SlideShare a Scribd company logo
1 of 60
Download to read offline
Maintainable Cloud
Architecture of Hadoop
Kai Sasaki
Treasure Data Inc.
Who am I?
• Kai Sasaki (佐々木 海)
• @Lewuathe at Twitter, GitHub
• Treasure Data Inc.

Software Engineer
• Contributing Hadoop, Spark.
Hadoop in Treasure Data
Cloud-based Data warehousing service
Hadoop is the core of Treasure Data
Hadoop on Cloud
1. Features provided by AWS, IDCF, Heroku etc
2. Fast growing reliability and integrity
Hadoop on Cloud
1. Features provided by AWS, IDCF, Heroku etc
2. Fast growing reliability and integrity
Maintainability of Middleware
Agenda
• Maintainability of Distributed System
• Our Challenges
• Stateless Hive Metastore
• Cloud Storage for Hadoop
• Multiple Hadoop Version Management
• Regression Test for Hive Queries
• REST API for Hadoop
• Workflow Integration
• What we should keep in mind
Maintainability
We think high maintainability is achieved by…
• Stateless
Maintainability
We think high maintainability is achieved by…
• Stateless
• Mobility
Maintainability
We think high maintainability is achieved by…
• Stateless
• Mobility
• Queueing
Stateless
• Stateless Hive metastore
• Cloud Storage for Hadoop
Stateless Hive MS
Stateful Hive MS
MySQL
Stateful Hive MS
Driver Metastore
MySQL
Stateful Hive MS
Driver Metastore
MySQL
Require Maintaining RDBMS for only Meta Store
Stateless Hive MS
Driver Metastore
Stateless Hive MS
Driver Metastore Derby
Stateless Hive MS
Driver Metastore Derby
Worker
Submit DDL
request
Stateless Hive MS
Driver Metastore Derby
Worker
Submit DDL
request
Aggregate Stateful points
Treasure Data
API
Cloud Storage for Hadoop
PlazmaDB
Data
Connector
S3, Redshift, MySQL,
PostgreSQL, Salesforce and more
SDK
iOS, Android, JavaScript

Unity
Bulk Import td client
...
PlazmaDB
Data
Connector
S3, Redshift, MySQL,
PostgreSQL, Salesforce and more
SDK
iOS, Android, JavaScript

Unity
Bulk Import td client
...
msgpack
PlazmaDB
Data
Connector
S3, Redshift, MySQL,
PostgreSQL, Salesforce and more
SDK
iOS, Android, JavaScript

Unity
Bulk Import td client
...
msgpack
Hadoop
PlazmaDB
Data
Connector
S3, Redshift, MySQL,
PostgreSQL, Salesforce and more
SDK
iOS, Android, JavaScript

Unity
Bulk Import td client
...
msgpack
Hadoop
Stateful
PlazmaDB
PostgreSQL
S3
or
Riak
S3
or
Riak
S3
or
Riak
S3
or
Riak
msgpack
Amazon RDS
PlazmaDB
PostgreSQL
S3
or
Riak
S3
or
Riak
S3
or
Riak
S3
or
Riak
msgpack
Amazon RDS
Transaction Immutable
Mobility
• Multiple Hadoop Version Management
• Regression Test for Hive Queries
Multiple Hadoop
Version Management
Multiple Version 

Management
CDH HDP Apache
Multiple Version 

Management
CDH HDP Apache
client client client
Multiple Version 

Management
CDH HDP Apache
client client client
Tough Operation
Multiple Version 

Management
CDH HDP Apache
Worker
Multiple Version 

Management
CDH HDP Apache
Worker
switching
Multiple Version 

Management
CDH HDP Apache
Worker
switching
Multiple Version 

Management
CDH HDP Apache
Worker
CDH package
HDP package
Apache package
switching
Multiple Version 

Management
CDH HDP Apache
Worker
CDH package
HDP package
Apache package
S3
switching
Multiple Version
Management
S3
/test
/stable
...
Multiple Version
Management
CDH package
HDP package
Apache package
S3
/test
/stable
...
Multiple Version
Management
CDH package
HDP package
Apache package
S3
/test
/stable
...
CDH
HDP
Apache
Worker
download
Regression Test for Hive
• Introducing new features, version up, migration

must be done without regression
• Running integration system test and regression test
for Hive queries
CDH
HDP
Apache
Worker
http://blog.circleci.com/meet-our-new-logo/
System Test
Repository
CDH
HDP
Apache
Worker
http://blog.circleci.com/meet-our-new-logo/
System Test
Repository
CDH
HDP
Apache
Worker
http://blog.circleci.com/meet-our-new-logo/
System Test
Repository
S3
Hadoop
Repository
CDH
HDP
Apache
Worker
http://blog.circleci.com/meet-our-new-logo/
System Test
Repository
S3
Apache package
Hadoop
Repository
CDH
HDP
Apache
Worker
http://blog.circleci.com/meet-our-new-logo/
System Test
Repository
S3
Apache package
Hadoop
Repository
Queueing
• REST API for Hadoop
• RDS based Queue management system
REST API for Hadoop
REST API for Hadoop
CDH HDP Apache
Worker
REST API for Hadoop
CDH HDP Apache
Worker PerfectQueue
Hadoop Job
Server
REST API
REST API for Hadoop
CDH HDP Apache
Worker PerfectQueue
Hadoop Job
Server
REST API
Presto
API
RDBMS-based Queue
Management System
RDBMS based
queue management
CDH HDP Apache
Worker
Client Client Client
PerfectQueue
Hadoop Job
Server
PerfectQueue
• Highly available distributed queue build on RDBMS
• Amazon SQS like API
• Resource scheduling for multi tenancy
• Graceful and Live Restarting
https://github.com/treasure-data/perfectqueue
What we should 

keep in mind
• Stateless

Delegate responsibility to Cloud systems
• Mobility

Looking ahead for version up, migration
• Queueing

Make each request persistent
Recap
• Maintainability of Distributed System
• Our Challenges
• Stateless Hive Metastore
• Cloud Storage for Hadoop
• Multiple Hadoop version management
• Regression Test for Hive queries
• REST API for Hadoop
• Workflow Integration
• What we should keep in mind
https://www.treasuredata.com/

More Related Content

What's hot

NYC HUG - Application Architectures with Apache Hadoop
NYC HUG - Application Architectures with Apache HadoopNYC HUG - Application Architectures with Apache Hadoop
NYC HUG - Application Architectures with Apache Hadoopmarkgrover
 
Zero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsightZero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsightAshish Thapliyal
 
Karmasphere Studio for Hadoop
Karmasphere Studio for HadoopKarmasphere Studio for Hadoop
Karmasphere Studio for HadoopHadoop User Group
 
Next Generation Hadoop Operations
Next Generation Hadoop OperationsNext Generation Hadoop Operations
Next Generation Hadoop OperationsOwen O'Malley
 
Architecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud DetectionArchitecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud Detectionhadooparchbook
 
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...DataStax Academy
 
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
A Non-Standard use Case of Hadoop: High Scale Image Processing and AnalyticsA Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
A Non-Standard use Case of Hadoop: High Scale Image Processing and AnalyticsDataWorks Summit
 
IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...
IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...
IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...In-Memory Computing Summit
 
HUG August 2010: Best practices
HUG August 2010: Best practicesHUG August 2010: Best practices
HUG August 2010: Best practicesHadoop User Group
 
Foss evolution cos-boudnik
Foss evolution cos-boudnikFoss evolution cos-boudnik
Foss evolution cos-boudnikData Con LA
 
La big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixitLa big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixitData Con LA
 
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Data Con LA
 
Introduction to Apache Kudu
Introduction to Apache KuduIntroduction to Apache Kudu
Introduction to Apache KuduJeff Holoman
 
Building Big Data Applications using Spark, Hive, HBase and Kafka
Building Big Data Applications using Spark, Hive, HBase and KafkaBuilding Big Data Applications using Spark, Hive, HBase and Kafka
Building Big Data Applications using Spark, Hive, HBase and KafkaAshish Thapliyal
 
IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...
IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...
IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...In-Memory Computing Summit
 
Big Data Anti-Patterns: Lessons From the Front LIne
Big Data Anti-Patterns: Lessons From the Front LIneBig Data Anti-Patterns: Lessons From the Front LIne
Big Data Anti-Patterns: Lessons From the Front LIneDouglas Moore
 

What's hot (20)

NYC HUG - Application Architectures with Apache Hadoop
NYC HUG - Application Architectures with Apache HadoopNYC HUG - Application Architectures with Apache Hadoop
NYC HUG - Application Architectures with Apache Hadoop
 
Zero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsightZero ETL analytics with LLAP in Azure HDInsight
Zero ETL analytics with LLAP in Azure HDInsight
 
Karmasphere Studio for Hadoop
Karmasphere Studio for HadoopKarmasphere Studio for Hadoop
Karmasphere Studio for Hadoop
 
Next Generation Hadoop Operations
Next Generation Hadoop OperationsNext Generation Hadoop Operations
Next Generation Hadoop Operations
 
HDInsight for Architects
HDInsight for ArchitectsHDInsight for Architects
HDInsight for Architects
 
Architecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud DetectionArchitecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud Detection
 
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...
C* Summit 2013: Time for a New Relationship - Intuit's Journey from RDBMS to ...
 
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
A Non-Standard use Case of Hadoop: High Scale Image Processing and AnalyticsA Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
 
IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...
IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...
IMCSummit 2015 - Day 2 Developer Track - Anatomy of an In-Memory Data Fabric:...
 
HUG August 2010: Best practices
HUG August 2010: Best practicesHUG August 2010: Best practices
HUG August 2010: Best practices
 
Foss evolution cos-boudnik
Foss evolution cos-boudnikFoss evolution cos-boudnik
Foss evolution cos-boudnik
 
La big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixitLa big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixit
 
Simplified Cluster Operation & Troubleshooting
Simplified Cluster Operation & TroubleshootingSimplified Cluster Operation & Troubleshooting
Simplified Cluster Operation & Troubleshooting
 
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
 
Introduction to Apache Kudu
Introduction to Apache KuduIntroduction to Apache Kudu
Introduction to Apache Kudu
 
Building Big Data Applications using Spark, Hive, HBase and Kafka
Building Big Data Applications using Spark, Hive, HBase and KafkaBuilding Big Data Applications using Spark, Hive, HBase and Kafka
Building Big Data Applications using Spark, Hive, HBase and Kafka
 
Azure HDInsight
Azure HDInsightAzure HDInsight
Azure HDInsight
 
IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...
IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...
IMCSummit 2015 - Day 1 Developer Track - Open-Source In-Memory Platforms: Ben...
 
Flexible compute
Flexible computeFlexible compute
Flexible compute
 
Big Data Anti-Patterns: Lessons From the Front LIne
Big Data Anti-Patterns: Lessons From the Front LIneBig Data Anti-Patterns: Lessons From the Front LIne
Big Data Anti-Patterns: Lessons From the Front LIne
 

Viewers also liked

sparksql-hive-bench-by-nec-hwx-at-hcj16
sparksql-hive-bench-by-nec-hwx-at-hcj16sparksql-hive-bench-by-nec-hwx-at-hcj16
sparksql-hive-bench-by-nec-hwx-at-hcj16Yifeng Jiang
 
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)Hadoop / Spark Conference Japan
 
データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-
データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-
データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-Makoto SHIMURA
 
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 20162016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016Yu Ishikawa
 
基幹業務もHadoopで!! -ローソンにおける店舗発注業務への Hadoop + Hive導入と その取り組みについて-
基幹業務もHadoopで!! -ローソンにおける店舗発注業務へのHadoop + Hive導入と その取り組みについて-基幹業務もHadoopで!! -ローソンにおける店舗発注業務へのHadoop + Hive導入と その取り組みについて-
基幹業務もHadoopで!! -ローソンにおける店舗発注業務への Hadoop + Hive導入と その取り組みについて-Keigo Suda
 
Apache drillを業務利用してみる(までの道のり)
Apache drillを業務利用してみる(までの道のり)Apache drillを業務利用してみる(までの道のり)
Apache drillを業務利用してみる(までの道のり)Keigo Suda
 
オライリーセミナー Hive入門 #oreilly0724
オライリーセミナー Hive入門  #oreilly0724オライリーセミナー Hive入門  #oreilly0724
オライリーセミナー Hive入門 #oreilly0724Cloudera Japan
 
セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44horihorio
 
Embulk makes Japan visible
Embulk makes Japan visibleEmbulk makes Japan visible
Embulk makes Japan visibleKai Sasaki
 
Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)
Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)
Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)Junichi Noda
 
いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016
いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016
いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016Yahoo!デベロッパーネットワーク
 
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?Edureka!
 
本当にあったHadoopの恐い話 Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...
本当にあったHadoopの恐い話Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...本当にあったHadoopの恐い話Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...
本当にあったHadoopの恐い話 Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...NTT DATA OSS Professional Services
 
統計と会計 - Zansa#19
統計と会計 - Zansa#19統計と会計 - Zansa#19
統計と会計 - Zansa#19horihorio
 
僕の考える最強のビックデータエンジニア
僕の考える最強のビックデータエンジニア僕の考える最強のビックデータエンジニア
僕の考える最強のビックデータエンジニアYu Yamada
 
サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)
サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)
サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)NTT DATA OSS Professional Services
 
Big Data/Hadoop Option Analysis
Big Data/Hadoop Option AnalysisBig Data/Hadoop Option Analysis
Big Data/Hadoop Option Analysiszafarali1981
 
Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」
Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」
Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」オラクルエンジニア通信
 

Viewers also liked (20)

sparksql-hive-bench-by-nec-hwx-at-hcj16
sparksql-hive-bench-by-nec-hwx-at-hcj16sparksql-hive-bench-by-nec-hwx-at-hcj16
sparksql-hive-bench-by-nec-hwx-at-hcj16
 
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
 
データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-
データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-
データドリブン企業におけるHadoop基盤とETL -niconicoでの実践例-
 
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 20162016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
 
基幹業務もHadoopで!! -ローソンにおける店舗発注業務への Hadoop + Hive導入と その取り組みについて-
基幹業務もHadoopで!! -ローソンにおける店舗発注業務へのHadoop + Hive導入と その取り組みについて-基幹業務もHadoopで!! -ローソンにおける店舗発注業務へのHadoop + Hive導入と その取り組みについて-
基幹業務もHadoopで!! -ローソンにおける店舗発注業務への Hadoop + Hive導入と その取り組みについて-
 
Apache drillを業務利用してみる(までの道のり)
Apache drillを業務利用してみる(までの道のり)Apache drillを業務利用してみる(までの道のり)
Apache drillを業務利用してみる(までの道のり)
 
オライリーセミナー Hive入門 #oreilly0724
オライリーセミナー Hive入門  #oreilly0724オライリーセミナー Hive入門  #oreilly0724
オライリーセミナー Hive入門 #oreilly0724
 
セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44
 
Embulk makes Japan visible
Embulk makes Japan visibleEmbulk makes Japan visible
Embulk makes Japan visible
 
Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)
Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)
Spark Streamingで作る、つぶやきビッグデータのクローン(Hadoop Spark Conference Japan 2016版)
 
いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016
いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016
いろいろなストリーム処理プロダクトをベンチマークしてみた #hcj2016
 
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
 
本当にあったHadoopの恐い話 Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...
本当にあったHadoopの恐い話Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...本当にあったHadoopの恐い話Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...
本当にあったHadoopの恐い話 Blockはどこへきえた? (Hadoop / Spark Conference Japan 2016 ライトニングトー...
 
統計と会計 - Zansa#19
統計と会計 - Zansa#19統計と会計 - Zansa#19
統計と会計 - Zansa#19
 
僕の考える最強のビックデータエンジニア
僕の考える最強のビックデータエンジニア僕の考える最強のビックデータエンジニア
僕の考える最強のビックデータエンジニア
 
サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)
サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)
サポートメンバは見た! Hadoopバグワースト10 (adoop / Spark Conference Japan 2016 ライトニングトーク発表資料)
 
Hadoop Security
Hadoop SecurityHadoop Security
Hadoop Security
 
Big Data/Hadoop Option Analysis
Big Data/Hadoop Option AnalysisBig Data/Hadoop Option Analysis
Big Data/Hadoop Option Analysis
 
金融機関でのHive/Presto事例紹介
金融機関でのHive/Presto事例紹介金融機関でのHive/Presto事例紹介
金融機関でのHive/Presto事例紹介
 
Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」
Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」
Hadoop Conference Japan_2016 セッション「顧客事例から学んだ、 エンタープライズでの "マジな"Hadoop導入の勘所」
 

Similar to Maintainable cloud architecture_of_hadoop

How to Upgrade Your Hadoop Stack in 1 Step -- with Zero Downtime
How to Upgrade Your Hadoop Stack in 1 Step -- with Zero DowntimeHow to Upgrade Your Hadoop Stack in 1 Step -- with Zero Downtime
How to Upgrade Your Hadoop Stack in 1 Step -- with Zero DowntimeIan Lumb
 
How bigtop leveraged docker for build automation and one click hadoop provis...
How bigtop leveraged docker for build automation and  one click hadoop provis...How bigtop leveraged docker for build automation and  one click hadoop provis...
How bigtop leveraged docker for build automation and one click hadoop provis...Evans Ye
 
Trend Micro Big Data Platform and Apache Bigtop
Trend Micro Big Data Platform and Apache BigtopTrend Micro Big Data Platform and Apache Bigtop
Trend Micro Big Data Platform and Apache BigtopEvans Ye
 
CIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding Edge
CIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding EdgeCIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding Edge
CIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding EdgeCloudIDSummit
 
Making sense of Apache Bigtop's role in ODPi and how it matters to Apache Apex
Making sense of Apache Bigtop's role in ODPi and how it matters to Apache ApexMaking sense of Apache Bigtop's role in ODPi and how it matters to Apache Apex
Making sense of Apache Bigtop's role in ODPi and how it matters to Apache ApexApache Apex
 
How bigtop leveraged docker for build automation and one click hadoop provis...
How bigtop leveraged docker for build automation and  one click hadoop provis...How bigtop leveraged docker for build automation and  one click hadoop provis...
How bigtop leveraged docker for build automation and one click hadoop provis...Evans Ye
 
HadoopCon- Trend Micro SPN Hadoop Overview
HadoopCon- Trend Micro SPN Hadoop OverviewHadoopCon- Trend Micro SPN Hadoop Overview
HadoopCon- Trend Micro SPN Hadoop OverviewYafang Chang
 
Running Hadoop as Service in AltiScale Platform
Running Hadoop as Service in AltiScale PlatformRunning Hadoop as Service in AltiScale Platform
Running Hadoop as Service in AltiScale PlatformInMobi Technology
 
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv larsgeorge
 
A glimpse into the Future of Hadoop & Big Data
A glimpse into the Future of Hadoop & Big DataA glimpse into the Future of Hadoop & Big Data
A glimpse into the Future of Hadoop & Big DataSaurav Kumar Sinha
 
Hw09 Security And Api Compatibility
Hw09   Security And Api CompatibilityHw09   Security And Api Compatibility
Hw09 Security And Api CompatibilityCloudera, Inc.
 
Plugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in HadoopPlugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in HadoopOwen O'Malley
 
Hadoop And Their Ecosystem ppt
 Hadoop And Their Ecosystem ppt Hadoop And Their Ecosystem ppt
Hadoop And Their Ecosystem pptsunera pathan
 
Hadoop And Their Ecosystem
 Hadoop And Their Ecosystem Hadoop And Their Ecosystem
Hadoop And Their Ecosystemsunera pathan
 
Don't Let Security Be The 'Elephant in the Room'
Don't Let Security Be The 'Elephant in the Room'Don't Let Security Be The 'Elephant in the Room'
Don't Let Security Be The 'Elephant in the Room'Hortonworks
 
Application architectures with hadoop – big data techcon 2014
Application architectures with hadoop – big data techcon 2014Application architectures with hadoop – big data techcon 2014
Application architectures with hadoop – big data techcon 2014Jonathan Seidman
 
Application architectures with Hadoop – Big Data TechCon 2014
Application architectures with Hadoop – Big Data TechCon 2014Application architectures with Hadoop – Big Data TechCon 2014
Application architectures with Hadoop – Big Data TechCon 2014hadooparchbook
 
Microsoft's Big Play for Big Data
Microsoft's Big Play for Big DataMicrosoft's Big Play for Big Data
Microsoft's Big Play for Big DataAndrew Brust
 
Hadoop Everywhere & Cloudbreak
Hadoop Everywhere & CloudbreakHadoop Everywhere & Cloudbreak
Hadoop Everywhere & CloudbreakSean Roberts
 

Similar to Maintainable cloud architecture_of_hadoop (20)

How to Upgrade Your Hadoop Stack in 1 Step -- with Zero Downtime
How to Upgrade Your Hadoop Stack in 1 Step -- with Zero DowntimeHow to Upgrade Your Hadoop Stack in 1 Step -- with Zero Downtime
How to Upgrade Your Hadoop Stack in 1 Step -- with Zero Downtime
 
How bigtop leveraged docker for build automation and one click hadoop provis...
How bigtop leveraged docker for build automation and  one click hadoop provis...How bigtop leveraged docker for build automation and  one click hadoop provis...
How bigtop leveraged docker for build automation and one click hadoop provis...
 
Trend Micro Big Data Platform and Apache Bigtop
Trend Micro Big Data Platform and Apache BigtopTrend Micro Big Data Platform and Apache Bigtop
Trend Micro Big Data Platform and Apache Bigtop
 
CIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding Edge
CIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding EdgeCIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding Edge
CIS13: Big Data Platform Vendor’s Perspective: Insights from the Bleeding Edge
 
Making sense of Apache Bigtop's role in ODPi and how it matters to Apache Apex
Making sense of Apache Bigtop's role in ODPi and how it matters to Apache ApexMaking sense of Apache Bigtop's role in ODPi and how it matters to Apache Apex
Making sense of Apache Bigtop's role in ODPi and how it matters to Apache Apex
 
How bigtop leveraged docker for build automation and one click hadoop provis...
How bigtop leveraged docker for build automation and  one click hadoop provis...How bigtop leveraged docker for build automation and  one click hadoop provis...
How bigtop leveraged docker for build automation and one click hadoop provis...
 
HadoopCon- Trend Micro SPN Hadoop Overview
HadoopCon- Trend Micro SPN Hadoop OverviewHadoopCon- Trend Micro SPN Hadoop Overview
HadoopCon- Trend Micro SPN Hadoop Overview
 
Hive
HiveHive
Hive
 
Running Hadoop as Service in AltiScale Platform
Running Hadoop as Service in AltiScale PlatformRunning Hadoop as Service in AltiScale Platform
Running Hadoop as Service in AltiScale Platform
 
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
 
A glimpse into the Future of Hadoop & Big Data
A glimpse into the Future of Hadoop & Big DataA glimpse into the Future of Hadoop & Big Data
A glimpse into the Future of Hadoop & Big Data
 
Hw09 Security And Api Compatibility
Hw09   Security And Api CompatibilityHw09   Security And Api Compatibility
Hw09 Security And Api Compatibility
 
Plugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in HadoopPlugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in Hadoop
 
Hadoop And Their Ecosystem ppt
 Hadoop And Their Ecosystem ppt Hadoop And Their Ecosystem ppt
Hadoop And Their Ecosystem ppt
 
Hadoop And Their Ecosystem
 Hadoop And Their Ecosystem Hadoop And Their Ecosystem
Hadoop And Their Ecosystem
 
Don't Let Security Be The 'Elephant in the Room'
Don't Let Security Be The 'Elephant in the Room'Don't Let Security Be The 'Elephant in the Room'
Don't Let Security Be The 'Elephant in the Room'
 
Application architectures with hadoop – big data techcon 2014
Application architectures with hadoop – big data techcon 2014Application architectures with hadoop – big data techcon 2014
Application architectures with hadoop – big data techcon 2014
 
Application architectures with Hadoop – Big Data TechCon 2014
Application architectures with Hadoop – Big Data TechCon 2014Application architectures with Hadoop – Big Data TechCon 2014
Application architectures with Hadoop – Big Data TechCon 2014
 
Microsoft's Big Play for Big Data
Microsoft's Big Play for Big DataMicrosoft's Big Play for Big Data
Microsoft's Big Play for Big Data
 
Hadoop Everywhere & Cloudbreak
Hadoop Everywhere & CloudbreakHadoop Everywhere & Cloudbreak
Hadoop Everywhere & Cloudbreak
 

More from Kai Sasaki

Graviton 2で実現する
コスト効率のよいCDP基盤
Graviton 2で実現する
コスト効率のよいCDP基盤Graviton 2で実現する
コスト効率のよいCDP基盤
Graviton 2で実現する
コスト効率のよいCDP基盤Kai Sasaki
 
Infrastructure for auto scaling distributed system
Infrastructure for auto scaling distributed systemInfrastructure for auto scaling distributed system
Infrastructure for auto scaling distributed systemKai Sasaki
 
Continuous Optimization for Distributed BigData Analysis
Continuous Optimization for Distributed BigData AnalysisContinuous Optimization for Distributed BigData Analysis
Continuous Optimization for Distributed BigData AnalysisKai Sasaki
 
Recent Changes and Challenges for Future Presto
Recent Changes and Challenges for Future PrestoRecent Changes and Challenges for Future Presto
Recent Changes and Challenges for Future PrestoKai Sasaki
 
Real World Storage in Treasure Data
Real World Storage in Treasure DataReal World Storage in Treasure Data
Real World Storage in Treasure DataKai Sasaki
 
20180522 infra autoscaling_system
20180522 infra autoscaling_system20180522 infra autoscaling_system
20180522 infra autoscaling_systemKai Sasaki
 
User Defined Partitioning on PlazmaDB
User Defined Partitioning on PlazmaDBUser Defined Partitioning on PlazmaDB
User Defined Partitioning on PlazmaDBKai Sasaki
 
Deep dive into deeplearn.js
Deep dive into deeplearn.jsDeep dive into deeplearn.js
Deep dive into deeplearn.jsKai Sasaki
 
Optimizing Presto Connector on Cloud Storage
Optimizing Presto Connector on Cloud StorageOptimizing Presto Connector on Cloud Storage
Optimizing Presto Connector on Cloud StorageKai Sasaki
 
Presto updates to 0.178
Presto updates to 0.178Presto updates to 0.178
Presto updates to 0.178Kai Sasaki
 
How to ensure Presto scalability 
in multi use case
How to ensure Presto scalability 
in multi use case How to ensure Presto scalability 
in multi use case
How to ensure Presto scalability 
in multi use case Kai Sasaki
 
図でわかるHDFS Erasure Coding
図でわかるHDFS Erasure Coding図でわかるHDFS Erasure Coding
図でわかるHDFS Erasure CodingKai Sasaki
 
Spark MLlib code reading ~optimization~
Spark MLlib code reading ~optimization~Spark MLlib code reading ~optimization~
Spark MLlib code reading ~optimization~Kai Sasaki
 
How I tried MADE
How I tried MADEHow I tried MADE
How I tried MADEKai Sasaki
 
Reading kernel org
Reading kernel orgReading kernel org
Reading kernel orgKai Sasaki
 
Kernel bootstrap
Kernel bootstrapKernel bootstrap
Kernel bootstrapKai Sasaki
 
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案Kai Sasaki
 
Kernel resource
Kernel resourceKernel resource
Kernel resourceKai Sasaki
 

More from Kai Sasaki (20)

Graviton 2で実現する
コスト効率のよいCDP基盤
Graviton 2で実現する
コスト効率のよいCDP基盤Graviton 2で実現する
コスト効率のよいCDP基盤
Graviton 2で実現する
コスト効率のよいCDP基盤
 
Infrastructure for auto scaling distributed system
Infrastructure for auto scaling distributed systemInfrastructure for auto scaling distributed system
Infrastructure for auto scaling distributed system
 
Continuous Optimization for Distributed BigData Analysis
Continuous Optimization for Distributed BigData AnalysisContinuous Optimization for Distributed BigData Analysis
Continuous Optimization for Distributed BigData Analysis
 
Recent Changes and Challenges for Future Presto
Recent Changes and Challenges for Future PrestoRecent Changes and Challenges for Future Presto
Recent Changes and Challenges for Future Presto
 
Real World Storage in Treasure Data
Real World Storage in Treasure DataReal World Storage in Treasure Data
Real World Storage in Treasure Data
 
20180522 infra autoscaling_system
20180522 infra autoscaling_system20180522 infra autoscaling_system
20180522 infra autoscaling_system
 
User Defined Partitioning on PlazmaDB
User Defined Partitioning on PlazmaDBUser Defined Partitioning on PlazmaDB
User Defined Partitioning on PlazmaDB
 
Deep dive into deeplearn.js
Deep dive into deeplearn.jsDeep dive into deeplearn.js
Deep dive into deeplearn.js
 
Optimizing Presto Connector on Cloud Storage
Optimizing Presto Connector on Cloud StorageOptimizing Presto Connector on Cloud Storage
Optimizing Presto Connector on Cloud Storage
 
Presto updates to 0.178
Presto updates to 0.178Presto updates to 0.178
Presto updates to 0.178
 
How to ensure Presto scalability 
in multi use case
How to ensure Presto scalability 
in multi use case How to ensure Presto scalability 
in multi use case
How to ensure Presto scalability 
in multi use case
 
図でわかるHDFS Erasure Coding
図でわかるHDFS Erasure Coding図でわかるHDFS Erasure Coding
図でわかるHDFS Erasure Coding
 
Spark MLlib code reading ~optimization~
Spark MLlib code reading ~optimization~Spark MLlib code reading ~optimization~
Spark MLlib code reading ~optimization~
 
How I tried MADE
How I tried MADEHow I tried MADE
How I tried MADE
 
Reading kernel org
Reading kernel orgReading kernel org
Reading kernel org
 
Reading drill
Reading drillReading drill
Reading drill
 
Kernel ext4
Kernel ext4Kernel ext4
Kernel ext4
 
Kernel bootstrap
Kernel bootstrapKernel bootstrap
Kernel bootstrap
 
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
HyperLogLogを用いた、異なり数に基づく
 省リソースなk-meansの
k決定アルゴリズムの提案
 
Kernel resource
Kernel resourceKernel resource
Kernel resource
 

Recently uploaded

Xen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdfXen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdfStefano Stabellini
 
英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作qr0udbr0
 
Large Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLarge Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLionel Briand
 
Post Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on IdentityPost Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on Identityteam-WIBU
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaHanief Utama
 
Cyber security and its impact on E commerce
Cyber security and its impact on E commerceCyber security and its impact on E commerce
Cyber security and its impact on E commercemanigoyal112
 
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...Cizo Technology Services
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfAlina Yurenko
 
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...OnePlan Solutions
 
Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)
Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)
Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)jennyeacort
 
SuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte Germany
SuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte GermanySuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte Germany
SuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte GermanyChristoph Pohl
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEEVICTOR MAESTRE RAMIREZ
 
What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...Technogeeks
 
UI5ers live - Custom Controls wrapping 3rd-party libs.pptx
UI5ers live - Custom Controls wrapping 3rd-party libs.pptxUI5ers live - Custom Controls wrapping 3rd-party libs.pptx
UI5ers live - Custom Controls wrapping 3rd-party libs.pptxAndreas Kunz
 
CRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceCRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceBrainSell Technologies
 
How to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion ApplicationHow to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion ApplicationBradBedford3
 
Folding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesFolding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesPhilip Schwarz
 
Salesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZSalesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZABSYZ Inc
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based projectAnoyGreter
 

Recently uploaded (20)

Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
 
Xen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdfXen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdf
 
英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作
 
Large Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLarge Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and Repair
 
Post Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on IdentityPost Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on Identity
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief Utama
 
Cyber security and its impact on E commerce
Cyber security and its impact on E commerceCyber security and its impact on E commerce
Cyber security and its impact on E commerce
 
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
 
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
 
Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)
Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)
Call Us🔝>༒+91-9711147426⇛Call In girls karol bagh (Delhi)
 
SuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte Germany
SuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte GermanySuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte Germany
SuccessFactors 1H 2024 Release - Sneak-Peek by Deloitte Germany
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEE
 
What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...
 
UI5ers live - Custom Controls wrapping 3rd-party libs.pptx
UI5ers live - Custom Controls wrapping 3rd-party libs.pptxUI5ers live - Custom Controls wrapping 3rd-party libs.pptx
UI5ers live - Custom Controls wrapping 3rd-party libs.pptx
 
CRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceCRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. Salesforce
 
How to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion ApplicationHow to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion Application
 
Folding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesFolding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a series
 
Salesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZSalesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZ
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based project
 

Maintainable cloud architecture_of_hadoop