Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Kai Sasaki
1,211 views
How I tried MADE
Masked autoencoder for Distribution Estimation
Related topics:
Deep Learning
•
Read more
3
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 11
2
/ 11
3
/ 11
4
/ 11
5
/ 11
6
/ 11
7
/ 11
8
/ 11
9
/ 11
10
/ 11
11
/ 11
More Related Content
PDF
Deeplearning with node
by
Kai Sasaki
PPTX
How to ensure Presto scalability in multi use case
by
Kai Sasaki
PDF
Graviton 2で実現する コスト効率のよいCDP基盤
by
Kai Sasaki
PDF
Infrastructure for auto scaling distributed system
by
Kai Sasaki
PDF
Continuous Optimization for Distributed BigData Analysis
by
Kai Sasaki
PDF
Recent Changes and Challenges for Future Presto
by
Kai Sasaki
PDF
Real World Storage in Treasure Data
by
Kai Sasaki
PDF
20180522 infra autoscaling_system
by
Kai Sasaki
Deeplearning with node
by
Kai Sasaki
How to ensure Presto scalability in multi use case
by
Kai Sasaki
Graviton 2で実現する コスト効率のよいCDP基盤
by
Kai Sasaki
Infrastructure for auto scaling distributed system
by
Kai Sasaki
Continuous Optimization for Distributed BigData Analysis
by
Kai Sasaki
Recent Changes and Challenges for Future Presto
by
Kai Sasaki
Real World Storage in Treasure Data
by
Kai Sasaki
20180522 infra autoscaling_system
by
Kai Sasaki
More from Kai Sasaki
PDF
User Defined Partitioning on PlazmaDB
by
Kai Sasaki
PDF
Deep dive into deeplearn.js
by
Kai Sasaki
PDF
Optimizing Presto Connector on Cloud Storage
by
Kai Sasaki
PDF
Presto updates to 0.178
by
Kai Sasaki
PDF
Managing multi tenant resource toward Hive 2.0
by
Kai Sasaki
PDF
Embulk makes Japan visible
by
Kai Sasaki
PDF
Maintainable cloud architecture_of_hadoop
by
Kai Sasaki
PDF
図でわかるHDFS Erasure Coding
by
Kai Sasaki
PDF
Spark MLlib code reading ~optimization~
by
Kai Sasaki
PDF
Reading kernel org
by
Kai Sasaki
PDF
Reading drill
by
Kai Sasaki
PDF
Kernel ext4
by
Kai Sasaki
PDF
Kernel bootstrap
by
Kai Sasaki
PDF
HyperLogLogを用いた、異なり数に基づく 省リソースなk-meansの k決定アルゴリズムの提案
by
Kai Sasaki
PDF
Kernel resource
by
Kai Sasaki
PDF
Kernel overview
by
Kai Sasaki
PDF
AutoEncoderで特徴抽出
by
Kai Sasaki
PDF
Pattern match with case class
by
Kai Sasaki
PDF
Drawing word2vec
by
Kai Sasaki
PDF
THE LEFT ONE
by
Kai Sasaki
User Defined Partitioning on PlazmaDB
by
Kai Sasaki
Deep dive into deeplearn.js
by
Kai Sasaki
Optimizing Presto Connector on Cloud Storage
by
Kai Sasaki
Presto updates to 0.178
by
Kai Sasaki
Managing multi tenant resource toward Hive 2.0
by
Kai Sasaki
Embulk makes Japan visible
by
Kai Sasaki
Maintainable cloud architecture_of_hadoop
by
Kai Sasaki
図でわかるHDFS Erasure Coding
by
Kai Sasaki
Spark MLlib code reading ~optimization~
by
Kai Sasaki
Reading kernel org
by
Kai Sasaki
Reading drill
by
Kai Sasaki
Kernel ext4
by
Kai Sasaki
Kernel bootstrap
by
Kai Sasaki
HyperLogLogを用いた、異なり数に基づく 省リソースなk-meansの k決定アルゴリズムの提案
by
Kai Sasaki
Kernel resource
by
Kai Sasaki
Kernel overview
by
Kai Sasaki
AutoEncoderで特徴抽出
by
Kai Sasaki
Pattern match with case class
by
Kai Sasaki
Drawing word2vec
by
Kai Sasaki
THE LEFT ONE
by
Kai Sasaki
How I tried MADE
1.
MADEを実装してみた Kai Sasaki(@Lewuathe)
2.
自己紹介 • 佐々木 海(@Lewuathe) •
Hadoop, Stormなどの開発、運用 • Spark MLLibの開発も手伝ってます • Big DataとDeep Learningをつなげるのが夢
3.
MADEとは • “MADE: Masked
Autoencoder for Distribution Estimation” Mathieu Germain, Karol Gregor, Iain Murray, Hugo Larochelle • Neural Autoencoderを使って条件付き確率分布を推定させる仕組み • 重みの幾つかをmaskさせるというシンプルな方法で実現 • http://arxiv.org/abs/1502.03509
4.
Distribution Estimation as Autoregression -
p(x) : 推定したい分布 - x_d : d番目の確率変数 - x<d : d-1番目以下の確率変数の集合
5.
Distribution Estimation as Autoregression cross-entropy誤差関数とみなせる
6.
Autoregressive Model
7.
Autoregressive Model 2 3 1
8.
Deep MADE
9.
Experiment Denoising Autoencoder MADE ※hidden->outputの重みを可視化 ※MNIST
(784->100->784)
10.
思ったこと • 特徴同士の関係性みたいなものが取れていそう • Maskされ結合数が減るから学習速度が速い(?) •
とMNISTの関係
11.
https://github.com/Lewuathe/neurallib ありがとうございました
Download