬ ‫داﻟﺔ‬ ‫ﻛﻞ‬ ‫ﻣﺪى‬ ‫أوﺟﺪ‬: ٢‫س‬+١ ‫س‬–١  ٣ -٢ -١ ١ ٢ ٣  ١ -١ ٢ -٢ -١ ١ ٢ ٣ ٤  ٣ ٢ ١ -١ -٢ -٣  -٢ -١ ١ ٢ ٣ ٤  ٤ ٣ ٢ ١ -١ -٢  ]١[]٢[ ]٣[ ]٤[
  28. 28. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٨ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ]٤[‫ﻏﯿﺮ‬ ‫أﯾﮭﺎ‬ ‫و‬ ‫ﻓﺮدﯾﺔ‬ ‫ﻣﻨﮭﺎ‬ ‫أى‬ ‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻣﻨﮭﺎ‬ ‫أى‬ ‫ﺑﯿﻦ‬ ‫ﺛﻢ‬ ‫ﯾﻠﻰ‬ ‫ﻛﻤﺎ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ارﺳﻢ‬ ‫ﺟﺒﺮﯾﺎ‬ ‫ذﻟﻚ‬ ‫ﻣﻦ‬ ‫ﺗﺤﻘﻖ‬ ‫و‬ ‫ذﻟﻚ‬. )‫أ‬(‫د‬)‫س‬= ()‫ب‬(‫د‬)‫س‬(= )‫ﺟـ‬(‫د‬)‫س‬= ()‫د‬(‫د‬)‫س‬= ( ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ]٥[ ]٦[ ]٦[ ]٥[ ٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬<٠ -٢‫ﻋﻨﺪﻣﺎ‬‫س‬>٠ -‫س‬ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬X٠ ‫س‬‫ﻋﻨﺪﻣﺎ‬‫س‬>٠ ‫س‬–١‫س‬ ‫ﻋﻨﺪﻣﺎ‬X٠ ٧‫س‬‫ﻋﻨﺪﻣﺎ‬‫س‬>٠ ‫ﻗﺎ‬‫اﻟﺠﯿﺐ‬ ‫ﻧﻮن‬)‫ﻗﺎﻋﺪة‬ ‫اﻟﺠﯿﺐ‬( ‫س‬+١‫س‬ ‫ﻋﻨﺪﻣﺎ‬X٠
  29. 29. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٢٩ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫اﻟﺪاﻟﺔ‬: ‫ﻛﺜﯿﺮة‬ ‫اﻟﺪاﻟﺔ‬ ‫درﺳﺖ‬ ‫أن‬ ‫ﺳﺒﻖ‬‫اﻟﺼﻮرة‬ ‫ﻋﻠﻰ‬ ‫ﻗﺎﻋﺪﺗﮭﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺤﺪود‬: ‫د‬)‫س‬= (‫ا‬٠+‫ا‬١‫س‬+‫ا‬٢‫س‬٢ +‫ا‬٣‫س‬٣ +٠٠٠٠+‫ا‬‫ن‬‫س‬‫ن‬ ‫ﺣﯿﺚ‬:‫ا‬٠،‫ا‬١،‫ا‬٢،٠٠٠٠،‫ا‬‫ن‬g‫ح‬،‫ا‬‫ن‬}٠ ‫ھﻮ‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﻤﺠﺎل‬ ‫و‬ ‫اﻟﻤﺠﺎل‬ ‫أن‬ ‫وﻋﻠﻤﻨﺎ‬‫ح‬)‫ذﻟﻚ‬ ‫ﺧﻼف‬ ‫ﯾﺬﻛﺮ‬ ‫ﻣﺎﻟﻢ‬(‫اﻟﺪوال‬ ‫ھﺬه‬ ‫ﺗﺴﻤﻰ‬ ‫ﻟﺬﻟﻚ‬ ‫و‬ ‫ا‬ ‫ﻣﻦ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫ﺑﺪوال‬‫اﻟﻤﺘﻐﯿﺮ‬ ‫ﯾﺄﺧﺬھﺎ‬ ‫ﻗﻮة‬ ‫أﻋﻠﻰ‬ ‫ھﻰ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫درﺟﺔ‬ ‫و‬ ، ‫ن‬ ‫ﻟﺪرﺟﺔ‬ ‫س‬ ‫اﻟﻤﺴﺘﻘﻞ‬ ‫ھﺎﻣﺔ‬ ‫ﻣﻼﺣﻈﺎت‬: ١(‫د‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬= (‫ا‬،‫ا‬}٠‫اﻟﺜﺎﺑﺘﺔ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫داﻟﺔ‬ ‫ﺗﺴﻤﻰ‬ ‫د‬ ‫ﻓﺈن‬. ٢(‫دواﻻ‬ ‫ﺗﺴﻤﻰ‬ ‫اﻟﺜﺎﻧﯿﺔ‬ ‫اﻟﺪرﺟﺔ‬ ‫ﻣﻦ‬ ‫و‬ ، ‫ﺧﻄﯿﺔ‬ ‫دواﻻ‬ ‫ﺗﺴﻤﻰ‬ ‫اﻷوﻟﻰ‬ ‫اﻟﺪرﺟﺔ‬ ‫ﻣﻦ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫دوال‬ ‫ﺗﺮﺑﯿ‬‫ﺗﻜﻌﯿﺒﯿﺔ‬ ‫دواﻻ‬ ‫ﺗﺴﻤﻰ‬ ‫اﻟﺜﺎﻟﺜﺔ‬ ‫اﻟﺪرﺟﺔ‬ ‫وﻣﻦ‬ ، ‫ﻌﯿﺔ‬. ٣(‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫داﻟﺔ‬ ‫ﻋﻠﻰ‬ ‫ﻧﺤﺼﻞ‬ ، ‫ﺛﻮاﺑﺖ‬ ‫و‬ ‫ﻣﺨﺘﻠﻔﺔ‬ ‫ﻗﻮى‬ ‫دوال‬ ‫طﺮح‬ ‫أو‬ ‫ﺟﻤﻊ‬ ‫ﻋﻨﺪ‬. ٤(‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻣﻊ‬ ‫ﻣﻨﺤﻨﯿﮭﺎ‬ ‫ﺗﻘﺎطﻊ‬ ‫ﻟﻨﻘﻂ‬ ‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻻﺣﺪاﺛﯿﺎت‬ ‫ھﻰ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫اﻟﺪاﻟﺔ‬ ‫أﺻﻔﺎر‬. ٥(‫ا‬ ‫ﻟﮭﻤﺎ‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ر‬ ، ‫د‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮﺗﺎ‬ ‫داﻟﺘﺎ‬ ‫ﺗﺘﺴﺎوى‬‫س‬ ‫ﻗﻮى‬ ‫ﻣﻌﺎﻣﻼت‬ ‫ﻛﺎﻧﺖ‬ ‫و‬ ‫ﻧﻔﺴﮭﺎ‬ ‫ﻟﺪرﺟﺔ‬ ‫ﻣﺘﺴﺎوﯾﺔ‬ ‫ﻓﯿﮭﻤﺎ‬ ‫اﻟﻤﺘﻨﺎظﺮة‬. ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﺣﯿﺚ‬ ‫ﺣﺪود‬ ‫ﻛﺜﯿﺮﺗﺎ‬ ‫ر‬ ، ‫د‬ ‫ﻛﺎن‬ ‫إذا‬)‫س‬() =‫ا‬‫س‬+٥(٢ ‫ر‬ ،)‫س‬= (٩‫س‬٢ +٣٠‫س‬+‫ــ‬ ‫ﺟـ‬٤‫د‬ ‫ﻛﺎن‬ ‫و‬ ،)‫س‬= (‫ر‬)‫س‬(‫ﻗﯿﻤﺘﻰ‬ ‫أوﺟﺪ‬‫ا‬‫ﺟـ‬ ، ‫اﻟﺤﻞ‬: ‫د‬)‫س‬) = (‫ا‬‫س‬+٥(٢ =‫ا‬٢ ‫س‬+١٠‫ا‬‫س‬+٢٥ A‫د‬)‫س‬= (‫ر‬)‫س‬(B‫ا‬٢ ‫س‬+١٠‫ا‬‫س‬+٢٥=٩‫س‬٢ +٣٠‫س‬+‫ــ‬ ‫ﺟـ‬٤ B‫اﻟﻤﺘﻨﺎظﺮ‬ ‫س‬ ‫ﻗﻮى‬ ‫ﻣﻌﺎﻣﻼت‬‫ﻣﺘﺴﺎوﯾﺔ‬ ‫ة‬. ‫ﻧﺠﺪ‬ ‫س‬ ‫ﻣﻌﺎﻣﻞ‬ ‫ﺑﻤﻘﺎرﻧﺔ‬ ‫و‬:١٠‫ا‬=٣٠B‫ا‬=٣ ‫اﻟﻤﻄﻠﻖ‬ ‫اﻟﺤﺪ‬ ‫ﻣﻘﺎرﻧﺔ‬ ،:‫ﺟـ‬-٤=٢٥B‫ﺟـ‬=٢٩ ‫اﻟﮭﻨﺪﺳﯿﺔ‬ ‫اﻟﺘﺤﻮﯾﻼت‬ ‫و‬ ‫ﻟﻠﺪوال‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺘﻤﺜﯿﻞ‬
  30. 30. ‫اﻟﺒﺤﺘﺔ‬ ‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒـﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ﻋﻠﻤﻰ‬( ‫ــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــ‬ ‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬ ‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬/٠١١٥٤٨٠٢٨١١ ٣٠ *‫اﻟﺪوال‬ ‫ﻣﻨﺤﻨﯿﺎت‬ ‫رﺳﻢ‬* ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫داﻟﺔ‬ ‫ﻣﻨﺤﻨﯿﺎت‬ ‫رﺳﻢ‬ ‫أوﻻ‬: ‫د‬ ‫ھﻰ‬ ‫اﻟﺜﺎﺑﺘﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻌﺎﻣﺔ‬ ‫اﻟﺼﻮرة‬)‫س‬= (‫ا‬‫ﺣﯿﺚ‬‫ا‬‫ﻟ‬ ‫ﺛﺎﺑﺖ‬‫س‬ ‫ﻜﻞ‬g‫ح‬* ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﯾﻮازى‬ ‫ﺑﻤﺴﺘﻘﯿﻢ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﺗﻤﺜﻞ‬ ‫و‬ ‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﯾﻘﻄﻊ‬ ‫و‬)٠،‫ا‬( ‫اﻟﻤﻮﺿﺢ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬ ‫ﻛﻤﺎ‬: ‫ﻣﺠﺎﻟﮭﺎ‬=‫ﻣﺪاھﺎ‬ ، ‫ح‬=}‫ا‬{‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ، ‫اﻟﻨﻘﺎط‬ ‫ﻣﻦ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫أو‬ ‫ﻧﻘﻄﺔ‬ ‫ﻣﺪاھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﻮﺣﯿﺪة‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻰ‬ ‫و‬ ‫ﻣﻠﺤﻮظﺔ‬:‫ﻛﺎﻧﺖ‬ ‫إذا‬‫ا‬‫اﻟﻤﺴﺘﻘ‬ ‫ﻓﺈن‬ ‫ﻣﻮﺟﺒﺔ‬‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫أﻋﻠﻰ‬ ‫ﯾﻜﻮن‬ ‫ﯿﻢ‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫و‬ ،‫ا‬‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫أﺳﻔﻞ‬ ‫ﯾﻜﻮن‬ ‫اﻟﻤﺴﺘﻘﯿﻢ‬ ‫ﻓﺈن‬ ‫ﺳﺎﻟﺒﺔ‬ ‫ﻣﺜﺎل‬:‫د‬ ‫ﺣﯿﺚ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ارﺳﻢ‬)‫س‬= (٣‫اﻟﺮﺳﻢ‬ ‫وﻣﻦ‬ ‫اﻟﻤﺪى‬ ‫ﻋﯿﻦ‬‫واﻟﻨﻮع‬ ‫واﻻطﺮاد‬ ‫اﻟﺤﻞ‬: ‫اﻟﻤﺪى‬=}٣{ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﻋﻠﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫اﻟﺼﺎ‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻟﺘﻤﺎﺛﻠﮭﺎ‬ ‫زوﺟﯿﺔ‬‫دات‬ ‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫د‬ ‫ھﻰ‬ ‫اﻟﺨﻄﯿﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻌﺎﻣﺔ‬ ‫اﻟﺼﻮرة‬)‫س‬= (‫ا‬‫س‬+‫س‬ ‫ﻟﻜﻞ‬ ‫ب‬g‫ﺣﺢ‬،‫ا‬}٠ ‫ﻣ‬ ‫ﻣﺴﺘﻘﯿﻢ‬ ‫ﺑﺨﻂ‬ ‫ﺗﻤﺜﻞ‬ ‫و‬‫ﯿﻠﮫ‬=‫ا‬‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫وﯾﻘﻄﻊ‬ ،)٠‫ب‬ ،(‫ﻣﺤﻮر‬ ‫ﯾﻘﻄﻊ‬ ‫و‬ ‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺴﯿﻨﺎت‬)،٠(‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﻣﻦ‬ ‫اﻟﻤﻘﻄﻮع‬ ‫اﻟﺠﺰء‬ ‫ب‬ ، ‫أوﻻ‬:‫اﻟﺜﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺻﺺ‬ ‫ﺳﺲ‬ )٠،‫ا‬( ‫د‬)‫س‬= (‫ا‬ -٣ -٢ -١ ١ ٢ ٣ ٤  ٤ ٣ ٢ ١ -١ -٢ -٣  ‫ﺛﺎﻧﯿﺎ‬:‫أو‬ ‫اﻷوﻟﻰ‬ ‫اﻟﺪرﺟﺔ‬ ‫داﻟﺔ‬)‫ا‬‫اﻟﺨﻄﯿﺔ‬ ‫ﻟﺪاﻟﺔ‬ ( -‫ب‬ ‫ا‬

×