Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Kai Sasaki
837 views
Spark MLlib code reading ~optimization~
Reading Spark MLlib optimization code.
Engineering
◦
Read more
1
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 30
2
/ 30
3
/ 30
4
/ 30
5
/ 30
6
/ 30
7
/ 30
8
/ 30
9
/ 30
10
/ 30
11
/ 30
12
/ 30
13
/ 30
14
/ 30
15
/ 30
16
/ 30
17
/ 30
18
/ 30
19
/ 30
20
/ 30
21
/ 30
22
/ 30
23
/ 30
24
/ 30
25
/ 30
26
/ 30
27
/ 30
28
/ 30
29
/ 30
30
/ 30
More Related Content
PDF
Spot Instance + Spark + MLlibで実現する簡単低コスト機械学習
by
Katsushi Yamashita
PPTX
Java使いにとっての関数
by
amkt922
PDF
Aws ml with api
by
Toshihiko Miura
PDF
Spark MLlibでリコメンドエンジンを作った話
by
Koki Shibata
PDF
elasticsearch-hadoopをつかってごにょごにょしてみる
by
Katsushi Yamashita
PDF
Lambda in java_20160121
by
Teruo Kawasaki
PDF
Elasticsearch 2014/04/21 勉強会資料 「Couchbase と Elasticsearch が手を結んだら」
by
Masahiro Satake
PDF
Reading drill
by
Kai Sasaki
Spot Instance + Spark + MLlibで実現する簡単低コスト機械学習
by
Katsushi Yamashita
Java使いにとっての関数
by
amkt922
Aws ml with api
by
Toshihiko Miura
Spark MLlibでリコメンドエンジンを作った話
by
Koki Shibata
elasticsearch-hadoopをつかってごにょごにょしてみる
by
Katsushi Yamashita
Lambda in java_20160121
by
Teruo Kawasaki
Elasticsearch 2014/04/21 勉強会資料 「Couchbase と Elasticsearch が手を結んだら」
by
Masahiro Satake
Reading drill
by
Kai Sasaki
What's hot
PDF
Objective-Cのいろいろな反復処理
by
Kosuke Ogawa
PPTX
スキーマ 付き 分散ストリーム処理 を実行可能な FlinkSQLClient の紹介
by
Sotaro Kimura
PPTX
Rdsを学ぶ
by
yuya-nakamura
PDF
Scalaz-StreamによるFunctional Reactive Programming
by
Tomoharu ASAMI
PPTX
Spark Structured StreamingでKafkaクラスタのデータをお手軽活用
by
Sotaro Kimura
PDF
第一回Web技術勉強会 efkスタック編
by
tzm_freedom
PPTX
Sparkでレコメンドエンジンを作ってみた
by
fujita_s
PDF
Kafka logをオブジェクトストレージに連携する方法まとめ
by
Keigo Suda
PDF
ML Pipelineで実践機械学習
by
Kazuki Taniguchi
PDF
ScalaでBacklogの通知bot作ったで
by
Asami Abe
Objective-Cのいろいろな反復処理
by
Kosuke Ogawa
スキーマ 付き 分散ストリーム処理 を実行可能な FlinkSQLClient の紹介
by
Sotaro Kimura
Rdsを学ぶ
by
yuya-nakamura
Scalaz-StreamによるFunctional Reactive Programming
by
Tomoharu ASAMI
Spark Structured StreamingでKafkaクラスタのデータをお手軽活用
by
Sotaro Kimura
第一回Web技術勉強会 efkスタック編
by
tzm_freedom
Sparkでレコメンドエンジンを作ってみた
by
fujita_s
Kafka logをオブジェクトストレージに連携する方法まとめ
by
Keigo Suda
ML Pipelineで実践機械学習
by
Kazuki Taniguchi
ScalaでBacklogの通知bot作ったで
by
Asami Abe
Viewers also liked
PDF
HyperLogLogを用いた、異なり数に基づく 省リソースなk-meansの k決定アルゴリズムの提案
by
Kai Sasaki
PDF
Embuk internals
by
Sadayuki Furuhashi
PPTX
Treasure Data Overview
by
treasuredata
PDF
図でわかるHDFS Erasure Coding
by
Kai Sasaki
PDF
Prestogres, ODBC & JDBC connectivity for Presto
by
Sadayuki Furuhashi
PDF
スマートニュースの世界展開を支えるログ解析基盤
by
Takumi Sakamoto
PDF
Embulk makes Japan visible
by
Kai Sasaki
PDF
Managing multi tenant resource toward Hive 2.0
by
Kai Sasaki
PDF
Fighting Against Chaotically Separated Values with Embulk
by
Sadayuki Furuhashi
PDF
Embulk - 進化するバルクデータローダ
by
Sadayuki Furuhashi
PDF
Understanding Presto - Presto meetup @ Tokyo #1
by
Sadayuki Furuhashi
PDF
Plugin-based software design with Ruby and RubyGems
by
Sadayuki Furuhashi
PPTX
How to ensure Presto scalability in multi use case
by
Kai Sasaki
PDF
Fluentd at Bay Area Kubernetes Meetup
by
Sadayuki Furuhashi
PDF
Logging for Production Systems in The Container Era
by
Sadayuki Furuhashi
PDF
DigdagはなぜYAMLなのか?
by
Sadayuki Furuhashi
PDF
Maintainable cloud architecture_of_hadoop
by
Kai Sasaki
PDF
What's Amazon Athena? - re:Growth 2016 Osaka
by
Ganota Ichida
PDF
分散ワークフローエンジン『Digdag』の実装 at Tokyo RubyKaigi #11
by
Sadayuki Furuhashi
PDF
Embulk, an open-source plugin-based parallel bulk data loader
by
Sadayuki Furuhashi
HyperLogLogを用いた、異なり数に基づく 省リソースなk-meansの k決定アルゴリズムの提案
by
Kai Sasaki
Embuk internals
by
Sadayuki Furuhashi
Treasure Data Overview
by
treasuredata
図でわかるHDFS Erasure Coding
by
Kai Sasaki
Prestogres, ODBC & JDBC connectivity for Presto
by
Sadayuki Furuhashi
スマートニュースの世界展開を支えるログ解析基盤
by
Takumi Sakamoto
Embulk makes Japan visible
by
Kai Sasaki
Managing multi tenant resource toward Hive 2.0
by
Kai Sasaki
Fighting Against Chaotically Separated Values with Embulk
by
Sadayuki Furuhashi
Embulk - 進化するバルクデータローダ
by
Sadayuki Furuhashi
Understanding Presto - Presto meetup @ Tokyo #1
by
Sadayuki Furuhashi
Plugin-based software design with Ruby and RubyGems
by
Sadayuki Furuhashi
How to ensure Presto scalability in multi use case
by
Kai Sasaki
Fluentd at Bay Area Kubernetes Meetup
by
Sadayuki Furuhashi
Logging for Production Systems in The Container Era
by
Sadayuki Furuhashi
DigdagはなぜYAMLなのか?
by
Sadayuki Furuhashi
Maintainable cloud architecture_of_hadoop
by
Kai Sasaki
What's Amazon Athena? - re:Growth 2016 Osaka
by
Ganota Ichida
分散ワークフローエンジン『Digdag』の実装 at Tokyo RubyKaigi #11
by
Sadayuki Furuhashi
Embulk, an open-source plugin-based parallel bulk data loader
by
Sadayuki Furuhashi
Similar to Spark MLlib code reading ~optimization~
PDF
SGD+α: 確率的勾配降下法の現在と未来
by
Hidekazu Oiwa
PDF
PRML 5.3-5.4
by
正志 坪坂
PDF
lispmeetup#63 Common Lispでゼロから作るDeep Learning
by
Satoshi imai
PDF
Deep learning2
by
ssuserf94232
PDF
HivemallとSpark MLlibの比較
by
Makoto Yui
PPTX
Deep learning basics described
by
Naoki Watanabe
PDF
SGDによるDeepLearningの学習
by
Masashi (Jangsa) Kawaguchi
PDF
深層学習(講談社)のまとめ 第3章
by
okku apot
PPTX
深層学習①
by
ssuser60e2a31
PDF
Report2
by
YoshikazuHayashi3
PDF
PRML Chapter 5 (5.0-5.4)
by
Shogo Nakamura
PDF
Practical recommendations for gradient-based training of deep architectures
by
Koji Matsuda
SGD+α: 確率的勾配降下法の現在と未来
by
Hidekazu Oiwa
PRML 5.3-5.4
by
正志 坪坂
lispmeetup#63 Common Lispでゼロから作るDeep Learning
by
Satoshi imai
Deep learning2
by
ssuserf94232
HivemallとSpark MLlibの比較
by
Makoto Yui
Deep learning basics described
by
Naoki Watanabe
SGDによるDeepLearningの学習
by
Masashi (Jangsa) Kawaguchi
深層学習(講談社)のまとめ 第3章
by
okku apot
深層学習①
by
ssuser60e2a31
Report2
by
YoshikazuHayashi3
PRML Chapter 5 (5.0-5.4)
by
Shogo Nakamura
Practical recommendations for gradient-based training of deep architectures
by
Koji Matsuda
More from Kai Sasaki
PDF
Graviton 2で実現する コスト効率のよいCDP基盤
by
Kai Sasaki
PDF
Infrastructure for auto scaling distributed system
by
Kai Sasaki
PDF
Continuous Optimization for Distributed BigData Analysis
by
Kai Sasaki
PDF
Recent Changes and Challenges for Future Presto
by
Kai Sasaki
PDF
Real World Storage in Treasure Data
by
Kai Sasaki
PDF
20180522 infra autoscaling_system
by
Kai Sasaki
PDF
User Defined Partitioning on PlazmaDB
by
Kai Sasaki
PDF
Deep dive into deeplearn.js
by
Kai Sasaki
PDF
Optimizing Presto Connector on Cloud Storage
by
Kai Sasaki
PDF
Presto updates to 0.178
by
Kai Sasaki
PDF
How I tried MADE
by
Kai Sasaki
PDF
Reading kernel org
by
Kai Sasaki
PDF
Kernel ext4
by
Kai Sasaki
PDF
Kernel bootstrap
by
Kai Sasaki
PDF
Kernel resource
by
Kai Sasaki
PDF
Kernel overview
by
Kai Sasaki
PDF
AutoEncoderで特徴抽出
by
Kai Sasaki
PDF
Pattern match with case class
by
Kai Sasaki
PDF
Drawing word2vec
by
Kai Sasaki
PDF
Deeplearning with node
by
Kai Sasaki
Graviton 2で実現する コスト効率のよいCDP基盤
by
Kai Sasaki
Infrastructure for auto scaling distributed system
by
Kai Sasaki
Continuous Optimization for Distributed BigData Analysis
by
Kai Sasaki
Recent Changes and Challenges for Future Presto
by
Kai Sasaki
Real World Storage in Treasure Data
by
Kai Sasaki
20180522 infra autoscaling_system
by
Kai Sasaki
User Defined Partitioning on PlazmaDB
by
Kai Sasaki
Deep dive into deeplearn.js
by
Kai Sasaki
Optimizing Presto Connector on Cloud Storage
by
Kai Sasaki
Presto updates to 0.178
by
Kai Sasaki
How I tried MADE
by
Kai Sasaki
Reading kernel org
by
Kai Sasaki
Kernel ext4
by
Kai Sasaki
Kernel bootstrap
by
Kai Sasaki
Kernel resource
by
Kai Sasaki
Kernel overview
by
Kai Sasaki
AutoEncoderで特徴抽出
by
Kai Sasaki
Pattern match with case class
by
Kai Sasaki
Drawing word2vec
by
Kai Sasaki
Deeplearning with node
by
Kai Sasaki
Spark MLlib code reading ~optimization~
1.
Spark MLlib Code Reading Kai
Sasaki(@Lewuathe)
2.
Who am I? •
佐々木海 (Kai Sasaki) • Hadoop屋さん • 好きな非線形関数はReLU
3.
What is Spark? •
Scalaで書かれた汎用分散処理エンジン • グラフ処理, 機械学習, SQLエンジンなど のライブラリの付属 • Scala, Java, Python, RのAPIを持つ
4.
MLlib • Sparkに付属されている機械学習ライブラリ • I/FやAPIがより洗練されたMLという フレームワークもあるが実装されている アルゴリズムがMLlibの方が多い
5.
Structure
6.
Structure 今日はこの中の Gradient Descent
7.
Gradient Descent • 勾配法 •
ある目的関数を最小化(最大化)するような 変数の組を見つけるためのアルゴリズム • 学習データとのずれ(目的関数)を最小化するような モデル(変数の組)を見つけるためによく使う
8.
Gradient Descent f(w) w
9.
Gradient Descent f(w) w f(w)を最小化するwが知りたい
10.
Gradient Descent f(w) w 1. 適当に初期値を決める
11.
Gradient Descent f(w) w 2. この点における勾配を求める(微分する)
=
12.
Gradient Descent f(w) w 3. 変数を次式で更新する
13.
Gradient Descent f(w) w 4. これを何回か繰り返す
14.
Gradient Descent f(w) w 4. これを何回か繰り返す
15.
Gradient Descent f(w) w 4. これを何回か繰り返す
16.
Gradient Descent f(w) w 4. これを何回か繰り返す
17.
Gradient Descent f(w) w 4. これを何回か繰り返す ここがf(w)を最小化するw
18.
Gradient Descent • w:
変数の組 • : step size(学習率) • : gradient(勾配) • : 更新式 • loss: 目的関数の値
19.
GradientDescent
20.
GradientDescent#optimize
21.
GradientDescent
22.
GradientDescent 初期値 操作
23.
GradientDescent d d d
d d d d d p p p seqOp seqOp seqOp
24.
GradientDescent d d d
d d d d d p p p seqOp seqOp seqOp
25.
GradientDescent d d d
d d d d d p p p seqOp seqOp seqOp
26.
GradientDescent d d d
d d d d d p p p seqOp seqOp seqOp combOp
27.
GradientDescent d d d
d d d d d p p p seqOp seqOp seqOp combOp combOp
28.
GradientDescent d d d
d d d d d p p p seqOp seqOp seqOp combOp result combOp
29.
GradientDescent
30.
まとめ • Gradient Descentアルゴリズムの話 •
Sparkでの実装 • Gradient, Updater, treeAggregate
Download