SlideShare a Scribd company logo
1 of 18
Change into polar co-ordinates and then evaluate ∫
∞
∫
∞
πžβˆ’(𝐱𝟐+𝐲𝟐)𝐝𝐲𝐝𝐱
𝟎 𝟎
Solution:
Given order 𝑑𝑦𝑑π‘₯ is in correct form.
Given limits are 𝑦 ∢ 0 β†’ ∞ , π‘₯ ∢ 0 β†’ ∞
Equations are 𝑦 = 0 , 𝑦 = ∞ , π‘₯ = 0 , π‘₯ = ∞
Replacement:
ENGG MATHS-II
5.4 Change of variables in Double and Triple integrals:
Evaluation of double integrals by changing Cartesian to polar co- ordinates:
Working rule:
Step:1
Check the given order whether it is correct or not.
Step:2
Write the equations by using given limits.
Step:3
By using the equations sketch the region of integration.
Step:4
Replacement: put x = rcosπœƒ , y = rsinπœƒ , x2 + y2 = r2 and dxdy = rdrdπœƒ
Step:5
Find r limits(draw radial strip inside the region) and ΞΈ limits and evaluate the
integral.
Example:
DOUBLE INTEGRATION
ENGG MATHS-II
Put x2 + y2 = r2 , dydx = rdrdπœƒ
Limits:
r : 0β†’ ∞ , ΞΈ: 0 β†’
Ο€
2
∞
eβˆ’r2
rdrdΞΈ
Ο€
∫
∞
∫
∞
eβˆ’(X2+y2)dydx = ∫2 ∫
0 0 0 0
Substitution: Put r2 = t , if r = 0 β‡’ t = 0, r = ∞ β‡’ t = ∞
2rdr = dt t: 0β†’ ∞
rdr =
𝑑𝑑
Ο€
∫2 ∫
0 0 2
∞
eβˆ’t dt
dΞΈ
Ο€
2
∞
eβˆ’r2
rdrdθ = ∫2 ∫
0 0
1
2 βˆ’1 0
eβˆ’t ∞
Ο€
0
= ∫2 [ ] dθ
= βˆ’βˆž 0
+ e )dΞΈ
Ο€
∫2(βˆ’e
0
=
1
2
1
2
Ο€
∫2(0 + 1)dθ
0
(∡ eβˆ’βˆž = 0, e0 = 1)
1
2
Ο€
= ∫2 dθ
0
2 0
Ο€
=
1
(ΞΈ)2
=
1
(
Ο€
βˆ’ 0)
=
2 2
Ο€
4
Example:
𝐱
𝐝𝐲𝐝𝐱
𝐲 𝐱𝟐+𝐲𝟐
Change into polar co-ordinates and then evaluate ∫
𝐚
∫
𝐚
𝟎
Solution:
Given order 𝑑π‘₯𝑑𝑦 is in correct form.
DOUBLE INTEGRATION
ENGG MATHS-II
Given limits are x : yβ†’ π‘Ž , y : 0β†’ π‘Ž
Equations are x =y , x = π‘Ž , y = 0 , y = π‘Ž
Replacement:
Put x = rcosπœƒ , π‘₯2 + 𝑦2 = π‘Ÿ2 , 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
Limits: r : 0 β†’
π‘Ž
, πœƒ: 0 β†’
πœ‹
π‘π‘œπ‘ πœƒ 4
∫ ∫
π‘Ž π‘Ž π‘₯
π‘₯ +𝑦
2 2 𝑑𝑦𝑑π‘₯ = ∫ ∫
0 𝑦 π‘Ÿ2 π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
π‘Ž
π‘Ÿπ‘π‘œπ‘ πœƒ
πœ‹
4 π‘π‘œ 𝑠
πœƒ
0 0
0
π‘Ž
πœ‹
= ∫4[π‘Ÿπ‘π‘œπ‘ πœƒ]π‘π‘œπ‘ πœƒ
π‘‘πœƒ
π‘Ž
π‘π‘œπ‘ 
πœƒ
0
πœ‹
= ∫4 (
0
π‘π‘œπ‘ πœƒ βˆ’ 0) π‘‘πœƒ
πœ‹
= π‘Ž ∫4 π‘‘πœƒ
0
0
πœ‹
= π‘Ž(πœƒ)4
4
= π‘Ž(
πœ‹
βˆ’ 0)
= π‘Žπœ‹
4
Example:
𝐱𝟐
𝐲 √𝐱𝟐+𝐲𝟐
Evaluate ∫
𝐚
∫
𝐚
𝟎
𝐝𝐱𝐝𝐲 by changing into polar co-ordinates.
Solution:
Given order 𝑑π‘₯𝑑𝑦 is in correct form.
Given limits are x : yβ†’ π‘Ž , y : 0β†’ π‘Ž
DOUBLE INTEGRATION
ENGG MATHS-II
Equations are x =y , x = π‘Ž , y = 0 , y = π‘Ž
Replacement:
Put x2 = r2cos2πœƒ , π‘₯2 + 𝑦2 = π‘Ÿ2 => π‘Ÿ = √π‘₯2 + 𝑦2 , dxdy = rdrdπœƒ
Limits: r : 0 β†’
π‘Ž
, πœƒ: 0 β†’
πœ‹
π‘π‘œπ‘ πœƒ 4
∫ ∫
π‘₯2
√π‘₯ +𝑦
2 2
𝑑π‘₯𝑑𝑦 = ∫ ∫
π‘Ž π‘Ž
0 𝑦 π‘Ÿ
π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
π‘Ž
π‘Ÿ2π‘π‘œπ‘ 2πœƒ
πœ‹
4 𝑐 π‘œ 𝑠
πœƒ
0 0
3
3
πœ‹
= ∫4 [π‘Ÿ
π‘Ž
π‘π‘œπ‘ 2πœƒ]
π‘π‘œπ‘ πœƒ
π‘‘πœƒ
0
π‘Ž3
3
3π‘π‘œπ‘  πœƒ
2
0
πœ‹
= ∫4 (
0
π‘π‘œπ‘  πœƒ βˆ’ 0) π‘‘πœƒ
=
π‘Ž3 1
3
2
πœ‹
∫4
3 0 π‘π‘œπ‘  πœƒ
π‘π‘œπ‘  πœƒ π‘‘πœƒ
=
π‘Ž3 1
πœ‹
3 0 π‘π‘œπ‘ πœƒ
∫4 π‘‘πœƒ
=
πœ‹
0
∫4 π‘ π‘’π‘πœƒ π‘‘πœƒ
=
π‘Ž3
3
π‘Ž3
3 0
πœ‹
(π‘™π‘œπ‘”(π‘ π‘’π‘πœƒ + π‘‘π‘Žπ‘›πœƒ))4
= π‘Ž3
[π‘™π‘œπ‘” (𝑠𝑒𝑐 πœ‹
+ π‘‘π‘Žπ‘› πœ‹
) βˆ’ π‘™π‘œπ‘”(𝑠𝑒𝑐0 + π‘‘π‘Žπ‘›0)]
3 4 4
3
=
π‘Ž3
[π‘™π‘œπ‘”(√2 + 1) βˆ’ π‘™π‘œπ‘”(1 βˆ’ 0)]
3
=
π‘Ž3
π‘™π‘œπ‘”(√2 + 1)
Note:
1. x2 + y2 = r2cos2ΞΈ + r2sin2ΞΈ = r2
2. ∫ cos
2
0
θdθ = ∫
2 2
Ο€ Ο€
2
0
sin ΞΈdΞΈ = Γ—
1 Ο€
2 2
3. ∫ 4
cos θdθ = ∫
Ο€
2
0
4
Ο€
2
0
sin ΞΈdΞΈ = Γ— Γ—
3 1 Ο€
4 2 2
4. ∫ 2 2
Ο€
2
0
cos ΞΈsin ΞΈdΞΈ = Γ— Γ—
1 1 Ο€
4 2 2
DOUBLE INTEGRATION
Example:
By changing into polar co-ordinates and evaluate ∫
𝟐𝐚
∫
βˆšπŸπšπ±βˆ’π±πŸ
(𝐱𝟐 + 𝐲𝟐)𝐝𝐲𝐝𝐱
𝟎 𝟎
Solution:
Given order 𝑑𝑦𝑑π‘₯ is in correct form.
Given limits are y : 0β†’ √2π‘Žπ‘₯ βˆ’ π‘₯2 , x : 0β†’ 2π‘Ž
Equations are y = 0 , y = √2π‘Žπ‘₯ βˆ’ π‘₯2 , x = 0 , x = 2π‘Ž
y2 = 2ax βˆ’ x2
x2 + y2 βˆ’ 2ax = 0 is a circle with centre (a,0) and radius β€˜a’.
Replacement:
Put x2 + y2 = r2 , 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
Limits: r : 0 β†’ 2π‘Žπ‘π‘œπ‘ πœƒ , πœƒ: 0 β†’
πœ‹
2
2π‘Žπ‘π‘œπ‘ πœƒ
π‘Ÿ2 Γ— π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
πœ‹
∫
2π‘Ž
∫
√2π‘Žπ‘₯βˆ’π‘₯2
(π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯ = ∫2 ∫
0 0 0 0
3
π‘Ÿ π‘‘π‘Ÿπ‘‘πœƒ
2π‘Žπ‘π‘œπ‘ 
πœƒ
πœ‹
= ∫2 ∫
0 0
4
]
0
r4 2acosΞΈ
Ο€
= ∫2 [
0
dΞΈ
4
Ο€
24a4cos4ΞΈ
= ∫2(
0
βˆ’ 0) dΞΈ
Ο€
0
= 4a4 ∫2 cos4θdθ
ENGG MATHS-II
DOUBLE INTEGRATION
= 4a4 Γ— 3
Γ— 1
Γ— Ο€
4 2 2
(∡ ∫ 4
Ο€
2
0
cos ΞΈdΞΈ = Γ— Γ—
3 1 Ο€
4 2 2
)
=
3Ο€a4
4
Example:
𝐱
𝐱𝟐+𝐲𝟐
𝐝𝐱𝐝𝐲
By changing into polar co-ordinates and evaluate∫
𝟐
∫
βˆšπŸπ±βˆ’π±πŸ
𝟎 𝟎
Solution:
Given order 𝑑π‘₯𝑑𝑦 is in incorrect form.
X
X2+y2
dydx
The correct form is 𝑑𝑦𝑑π‘₯ β‡’ ∫
2
∫
√2Xβˆ’X2
0 0
Given limits are y : 0β†’ √2π‘₯ βˆ’ π‘₯2 , x : 0β†’ 2
Equations are y = 0 , y = √2π‘₯ βˆ’ π‘₯2 , x = 0 , x = 2
y2 = 2x βˆ’ x2
x2 + y2 βˆ’ 2x = 0 is a circle with centre (1,0) and radius β€˜1’.
Replacement:
Put x = rcosπœƒ, π‘₯2 + 𝑦2 = π‘Ÿ2 , dxdy = rdrdπœƒ
Limits: r : 0 β†’ 2π‘π‘œπ‘ πœƒ , πœƒ: 0 β†’
πœ‹
2
π‘₯ +𝑦
2 2
𝑑𝑦𝑑π‘₯ = ∫ ∫
2 √2π‘₯βˆ’π‘₯2 π‘₯
∫0∫0 π‘Ÿ2
2π‘π‘œπ‘ πœƒ π‘Ÿπ‘π‘œπ‘ πœƒ
Γ— π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
πœ‹
2
0 0
0
πœ‹
0
=∫2[π‘Ÿπ‘π‘œπ‘ πœƒ]2π‘π‘œπ‘ πœƒ π‘‘πœƒ
πœ‹
0
= ∫2(2π‘π‘œπ‘ 2πœƒ βˆ’ 0)π‘‘πœƒ
ENGG MATHS-II
DOUBLE INTEGRATION
πœ‹
0
= 2 ∫2 π‘π‘œπ‘ 2πœƒ π‘‘πœƒ
= 2 Γ—
1
Γ—
πœ‹
2 2
(∡ ∫ 2
πœ‹
2
0
1 πœ‹
2 2
π‘π‘œπ‘  πœƒπ‘‘πœƒ = Γ— )
=
πœ‹
2
Example:
By changing into polar co-ordinates and evaluate∫
𝐚
∫
βˆšπšπŸβˆ’π±πŸ
√𝐱𝟐 + 𝐲𝟐𝐝𝐲𝐝𝐱
𝟎 𝟎
Solution:
Given order 𝑑π‘₯𝑑𝑦 is in correct form.
Given limits are y : 0β†’ βˆšπ‘Ž2 βˆ’ π‘₯2 , x : 0β†’ π‘Ž
Equations are y = 0 , y = βˆšπ‘Ž2 βˆ’ π‘₯2 , x = 0 , x = π‘Ž
y2 = a2 βˆ’ x2
x2 + y2 = a2 is a circle with centre (0,0) and radius β€˜a’.
Replacement:
Put x2 + y2 = r2 β‡’ r = √x2 + y2 , 𝑑𝑦𝑑π‘₯ = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
Limits: r : 0 β†’ π‘Ž , πœƒ: 0 β†’
πœ‹
a
r Γ— rdrdΞΈ
2
Ο€
∫
a
∫
√a2βˆ’X2
√x2 + y2dydx = ∫2 ∫
0 0 0 0
a
r2drdΞΈ
Ο€
= ∫2 ∫
0 0
3
Ο€
r3 a
= ∫2 [
0
] dΞΈ
0
ENGG MATHS-II
DOUBLE INTEGRATION
a3
3
Ο€
= ∫2 (
0
βˆ’ 0)dΞΈ
=
a3
3
Ο€
∫2 dθ
0
a3
3 0
Ο€
= (ΞΈ)2
3 2
=
a3
(
Ο€
βˆ’ 0)
=
Ο€a3
6
Example:
𝐱𝟐+𝐲𝟐
Evaluate ∬
𝐱𝟐𝐲𝟐
𝐝𝐱𝐝𝐲 over the annular region between the circles x2 + y2 = a2
and
x2 + y2 = b2 (b>a) by transforming into polar co-ordinates.
Solution:
π‘₯2+𝑦2 π‘Ÿ2
Replacement:
Put x2 = r2cos2ΞΈ,y2 = r2sin2ΞΈ
x2 + y2 = r2, 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
Given the region is between the circles x2 + y2 = a2 and x2 + y2 = b2
Limits: r : π‘Ž β†’ 𝑏 , πœƒ: 0 β†’ 2πœ‹
∴ ∬
π‘₯2𝑦2
𝑑π‘₯𝑑𝑦 = ∫
2πœ‹
∫
𝑏 π‘Ÿ2π‘π‘œπ‘ 2πœƒΓ—π‘Ÿ2𝑠𝑖𝑛2πœƒ
Γ— π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
0 π‘Ž
ENGG MATHS-II
DOUBLE INTEGRATION
r2
0 a
ENGG MATHS-II
= ∫
2Ο€
∫
b r5cos2ΞΈΓ—sin2ΞΈ
Γ— drdΞΈ
= ∫
2Ο€
∫
b
r3cos2ΞΈ Γ— sin2ΞΈ drdΞΈ
0 a
4 a
r4 b
2Ο€ 2 2
= ∫0 [ ] cos ΞΈ Γ— sin ΞΈ dΞΈ
4 0
= 1
∫
2Ο€
(b4 βˆ’ a4) cos2ΞΈ Γ— sin2ΞΈ dΞΈ
4
= (b4βˆ’a4)
∫
2Ο€
cos2ΞΈ Γ— sin2ΞΈ dΞΈ
0
=
4 4
(b βˆ’a )
4 Γ— ∫
Ο€
2
4 0
2Ο€
0
cos2ΞΈ Γ— sin2ΞΈ dΞΈ (∡ ∫ = 4∫ )
Ο€
2
0
Ο€
= ( b4 βˆ’ a4) Γ— ∫2 cos2ΞΈ Γ— sin2ΞΈ dΞΈ
0
4 2 2
= ( b4 βˆ’ a4) Γ— 1
Γ— 1
Γ— Ο€
(∡ ∫ 2 2
Ο€
2
0
1 1 Ο€
4 2 2
cos ΞΈsin ΞΈdΞΈ = Γ— Γ— )
=
Ο€(b4βˆ’a4)
16
Example:
𝟎 𝟎
Evaluate ∫
𝐚
∫
βˆšπšπŸβˆ’π±πŸ
√𝐚𝟐 βˆ’ 𝐱𝟐 βˆ’ 𝐲𝟐 𝐝𝐲𝐝𝐱 by transforming into polar co-ordinates.
Solution:
Given order 𝑑𝑦𝑑π‘₯ is in correct form.
Given limits are y : 0β†’ βˆšπ‘Ž2 βˆ’ π‘₯2 , x : 0β†’ π‘Ž
Equations are y = 0 , y = βˆšπ‘Ž2 βˆ’ π‘₯2 , x = 0 , x = π‘Ž
𝑦2 = π‘Ž2 βˆ’ π‘₯2
x2 + y2 = a2 is a circle with centre (0,0) and radius β€˜a’.
DOUBLE INTEGRATION
ENGG MATHS-II
Replacement:
Put a2 βˆ’ x2 βˆ’ y2 = a2 βˆ’ (x2 + y2) = a2 βˆ’ r2 , 𝑑𝑦𝑑π‘₯ = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
∴ √a2 βˆ’ x2 βˆ’ y2 = √a2 βˆ’ r2
Limits: r : 0 β†’ π‘Ž , πœƒ: 0 β†’
πœ‹
2
π‘Ž
βˆšπ‘Ž2 βˆ’ π‘Ÿ2 π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ
πœ‹
∫
π‘Ž
∫
βˆšπ‘Ž2βˆ’π‘₯2
βˆšπ‘Ž2 βˆ’ π‘₯2 βˆ’ 𝑦2 𝑑𝑦𝑑π‘₯ = ∫2 ∫
0 0 0 0
= 2 2
βˆ’ π‘Ÿ π‘Ÿπ‘‘π‘Ÿ)π‘‘πœƒ
π‘Ž
πœ‹
∫2(∫ βˆšπ‘Ž
0 0
Substitution:
Put a2 βˆ’ r2 = t
βˆ’2rdr = dt
if r = 0 β‡’ t = a2
if r = a β‡’ t = 0
rdr = βˆ’
dt
2
∴ t ∢ a2 β†’ 0
2 2
a
Ο€
∫2(∫ √a βˆ’ r
0 0
βˆ’dt
2
0
Ο€
rdr)dθ = ∫2[∫ 2 √t( )]dθ
0 a
2
βˆ’1 0
Ο€
= ∫2[∫ 2 √tdt]dθ
0 a
=
βˆ’1
2
1
0
Ο€
∫2[∫ 2 t2dt]dθ
0 a
=
βˆ’1
2
∫
t
3
2
3
2 a2
0
Ο€
2
0
[ ] dΞΈ
= βˆ’ Γ—
1 2
2 3
Ο€ 3 0
0 a2
∫2 [t2] dθ
1
3
3
2
Ο€
= βˆ’ ∫2(0 βˆ’ (a )2)dΞΈ
= βˆ’
1
3
∫
0
Ο€
3
βˆ’ (a ) dΞΈ
2
0
=
a3
3
Ο€
∫2 dθ
0
a3
3 0
Ο€
= (ΞΈ)2
DOUBLE INTEGRATION
3 2
=
a3
(
Ο€
βˆ’ 0)
=
Ο€a3
6
Exercise:
Evaluate the following by changing into polar co-ordinates.
1. ∫
2π‘Ž
∫
√2π‘₯βˆ’π‘₯2
𝑑𝑦𝑑π‘₯
0 0
Ans:
πœ‹π‘Ž2
2
2. ∫
π‘Ž
∫
βˆšπ‘Ž2βˆ’π‘₯2
(π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯
0 0
Ans:
πœ‹π‘Ž4
8
π‘₯2
3. ∫
1
∫
2βˆ’π‘₯
π‘₯𝑦 𝑑π‘₯𝑑𝑦
0
Ans:
3
8
π‘₯
𝑑π‘₯𝑑𝑦
𝑦 π‘₯2+𝑦2
4. ∫
π‘Ž
∫
π‘Ž
0
Ans:
πœ‹π‘Ž
4
π‘₯2+𝑦2
𝑑π‘₯𝑑𝑦
5. ∫
2π‘Ž
∫
√2π‘Žπ‘₯βˆ’π‘₯2 π‘₯
0 0
Ans:
πœ‹π‘Ž
2
6. ∫
π‘Ž
∫
βˆšπ‘Ž2βˆ’π‘₯2
(π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯
βˆ’π‘Ž 0
Ans:
πœ‹π‘Ž4
4
7. ∫
π‘Ž
∫
βˆšπ‘Ž2βˆ’π‘₯2
(π‘₯2𝑦 + 𝑦3)𝑑π‘₯𝑑𝑦
0 0
Ans:
π‘Ž5
5
8. ∫
1
∫
√2π‘₯βˆ’π‘₯2
(π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯
0 0 8
Ans:
3πœ‹
βˆ’ 1
X2+y2
9. ∬
X2y2
dxdy over the annular region between the circles x2 + y2 = 16 and x2 + y2 = 4
Ans:15Ο€
10.∬
Xy
X2+y2
dxdy over the positive quadrant of the circle x2 + y2 = a2 Ans:
a3
6
Change of Variables in Triple Integral
Change of variables from Cartesian co- ordinates to cylindrical co – ordinates.
To convert from Cartesian to cylindrical polar coordinates system we have the following
transformation.
π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ 𝑦 = π‘Ÿ π‘ π‘–π‘›πœƒ 𝑧 = 𝑧
J = βˆ‚(X ,y,z)
= r
βˆ‚(r ,ΞΈ,z)
Hence the integral becomes
ENGG MATHS-II
DOUBLE INTEGRATION
ENGG MATHS-II
∭ f(x , y, z) dzdydx = ∭ f(r , θ, z) dzdrdθ
Example:
Find the volume of a solid bounded by the spherical surface 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = πŸ’πšπŸ and
the cylinder 𝐱𝟐 + 𝐲𝟐 βˆ’ 𝟐𝐚𝐲 = 𝟎.
Solution:
Cylindrical co – ordinates
x = r cos ΞΈ
y = r sin ΞΈ
z = z
The equation of the sphere x2 + y2 + z2 = 4a2
r2cos2 ΞΈ + r2 sin2 ΞΈ + z2 = 4a2
r2 + z2 = 4a2
And the cylinder x2 + y2 βˆ’ 2ay = 0
x2 + y2 = 2ay
r2cos2 ΞΈ + r2 sin2 ΞΈ = 2a r sin ΞΈ
r2 = 2arsin ΞΈ
r = 2asin ΞΈ
Hence, the required volume,
DOUBLE INTEGRATION
∫
√4a2βˆ’ r2
r dz dr dΞΈ
0
r√4a2 βˆ’ r2 dr dΞΈ
Volume = ∫ ∫ ∫ dx dy dz
= ∫ ∫ ∫ r dθ dr dz
= 4 ∫
π⁄2
∫
2a sin ΞΈ
0 0
= 4 ∫
π⁄2
∫
2a sin ΞΈ
0 0
3 0
= 4 ∫
π⁄2
[βˆ’ 1
(4a2 βˆ’ r2)3⁄2]
2a sin ΞΈ
dΞΈ
0
3 0
= 4
∫
π⁄2
[βˆ’(4a2 βˆ’ 4a2 sin2 ΞΈ)3⁄2 + 8a3] dΞΈ
= 4
3
∫
π⁄2
(βˆ’8a3 cos3 ΞΈ + 8a3) dΞΈ
0
3
= 4
8a3 ∫
π⁄2
(1 βˆ’ cos3 ΞΈ) dΞΈ
0
3 2 3
=
32 a3
[
Ο€
βˆ’
2
] cubic units
Example:
Find the volume of the portion of the cylinder 𝐱𝟐 + 𝐲𝟐 = 𝟏 intercepted between the
plane 𝐱 = 𝟎 and the paraboloid 𝐱𝟐 + 𝐲𝟐 = πŸ’ βˆ’ 𝐳.
Solution:
Cylindrical co – ordinates
π‘₯ = π‘Ÿ π‘π‘œπ‘  πœƒ
𝑦 = π‘Ÿ 𝑠𝑖𝑛 πœƒ
𝑧 = 𝑧
Given x2 + y2 = 1
r2cos2 ΞΈ + r2 sin2 ΞΈ = 1
r2 = 1
r = Β±1
Given x2 + y2 = 4 βˆ’ z
r2cos2 ΞΈ + r2 sin2 ΞΈ = 4 βˆ’ z
r2 = 4 βˆ’ z
z = 4 βˆ’ r2
ENGG MATHS-II
DOUBLE INTEGRATION
ENGG MATHS-II
Hence the required volume
Volume = ∫ ∫ ∫ r dz dr dθ
∫
4βˆ’ r2
r dz dr dΞΈ
4βˆ’ r
0
2
dr dΞΈ
r (4 βˆ’ r2) dr dΞΈ
(4r βˆ’ r3) dr dΞΈ
= ∫
2Ο€
∫
1
0 0 0
= ∫
2Ο€
∫
1
r [z]
0 0
= ∫
2Ο€
∫
1
0 0
= ∫
2Ο€
∫
1
0 0
2
r4
βˆ’ 4
] dΞΈ
2Ο€
[4r2
= ∫0
4
[(2 βˆ’
1
) βˆ’ (0 βˆ’ 0)] dΞΈ
= ∫
2Ο€
0
4
7
dΞΈ
= ∫
2Ο€
0
4 0
=
7
[ΞΈ] 2Ο€
=
7
[2Ο€ βˆ’ 0]
4 2
=
7
Ο€ cubic.units
Example:
Find the volume bounded by the paraboloid 𝐱𝟐 + 𝐲𝟐 = 𝐚𝐳, and the cylinder
𝐱𝟐 + 𝐲𝟐 = 𝟐𝐚𝐲 and the plane 𝐳 = 𝟎
Solution:
Cylindrical co – ordinates
x = r cos ΞΈ
y = r sin ΞΈ
z = z
The equation of the sphere x2 + y2+= az
r2cos2 ΞΈ + r2 sin2 ΞΈ = az
r2 = az
And the cylinder x2 + y2 = 2ay
r2cos2 ΞΈ + r2 sin2 ΞΈ = 2a r sin ΞΈ
r2 = 2arsin ΞΈ
DOUBLE INTEGRATION
r = 2asin ΞΈ
Hence, the required volume,
Volume = ∫ ∫ ∫ dx dy dz
= ∫ ∫ ∫ r dθ dr dz
r2
0
Ο€ 2a sin ΞΈ
=∫
0 ∫
0 ∫ a r dz dr dθ
0
r2
[z]a
rdrdΞΈ
∫
2a sin ΞΈ
=∫
Ο€
0 0
r3
[ a
] drdΞΈ
Ο€ 2a sin ΞΈ
=∫0 ∫0
= 1
∫
a 4 0
r4 2a sin ΞΈ
Ο€
0 [ ] dΞΈ
a 4
0
= 1
∫
Ο€ 16a4sin4ΞΈ
dΞΈ
Ο€
2
= 4a3 Γ— 2 ∫
⁄
sin4ΞΈdΞΈ
0
= 4a3 Γ— 2
3 1 Ο€
= 3Ο€a3
4 2 2 2
Change of variables from Cartesian Co – ordinates to spherical Polar Co – ordinates
To convert from Cartesian to spherical polar co-ordinates system we have the
following transformation
π‘₯ = π‘Ÿπ‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœ‘ y = rsinΞΈsinΟ† z = rcosΞΈ
J =
βˆ‚(r ,ΞΈ,Ο† )
βˆ‚(X ,y,z)
= r2sinΞΈ
Hence the integral becomes
∭ f(x , y, z) dzdydx = ∭ f(r , ΞΈ, z)r2sinΞΈdrdΞΈdΟ†
Example:
Evaluate ∫ ∫ ∫
𝟏
βˆšπŸβˆ’ π±πŸβˆ’ π²πŸβˆ’ 𝐳𝟐
𝐝𝐱 𝐝𝐲 𝐝𝐳 over the region bounded by the sphere
𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏.
Solution:
Let us transform this integral in spherical polar co – ordinates by taking
ENGG MATHS-II
DOUBLE INTEGRATION
x = r sin ΞΈ cos Ο•
y = r sin ΞΈ sin Ο•
z = r cos ΞΈ
dx dy dz = (r2 sin ΞΈ) dr dΞΈ dΟ•
Hence Ο• varies from 0 to 2Ο€
Ο• varies from 0 to Ο€
Ο• varies from 0 to 1
r2 sin ΞΈ dr dΞΈ d Ο•
0 √1βˆ’ r2
= ∫
2Ο€
∫
Ο€
∫
1 1
0 0
0 0
r2
= [∫
2Ο€
dΟ• ] [∫
Ο€
sin θ dθ] [∫
1
0 √1βˆ’ r2
dr]
0 0
r2
dr
= [Ο•] 2Ο€ [– cosΞΈ] Ο€ ∫
1
0 √1 βˆ’ r2
r2
dr
= (2Ο€ βˆ’ 0) ( 1 + 1) ∫
1
0 √1 βˆ’ r2
r2
= 4Ο€ ∫
1
dr
0 √1 βˆ’ r2
Put r = sint ; dr = cost dt
r = 0 β‡’ t = 0
r = 1 β‡’ t =
Ο€
2
sin2 t
√1 βˆ’ sin2t
cost dt
= 4Ο€ ∫
π⁄2
0
√ cos2t
= 4Ο€ ∫
π⁄2 sin2 t
cost dt
0
cost
= 4Ο€ ∫
π⁄2 sin2 t
cos t dt
0
= 4Ο€ ∫
π⁄2
sin2 t dt
0
2 2
= 4Ο€
1 Ο€
= Ο€2
Example:
∫√𝐱𝟐+𝐲𝟐
𝐝𝐳 𝐝𝐲 𝐝𝐱
√𝐱𝟐+ 𝐲𝟐+ 𝐳𝟐
𝟏 βˆšπŸβˆ’ 𝐱𝟐 𝟏
Evaluate ∫𝟎 ∫𝟎
Solution:
ENGG MATHS-II
DOUBLE INTEGRATION
Given π‘₯ varies from 0 to 1
y varies from 0 to √1 βˆ’ x2
z varies from √x2 + y2 to 1
Let us transform this integral into spherical polar co – ordinates by using
x = r sin ΞΈ cos Ο•
y = r sin ΞΈ sin Ο•
z = r cos ΞΈ
dx dy dz = (r2 sin ΞΈ) dr dΞΈ dΟ•
Let z = √x2 + y2
β‡’ z2 = x2 + y2
β‡’ r2 cos2 ΞΈ = r2 sin2ΞΈ cos2Ο• + r2 sin2ΞΈ sin2Ο•
β‡’ cos2 ΞΈ = sin2 ΞΈ [∡ cos2Ο• + sin2Ο• = 1 ]
β‡’ ΞΈ =
Ο€
4
Let 𝑧 = 1
β‡’ π‘Ÿ π‘π‘œπ‘  πœƒ = 1
β‡’ π‘Ÿ =
1
π‘π‘œπ‘ 
πœƒ
β‡’ π‘Ÿ = 𝑠𝑒𝑐 πœƒ
The region of integration is common to the cone z2 = x2 + y2 and the cylinder
x2 + y2 = 1 bounded by the plane z = 1 in the positive octant.
r = 0 to r = sec ΞΈ
ΞΈ = 0 to ΞΈ =
Ο€
4
Limits of r ∢
Limits of θ ∢
Limits of Ο• ∢ Ο• = 0 to Ο• =
Ο€
2
r
= ∫
π⁄2
∫
π⁄4
∫
sec ΞΈ 1
r2 sin ΞΈ dr dΞΈ dΟ•
0 0 0
= ∫
π⁄2
∫
π⁄4
∫
sec ΞΈ
r sin ΞΈ dr dΞΈ dΟ•
0 0 0
r2 sec ΞΈ
π⁄2 π⁄4
= ∫0 ∫0 [sin θ 2
]
0
dΞΈ dΟ•
2
π⁄2 π⁄4 sec2ΞΈ sin ΞΈβˆ’0
= ∫0 ∫0 [ ] dΞΈ dΟ•
2
0 0
= ∫
π⁄2
∫
π⁄4 1
sec ΞΈ tan ΞΈ dΞΈ dΟ•
2 0 0
= [1
∫
π⁄2
dΟ• ] [∫
π⁄4
sec ΞΈ tan ΞΈ dΞΈ ]
ENGG MATHS-II
DOUBLE INTEGRATION
2 0 0
=
1
[ ΞΈ ] π⁄2
[secΞΈ] π⁄4
2 2
=
1
[
Ο€
βˆ’ 0] [√2 βˆ’ 1]
4
=
Ο€
(√2 βˆ’ 1)
Example:
Evaluate ∫ ∫ ∫ (𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 )𝐝𝐱 𝐝𝐲 𝐝𝐳 taken over the region bounded by the
volume enclosed by the sphere 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏.
Solution:
Let us convert the given integral into spherical polar co – ordinates.
x = r sin ΞΈ cos Ο• β‡’ x2 = r2 sin2 ΞΈ cos2 Ο•
y = r sin ΞΈ sin Ο• β‡’ y2 = r2 sin2 ΞΈ sin2 Ο•
z = r cos ΞΈ β‡’ z2 = r2 cos2 ΞΈ
dx dy dz = (r2 sin ΞΈ) dr dΞΈ dΟ•
∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫
Ο€
∫
2Ο€
∫
1
r2 (r2 sin ΞΈ dΞΈ dΟ• dr)
0 0 0
Limits of r ∢
Limits of θ ∢
Limits of Ο• ∢
r = 0 to r = 1
ΞΈ = 0 to ΞΈ = Ο€
Ο• = 0 to Ο• = 2Ο€
∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫
Ο€
∫
2Ο€
∫
1
r2 (r2 sin ΞΈ dΞΈ dΟ• dr)
0 0 0
= [∫
1
r4 dr] [∫
Ο€
sin θ dθ] [∫
2Ο€
dΟ•]
0 0 0
r5 1
0
Ο€
= [ 5
]
0
[– cos ΞΈ] [Ο•]2Ο€
0
5
= (
1
βˆ’ 0) (1 + 1) (2Ο€ βˆ’ 0)
= (
1
) (2) (2Ο€) =
4Ο€
5 5
ENGG MATHS-II
DOUBLE INTEGRATION

More Related Content

Similar to Double Integration examples of double integration with substitution.pptx

Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19JAVIERTELLOCAMPOS
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
Β 
Semana 18 inecuaciones polinomicas ii Γ‘lgebra uni ccesa007
Semana 18  inecuaciones polinomicas ii  Γ‘lgebra uni ccesa007Semana 18  inecuaciones polinomicas ii  Γ‘lgebra uni ccesa007
Semana 18 inecuaciones polinomicas ii Γ‘lgebra uni ccesa007Demetrio Ccesa Rayme
Β 
Calculus’ problem soulution
Calculus’ problem soulutionCalculus’ problem soulution
Calculus’ problem soulutionAkash Patel
Β 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13Danilo Morote
Β 
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualElementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualMiriamKennedys
Β 
Double integral using polar coordinates
Double integral using polar coordinatesDouble integral using polar coordinates
Double integral using polar coordinatesHarishRagav10
Β 
Standard normal distribution
Standard normal distributionStandard normal distribution
Standard normal distributionNadeem Uddin
Β 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralNurkhalifah Anwar
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
Β 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxmassm99m
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
Β 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIESMANISH KUMAR
Β 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptxAndreaDaraug2
Β 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
Β 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulasEr Deepak Sharma
Β 

Similar to Double Integration examples of double integration with substitution.pptx (20)

Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
Β 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Β 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
Β 
Semana 18 inecuaciones polinomicas ii Γ‘lgebra uni ccesa007
Semana 18  inecuaciones polinomicas ii  Γ‘lgebra uni ccesa007Semana 18  inecuaciones polinomicas ii  Γ‘lgebra uni ccesa007
Semana 18 inecuaciones polinomicas ii Γ‘lgebra uni ccesa007
Β 
Calculus’ problem soulution
Calculus’ problem soulutionCalculus’ problem soulution
Calculus’ problem soulution
Β 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
Β 
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualElementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Β 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
Β 
Double integral using polar coordinates
Double integral using polar coordinatesDouble integral using polar coordinates
Double integral using polar coordinates
Β 
Standard normal distribution
Standard normal distributionStandard normal distribution
Standard normal distribution
Β 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
Β 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Β 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
Β 
Matrix.pptx
Matrix.pptxMatrix.pptx
Matrix.pptx
Β 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
Β 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Β 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
Β 

More from jyotidighole2

CHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxCHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxjyotidighole2
Β 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxjyotidighole2
Β 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
Β 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
Β 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxjyotidighole2
Β 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 

More from jyotidighole2 (7)

CHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxCHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docx
Β 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
Β 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
Β 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
Β 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptx
Β 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 

Recently uploaded

Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
Β 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerAnamika Sarkar
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 

Recently uploaded (20)

Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
Β 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
Β 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 

Double Integration examples of double integration with substitution.pptx

  • 1. Change into polar co-ordinates and then evaluate ∫ ∞ ∫ ∞ πžβˆ’(𝐱𝟐+𝐲𝟐)𝐝𝐲𝐝𝐱 𝟎 𝟎 Solution: Given order 𝑑𝑦𝑑π‘₯ is in correct form. Given limits are 𝑦 ∢ 0 β†’ ∞ , π‘₯ ∢ 0 β†’ ∞ Equations are 𝑦 = 0 , 𝑦 = ∞ , π‘₯ = 0 , π‘₯ = ∞ Replacement: ENGG MATHS-II 5.4 Change of variables in Double and Triple integrals: Evaluation of double integrals by changing Cartesian to polar co- ordinates: Working rule: Step:1 Check the given order whether it is correct or not. Step:2 Write the equations by using given limits. Step:3 By using the equations sketch the region of integration. Step:4 Replacement: put x = rcosπœƒ , y = rsinπœƒ , x2 + y2 = r2 and dxdy = rdrdπœƒ Step:5 Find r limits(draw radial strip inside the region) and ΞΈ limits and evaluate the integral. Example: DOUBLE INTEGRATION
  • 2. ENGG MATHS-II Put x2 + y2 = r2 , dydx = rdrdπœƒ Limits: r : 0β†’ ∞ , ΞΈ: 0 β†’ Ο€ 2 ∞ eβˆ’r2 rdrdΞΈ Ο€ ∫ ∞ ∫ ∞ eβˆ’(X2+y2)dydx = ∫2 ∫ 0 0 0 0 Substitution: Put r2 = t , if r = 0 β‡’ t = 0, r = ∞ β‡’ t = ∞ 2rdr = dt t: 0β†’ ∞ rdr = 𝑑𝑑 Ο€ ∫2 ∫ 0 0 2 ∞ eβˆ’t dt dΞΈ Ο€ 2 ∞ eβˆ’r2 rdrdΞΈ = ∫2 ∫ 0 0 1 2 βˆ’1 0 eβˆ’t ∞ Ο€ 0 = ∫2 [ ] dΞΈ = βˆ’βˆž 0 + e )dΞΈ Ο€ ∫2(βˆ’e 0 = 1 2 1 2 Ο€ ∫2(0 + 1)dΞΈ 0 (∡ eβˆ’βˆž = 0, e0 = 1) 1 2 Ο€ = ∫2 dΞΈ 0 2 0 Ο€ = 1 (ΞΈ)2 = 1 ( Ο€ βˆ’ 0) = 2 2 Ο€ 4 Example: 𝐱 𝐝𝐲𝐝𝐱 𝐲 𝐱𝟐+𝐲𝟐 Change into polar co-ordinates and then evaluate ∫ 𝐚 ∫ 𝐚 𝟎 Solution: Given order 𝑑π‘₯𝑑𝑦 is in correct form. DOUBLE INTEGRATION
  • 3. ENGG MATHS-II Given limits are x : yβ†’ π‘Ž , y : 0β†’ π‘Ž Equations are x =y , x = π‘Ž , y = 0 , y = π‘Ž Replacement: Put x = rcosπœƒ , π‘₯2 + 𝑦2 = π‘Ÿ2 , 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ Limits: r : 0 β†’ π‘Ž , πœƒ: 0 β†’ πœ‹ π‘π‘œπ‘ πœƒ 4 ∫ ∫ π‘Ž π‘Ž π‘₯ π‘₯ +𝑦 2 2 𝑑𝑦𝑑π‘₯ = ∫ ∫ 0 𝑦 π‘Ÿ2 π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ π‘Ž π‘Ÿπ‘π‘œπ‘ πœƒ πœ‹ 4 π‘π‘œ 𝑠 πœƒ 0 0 0 π‘Ž πœ‹ = ∫4[π‘Ÿπ‘π‘œπ‘ πœƒ]π‘π‘œπ‘ πœƒ π‘‘πœƒ π‘Ž π‘π‘œπ‘  πœƒ 0 πœ‹ = ∫4 ( 0 π‘π‘œπ‘ πœƒ βˆ’ 0) π‘‘πœƒ πœ‹ = π‘Ž ∫4 π‘‘πœƒ 0 0 πœ‹ = π‘Ž(πœƒ)4 4 = π‘Ž( πœ‹ βˆ’ 0) = π‘Žπœ‹ 4 Example: 𝐱𝟐 𝐲 √𝐱𝟐+𝐲𝟐 Evaluate ∫ 𝐚 ∫ 𝐚 𝟎 𝐝𝐱𝐝𝐲 by changing into polar co-ordinates. Solution: Given order 𝑑π‘₯𝑑𝑦 is in correct form. Given limits are x : yβ†’ π‘Ž , y : 0β†’ π‘Ž DOUBLE INTEGRATION
  • 4. ENGG MATHS-II Equations are x =y , x = π‘Ž , y = 0 , y = π‘Ž Replacement: Put x2 = r2cos2πœƒ , π‘₯2 + 𝑦2 = π‘Ÿ2 => π‘Ÿ = √π‘₯2 + 𝑦2 , dxdy = rdrdπœƒ Limits: r : 0 β†’ π‘Ž , πœƒ: 0 β†’ πœ‹ π‘π‘œπ‘ πœƒ 4 ∫ ∫ π‘₯2 √π‘₯ +𝑦 2 2 𝑑π‘₯𝑑𝑦 = ∫ ∫ π‘Ž π‘Ž 0 𝑦 π‘Ÿ π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ π‘Ž π‘Ÿ2π‘π‘œπ‘ 2πœƒ πœ‹ 4 𝑐 π‘œ 𝑠 πœƒ 0 0 3 3 πœ‹ = ∫4 [π‘Ÿ π‘Ž π‘π‘œπ‘ 2πœƒ] π‘π‘œπ‘ πœƒ π‘‘πœƒ 0 π‘Ž3 3 3π‘π‘œπ‘  πœƒ 2 0 πœ‹ = ∫4 ( 0 π‘π‘œπ‘  πœƒ βˆ’ 0) π‘‘πœƒ = π‘Ž3 1 3 2 πœ‹ ∫4 3 0 π‘π‘œπ‘  πœƒ π‘π‘œπ‘  πœƒ π‘‘πœƒ = π‘Ž3 1 πœ‹ 3 0 π‘π‘œπ‘ πœƒ ∫4 π‘‘πœƒ = πœ‹ 0 ∫4 π‘ π‘’π‘πœƒ π‘‘πœƒ = π‘Ž3 3 π‘Ž3 3 0 πœ‹ (π‘™π‘œπ‘”(π‘ π‘’π‘πœƒ + π‘‘π‘Žπ‘›πœƒ))4 = π‘Ž3 [π‘™π‘œπ‘” (𝑠𝑒𝑐 πœ‹ + π‘‘π‘Žπ‘› πœ‹ ) βˆ’ π‘™π‘œπ‘”(𝑠𝑒𝑐0 + π‘‘π‘Žπ‘›0)] 3 4 4 3 = π‘Ž3 [π‘™π‘œπ‘”(√2 + 1) βˆ’ π‘™π‘œπ‘”(1 βˆ’ 0)] 3 = π‘Ž3 π‘™π‘œπ‘”(√2 + 1) Note: 1. x2 + y2 = r2cos2ΞΈ + r2sin2ΞΈ = r2 2. ∫ cos 2 0 ΞΈdΞΈ = ∫ 2 2 Ο€ Ο€ 2 0 sin ΞΈdΞΈ = Γ— 1 Ο€ 2 2 3. ∫ 4 cos ΞΈdΞΈ = ∫ Ο€ 2 0 4 Ο€ 2 0 sin ΞΈdΞΈ = Γ— Γ— 3 1 Ο€ 4 2 2 4. ∫ 2 2 Ο€ 2 0 cos ΞΈsin ΞΈdΞΈ = Γ— Γ— 1 1 Ο€ 4 2 2 DOUBLE INTEGRATION
  • 5. Example: By changing into polar co-ordinates and evaluate ∫ 𝟐𝐚 ∫ βˆšπŸπšπ±βˆ’π±πŸ (𝐱𝟐 + 𝐲𝟐)𝐝𝐲𝐝𝐱 𝟎 𝟎 Solution: Given order 𝑑𝑦𝑑π‘₯ is in correct form. Given limits are y : 0β†’ √2π‘Žπ‘₯ βˆ’ π‘₯2 , x : 0β†’ 2π‘Ž Equations are y = 0 , y = √2π‘Žπ‘₯ βˆ’ π‘₯2 , x = 0 , x = 2π‘Ž y2 = 2ax βˆ’ x2 x2 + y2 βˆ’ 2ax = 0 is a circle with centre (a,0) and radius β€˜a’. Replacement: Put x2 + y2 = r2 , 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ Limits: r : 0 β†’ 2π‘Žπ‘π‘œπ‘ πœƒ , πœƒ: 0 β†’ πœ‹ 2 2π‘Žπ‘π‘œπ‘ πœƒ π‘Ÿ2 Γ— π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ πœ‹ ∫ 2π‘Ž ∫ √2π‘Žπ‘₯βˆ’π‘₯2 (π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯ = ∫2 ∫ 0 0 0 0 3 π‘Ÿ π‘‘π‘Ÿπ‘‘πœƒ 2π‘Žπ‘π‘œπ‘  πœƒ πœ‹ = ∫2 ∫ 0 0 4 ] 0 r4 2acosΞΈ Ο€ = ∫2 [ 0 dΞΈ 4 Ο€ 24a4cos4ΞΈ = ∫2( 0 βˆ’ 0) dΞΈ Ο€ 0 = 4a4 ∫2 cos4ΞΈdΞΈ ENGG MATHS-II DOUBLE INTEGRATION
  • 6. = 4a4 Γ— 3 Γ— 1 Γ— Ο€ 4 2 2 (∡ ∫ 4 Ο€ 2 0 cos ΞΈdΞΈ = Γ— Γ— 3 1 Ο€ 4 2 2 ) = 3Ο€a4 4 Example: 𝐱 𝐱𝟐+𝐲𝟐 𝐝𝐱𝐝𝐲 By changing into polar co-ordinates and evaluate∫ 𝟐 ∫ βˆšπŸπ±βˆ’π±πŸ 𝟎 𝟎 Solution: Given order 𝑑π‘₯𝑑𝑦 is in incorrect form. X X2+y2 dydx The correct form is 𝑑𝑦𝑑π‘₯ β‡’ ∫ 2 ∫ √2Xβˆ’X2 0 0 Given limits are y : 0β†’ √2π‘₯ βˆ’ π‘₯2 , x : 0β†’ 2 Equations are y = 0 , y = √2π‘₯ βˆ’ π‘₯2 , x = 0 , x = 2 y2 = 2x βˆ’ x2 x2 + y2 βˆ’ 2x = 0 is a circle with centre (1,0) and radius β€˜1’. Replacement: Put x = rcosπœƒ, π‘₯2 + 𝑦2 = π‘Ÿ2 , dxdy = rdrdπœƒ Limits: r : 0 β†’ 2π‘π‘œπ‘ πœƒ , πœƒ: 0 β†’ πœ‹ 2 π‘₯ +𝑦 2 2 𝑑𝑦𝑑π‘₯ = ∫ ∫ 2 √2π‘₯βˆ’π‘₯2 π‘₯ ∫0∫0 π‘Ÿ2 2π‘π‘œπ‘ πœƒ π‘Ÿπ‘π‘œπ‘ πœƒ Γ— π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ πœ‹ 2 0 0 0 πœ‹ 0 =∫2[π‘Ÿπ‘π‘œπ‘ πœƒ]2π‘π‘œπ‘ πœƒ π‘‘πœƒ πœ‹ 0 = ∫2(2π‘π‘œπ‘ 2πœƒ βˆ’ 0)π‘‘πœƒ ENGG MATHS-II DOUBLE INTEGRATION
  • 7. πœ‹ 0 = 2 ∫2 π‘π‘œπ‘ 2πœƒ π‘‘πœƒ = 2 Γ— 1 Γ— πœ‹ 2 2 (∡ ∫ 2 πœ‹ 2 0 1 πœ‹ 2 2 π‘π‘œπ‘  πœƒπ‘‘πœƒ = Γ— ) = πœ‹ 2 Example: By changing into polar co-ordinates and evaluate∫ 𝐚 ∫ βˆšπšπŸβˆ’π±πŸ √𝐱𝟐 + 𝐲𝟐𝐝𝐲𝐝𝐱 𝟎 𝟎 Solution: Given order 𝑑π‘₯𝑑𝑦 is in correct form. Given limits are y : 0β†’ βˆšπ‘Ž2 βˆ’ π‘₯2 , x : 0β†’ π‘Ž Equations are y = 0 , y = βˆšπ‘Ž2 βˆ’ π‘₯2 , x = 0 , x = π‘Ž y2 = a2 βˆ’ x2 x2 + y2 = a2 is a circle with centre (0,0) and radius β€˜a’. Replacement: Put x2 + y2 = r2 β‡’ r = √x2 + y2 , 𝑑𝑦𝑑π‘₯ = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ Limits: r : 0 β†’ π‘Ž , πœƒ: 0 β†’ πœ‹ a r Γ— rdrdΞΈ 2 Ο€ ∫ a ∫ √a2βˆ’X2 √x2 + y2dydx = ∫2 ∫ 0 0 0 0 a r2drdΞΈ Ο€ = ∫2 ∫ 0 0 3 Ο€ r3 a = ∫2 [ 0 ] dΞΈ 0 ENGG MATHS-II DOUBLE INTEGRATION
  • 8. a3 3 Ο€ = ∫2 ( 0 βˆ’ 0)dΞΈ = a3 3 Ο€ ∫2 dΞΈ 0 a3 3 0 Ο€ = (ΞΈ)2 3 2 = a3 ( Ο€ βˆ’ 0) = Ο€a3 6 Example: 𝐱𝟐+𝐲𝟐 Evaluate ∬ 𝐱𝟐𝐲𝟐 𝐝𝐱𝐝𝐲 over the annular region between the circles x2 + y2 = a2 and x2 + y2 = b2 (b>a) by transforming into polar co-ordinates. Solution: π‘₯2+𝑦2 π‘Ÿ2 Replacement: Put x2 = r2cos2ΞΈ,y2 = r2sin2ΞΈ x2 + y2 = r2, 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ Given the region is between the circles x2 + y2 = a2 and x2 + y2 = b2 Limits: r : π‘Ž β†’ 𝑏 , πœƒ: 0 β†’ 2πœ‹ ∴ ∬ π‘₯2𝑦2 𝑑π‘₯𝑑𝑦 = ∫ 2πœ‹ ∫ 𝑏 π‘Ÿ2π‘π‘œπ‘ 2πœƒΓ—π‘Ÿ2𝑠𝑖𝑛2πœƒ Γ— π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ 0 π‘Ž ENGG MATHS-II DOUBLE INTEGRATION
  • 9. r2 0 a ENGG MATHS-II = ∫ 2Ο€ ∫ b r5cos2ΞΈΓ—sin2ΞΈ Γ— drdΞΈ = ∫ 2Ο€ ∫ b r3cos2ΞΈ Γ— sin2ΞΈ drdΞΈ 0 a 4 a r4 b 2Ο€ 2 2 = ∫0 [ ] cos ΞΈ Γ— sin ΞΈ dΞΈ 4 0 = 1 ∫ 2Ο€ (b4 βˆ’ a4) cos2ΞΈ Γ— sin2ΞΈ dΞΈ 4 = (b4βˆ’a4) ∫ 2Ο€ cos2ΞΈ Γ— sin2ΞΈ dΞΈ 0 = 4 4 (b βˆ’a ) 4 Γ— ∫ Ο€ 2 4 0 2Ο€ 0 cos2ΞΈ Γ— sin2ΞΈ dΞΈ (∡ ∫ = 4∫ ) Ο€ 2 0 Ο€ = ( b4 βˆ’ a4) Γ— ∫2 cos2ΞΈ Γ— sin2ΞΈ dΞΈ 0 4 2 2 = ( b4 βˆ’ a4) Γ— 1 Γ— 1 Γ— Ο€ (∡ ∫ 2 2 Ο€ 2 0 1 1 Ο€ 4 2 2 cos ΞΈsin ΞΈdΞΈ = Γ— Γ— ) = Ο€(b4βˆ’a4) 16 Example: 𝟎 𝟎 Evaluate ∫ 𝐚 ∫ βˆšπšπŸβˆ’π±πŸ √𝐚𝟐 βˆ’ 𝐱𝟐 βˆ’ 𝐲𝟐 𝐝𝐲𝐝𝐱 by transforming into polar co-ordinates. Solution: Given order 𝑑𝑦𝑑π‘₯ is in correct form. Given limits are y : 0β†’ βˆšπ‘Ž2 βˆ’ π‘₯2 , x : 0β†’ π‘Ž Equations are y = 0 , y = βˆšπ‘Ž2 βˆ’ π‘₯2 , x = 0 , x = π‘Ž 𝑦2 = π‘Ž2 βˆ’ π‘₯2 x2 + y2 = a2 is a circle with centre (0,0) and radius β€˜a’. DOUBLE INTEGRATION
  • 10. ENGG MATHS-II Replacement: Put a2 βˆ’ x2 βˆ’ y2 = a2 βˆ’ (x2 + y2) = a2 βˆ’ r2 , 𝑑𝑦𝑑π‘₯ = π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ ∴ √a2 βˆ’ x2 βˆ’ y2 = √a2 βˆ’ r2 Limits: r : 0 β†’ π‘Ž , πœƒ: 0 β†’ πœ‹ 2 π‘Ž βˆšπ‘Ž2 βˆ’ π‘Ÿ2 π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ πœ‹ ∫ π‘Ž ∫ βˆšπ‘Ž2βˆ’π‘₯2 βˆšπ‘Ž2 βˆ’ π‘₯2 βˆ’ 𝑦2 𝑑𝑦𝑑π‘₯ = ∫2 ∫ 0 0 0 0 = 2 2 βˆ’ π‘Ÿ π‘Ÿπ‘‘π‘Ÿ)π‘‘πœƒ π‘Ž πœ‹ ∫2(∫ βˆšπ‘Ž 0 0 Substitution: Put a2 βˆ’ r2 = t βˆ’2rdr = dt if r = 0 β‡’ t = a2 if r = a β‡’ t = 0 rdr = βˆ’ dt 2 ∴ t ∢ a2 β†’ 0 2 2 a Ο€ ∫2(∫ √a βˆ’ r 0 0 βˆ’dt 2 0 Ο€ rdr)dΞΈ = ∫2[∫ 2 √t( )]dΞΈ 0 a 2 βˆ’1 0 Ο€ = ∫2[∫ 2 √tdt]dΞΈ 0 a = βˆ’1 2 1 0 Ο€ ∫2[∫ 2 t2dt]dΞΈ 0 a = βˆ’1 2 ∫ t 3 2 3 2 a2 0 Ο€ 2 0 [ ] dΞΈ = βˆ’ Γ— 1 2 2 3 Ο€ 3 0 0 a2 ∫2 [t2] dΞΈ 1 3 3 2 Ο€ = βˆ’ ∫2(0 βˆ’ (a )2)dΞΈ = βˆ’ 1 3 ∫ 0 Ο€ 3 βˆ’ (a ) dΞΈ 2 0 = a3 3 Ο€ ∫2 dΞΈ 0 a3 3 0 Ο€ = (ΞΈ)2 DOUBLE INTEGRATION
  • 11. 3 2 = a3 ( Ο€ βˆ’ 0) = Ο€a3 6 Exercise: Evaluate the following by changing into polar co-ordinates. 1. ∫ 2π‘Ž ∫ √2π‘₯βˆ’π‘₯2 𝑑𝑦𝑑π‘₯ 0 0 Ans: πœ‹π‘Ž2 2 2. ∫ π‘Ž ∫ βˆšπ‘Ž2βˆ’π‘₯2 (π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯ 0 0 Ans: πœ‹π‘Ž4 8 π‘₯2 3. ∫ 1 ∫ 2βˆ’π‘₯ π‘₯𝑦 𝑑π‘₯𝑑𝑦 0 Ans: 3 8 π‘₯ 𝑑π‘₯𝑑𝑦 𝑦 π‘₯2+𝑦2 4. ∫ π‘Ž ∫ π‘Ž 0 Ans: πœ‹π‘Ž 4 π‘₯2+𝑦2 𝑑π‘₯𝑑𝑦 5. ∫ 2π‘Ž ∫ √2π‘Žπ‘₯βˆ’π‘₯2 π‘₯ 0 0 Ans: πœ‹π‘Ž 2 6. ∫ π‘Ž ∫ βˆšπ‘Ž2βˆ’π‘₯2 (π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯ βˆ’π‘Ž 0 Ans: πœ‹π‘Ž4 4 7. ∫ π‘Ž ∫ βˆšπ‘Ž2βˆ’π‘₯2 (π‘₯2𝑦 + 𝑦3)𝑑π‘₯𝑑𝑦 0 0 Ans: π‘Ž5 5 8. ∫ 1 ∫ √2π‘₯βˆ’π‘₯2 (π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯ 0 0 8 Ans: 3πœ‹ βˆ’ 1 X2+y2 9. ∬ X2y2 dxdy over the annular region between the circles x2 + y2 = 16 and x2 + y2 = 4 Ans:15Ο€ 10.∬ Xy X2+y2 dxdy over the positive quadrant of the circle x2 + y2 = a2 Ans: a3 6 Change of Variables in Triple Integral Change of variables from Cartesian co- ordinates to cylindrical co – ordinates. To convert from Cartesian to cylindrical polar coordinates system we have the following transformation. π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ 𝑦 = π‘Ÿ π‘ π‘–π‘›πœƒ 𝑧 = 𝑧 J = βˆ‚(X ,y,z) = r βˆ‚(r ,ΞΈ,z) Hence the integral becomes ENGG MATHS-II DOUBLE INTEGRATION
  • 12. ENGG MATHS-II ∭ f(x , y, z) dzdydx = ∭ f(r , ΞΈ, z) dzdrdΞΈ Example: Find the volume of a solid bounded by the spherical surface 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = πŸ’πšπŸ and the cylinder 𝐱𝟐 + 𝐲𝟐 βˆ’ 𝟐𝐚𝐲 = 𝟎. Solution: Cylindrical co – ordinates x = r cos ΞΈ y = r sin ΞΈ z = z The equation of the sphere x2 + y2 + z2 = 4a2 r2cos2 ΞΈ + r2 sin2 ΞΈ + z2 = 4a2 r2 + z2 = 4a2 And the cylinder x2 + y2 βˆ’ 2ay = 0 x2 + y2 = 2ay r2cos2 ΞΈ + r2 sin2 ΞΈ = 2a r sin ΞΈ r2 = 2arsin ΞΈ r = 2asin ΞΈ Hence, the required volume, DOUBLE INTEGRATION
  • 13. ∫ √4a2βˆ’ r2 r dz dr dΞΈ 0 r√4a2 βˆ’ r2 dr dΞΈ Volume = ∫ ∫ ∫ dx dy dz = ∫ ∫ ∫ r dΞΈ dr dz = 4 ∫ π⁄2 ∫ 2a sin ΞΈ 0 0 = 4 ∫ π⁄2 ∫ 2a sin ΞΈ 0 0 3 0 = 4 ∫ π⁄2 [βˆ’ 1 (4a2 βˆ’ r2)3⁄2] 2a sin ΞΈ dΞΈ 0 3 0 = 4 ∫ π⁄2 [βˆ’(4a2 βˆ’ 4a2 sin2 ΞΈ)3⁄2 + 8a3] dΞΈ = 4 3 ∫ π⁄2 (βˆ’8a3 cos3 ΞΈ + 8a3) dΞΈ 0 3 = 4 8a3 ∫ π⁄2 (1 βˆ’ cos3 ΞΈ) dΞΈ 0 3 2 3 = 32 a3 [ Ο€ βˆ’ 2 ] cubic units Example: Find the volume of the portion of the cylinder 𝐱𝟐 + 𝐲𝟐 = 𝟏 intercepted between the plane 𝐱 = 𝟎 and the paraboloid 𝐱𝟐 + 𝐲𝟐 = πŸ’ βˆ’ 𝐳. Solution: Cylindrical co – ordinates π‘₯ = π‘Ÿ π‘π‘œπ‘  πœƒ 𝑦 = π‘Ÿ 𝑠𝑖𝑛 πœƒ 𝑧 = 𝑧 Given x2 + y2 = 1 r2cos2 ΞΈ + r2 sin2 ΞΈ = 1 r2 = 1 r = Β±1 Given x2 + y2 = 4 βˆ’ z r2cos2 ΞΈ + r2 sin2 ΞΈ = 4 βˆ’ z r2 = 4 βˆ’ z z = 4 βˆ’ r2 ENGG MATHS-II DOUBLE INTEGRATION
  • 14. ENGG MATHS-II Hence the required volume Volume = ∫ ∫ ∫ r dz dr dΞΈ ∫ 4βˆ’ r2 r dz dr dΞΈ 4βˆ’ r 0 2 dr dΞΈ r (4 βˆ’ r2) dr dΞΈ (4r βˆ’ r3) dr dΞΈ = ∫ 2Ο€ ∫ 1 0 0 0 = ∫ 2Ο€ ∫ 1 r [z] 0 0 = ∫ 2Ο€ ∫ 1 0 0 = ∫ 2Ο€ ∫ 1 0 0 2 r4 βˆ’ 4 ] dΞΈ 2Ο€ [4r2 = ∫0 4 [(2 βˆ’ 1 ) βˆ’ (0 βˆ’ 0)] dΞΈ = ∫ 2Ο€ 0 4 7 dΞΈ = ∫ 2Ο€ 0 4 0 = 7 [ΞΈ] 2Ο€ = 7 [2Ο€ βˆ’ 0] 4 2 = 7 Ο€ cubic.units Example: Find the volume bounded by the paraboloid 𝐱𝟐 + 𝐲𝟐 = 𝐚𝐳, and the cylinder 𝐱𝟐 + 𝐲𝟐 = 𝟐𝐚𝐲 and the plane 𝐳 = 𝟎 Solution: Cylindrical co – ordinates x = r cos ΞΈ y = r sin ΞΈ z = z The equation of the sphere x2 + y2+= az r2cos2 ΞΈ + r2 sin2 ΞΈ = az r2 = az And the cylinder x2 + y2 = 2ay r2cos2 ΞΈ + r2 sin2 ΞΈ = 2a r sin ΞΈ r2 = 2arsin ΞΈ DOUBLE INTEGRATION
  • 15. r = 2asin ΞΈ Hence, the required volume, Volume = ∫ ∫ ∫ dx dy dz = ∫ ∫ ∫ r dΞΈ dr dz r2 0 Ο€ 2a sin ΞΈ =∫ 0 ∫ 0 ∫ a r dz dr dΞΈ 0 r2 [z]a rdrdΞΈ ∫ 2a sin ΞΈ =∫ Ο€ 0 0 r3 [ a ] drdΞΈ Ο€ 2a sin ΞΈ =∫0 ∫0 = 1 ∫ a 4 0 r4 2a sin ΞΈ Ο€ 0 [ ] dΞΈ a 4 0 = 1 ∫ Ο€ 16a4sin4ΞΈ dΞΈ Ο€ 2 = 4a3 Γ— 2 ∫ ⁄ sin4ΞΈdΞΈ 0 = 4a3 Γ— 2 3 1 Ο€ = 3Ο€a3 4 2 2 2 Change of variables from Cartesian Co – ordinates to spherical Polar Co – ordinates To convert from Cartesian to spherical polar co-ordinates system we have the following transformation π‘₯ = π‘Ÿπ‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœ‘ y = rsinΞΈsinΟ† z = rcosΞΈ J = βˆ‚(r ,ΞΈ,Ο† ) βˆ‚(X ,y,z) = r2sinΞΈ Hence the integral becomes ∭ f(x , y, z) dzdydx = ∭ f(r , ΞΈ, z)r2sinΞΈdrdΞΈdΟ† Example: Evaluate ∫ ∫ ∫ 𝟏 βˆšπŸβˆ’ π±πŸβˆ’ π²πŸβˆ’ 𝐳𝟐 𝐝𝐱 𝐝𝐲 𝐝𝐳 over the region bounded by the sphere 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏. Solution: Let us transform this integral in spherical polar co – ordinates by taking ENGG MATHS-II DOUBLE INTEGRATION
  • 16. x = r sin ΞΈ cos Ο• y = r sin ΞΈ sin Ο• z = r cos ΞΈ dx dy dz = (r2 sin ΞΈ) dr dΞΈ dΟ• Hence Ο• varies from 0 to 2Ο€ Ο• varies from 0 to Ο€ Ο• varies from 0 to 1 r2 sin ΞΈ dr dΞΈ d Ο• 0 √1βˆ’ r2 = ∫ 2Ο€ ∫ Ο€ ∫ 1 1 0 0 0 0 r2 = [∫ 2Ο€ dΟ• ] [∫ Ο€ sin ΞΈ dΞΈ] [∫ 1 0 √1βˆ’ r2 dr] 0 0 r2 dr = [Ο•] 2Ο€ [– cosΞΈ] Ο€ ∫ 1 0 √1 βˆ’ r2 r2 dr = (2Ο€ βˆ’ 0) ( 1 + 1) ∫ 1 0 √1 βˆ’ r2 r2 = 4Ο€ ∫ 1 dr 0 √1 βˆ’ r2 Put r = sint ; dr = cost dt r = 0 β‡’ t = 0 r = 1 β‡’ t = Ο€ 2 sin2 t √1 βˆ’ sin2t cost dt = 4Ο€ ∫ π⁄2 0 √ cos2t = 4Ο€ ∫ π⁄2 sin2 t cost dt 0 cost = 4Ο€ ∫ π⁄2 sin2 t cos t dt 0 = 4Ο€ ∫ π⁄2 sin2 t dt 0 2 2 = 4Ο€ 1 Ο€ = Ο€2 Example: ∫√𝐱𝟐+𝐲𝟐 𝐝𝐳 𝐝𝐲 𝐝𝐱 √𝐱𝟐+ 𝐲𝟐+ 𝐳𝟐 𝟏 βˆšπŸβˆ’ 𝐱𝟐 𝟏 Evaluate ∫𝟎 ∫𝟎 Solution: ENGG MATHS-II DOUBLE INTEGRATION
  • 17. Given π‘₯ varies from 0 to 1 y varies from 0 to √1 βˆ’ x2 z varies from √x2 + y2 to 1 Let us transform this integral into spherical polar co – ordinates by using x = r sin ΞΈ cos Ο• y = r sin ΞΈ sin Ο• z = r cos ΞΈ dx dy dz = (r2 sin ΞΈ) dr dΞΈ dΟ• Let z = √x2 + y2 β‡’ z2 = x2 + y2 β‡’ r2 cos2 ΞΈ = r2 sin2ΞΈ cos2Ο• + r2 sin2ΞΈ sin2Ο• β‡’ cos2 ΞΈ = sin2 ΞΈ [∡ cos2Ο• + sin2Ο• = 1 ] β‡’ ΞΈ = Ο€ 4 Let 𝑧 = 1 β‡’ π‘Ÿ π‘π‘œπ‘  πœƒ = 1 β‡’ π‘Ÿ = 1 π‘π‘œπ‘  πœƒ β‡’ π‘Ÿ = 𝑠𝑒𝑐 πœƒ The region of integration is common to the cone z2 = x2 + y2 and the cylinder x2 + y2 = 1 bounded by the plane z = 1 in the positive octant. r = 0 to r = sec ΞΈ ΞΈ = 0 to ΞΈ = Ο€ 4 Limits of r ∢ Limits of ΞΈ ∢ Limits of Ο• ∢ Ο• = 0 to Ο• = Ο€ 2 r = ∫ π⁄2 ∫ π⁄4 ∫ sec ΞΈ 1 r2 sin ΞΈ dr dΞΈ dΟ• 0 0 0 = ∫ π⁄2 ∫ π⁄4 ∫ sec ΞΈ r sin ΞΈ dr dΞΈ dΟ• 0 0 0 r2 sec ΞΈ π⁄2 π⁄4 = ∫0 ∫0 [sin ΞΈ 2 ] 0 dΞΈ dΟ• 2 π⁄2 π⁄4 sec2ΞΈ sin ΞΈβˆ’0 = ∫0 ∫0 [ ] dΞΈ dΟ• 2 0 0 = ∫ π⁄2 ∫ π⁄4 1 sec ΞΈ tan ΞΈ dΞΈ dΟ• 2 0 0 = [1 ∫ π⁄2 dΟ• ] [∫ π⁄4 sec ΞΈ tan ΞΈ dΞΈ ] ENGG MATHS-II DOUBLE INTEGRATION
  • 18. 2 0 0 = 1 [ ΞΈ ] π⁄2 [secΞΈ] π⁄4 2 2 = 1 [ Ο€ βˆ’ 0] [√2 βˆ’ 1] 4 = Ο€ (√2 βˆ’ 1) Example: Evaluate ∫ ∫ ∫ (𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 )𝐝𝐱 𝐝𝐲 𝐝𝐳 taken over the region bounded by the volume enclosed by the sphere 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏. Solution: Let us convert the given integral into spherical polar co – ordinates. x = r sin ΞΈ cos Ο• β‡’ x2 = r2 sin2 ΞΈ cos2 Ο• y = r sin ΞΈ sin Ο• β‡’ y2 = r2 sin2 ΞΈ sin2 Ο• z = r cos ΞΈ β‡’ z2 = r2 cos2 ΞΈ dx dy dz = (r2 sin ΞΈ) dr dΞΈ dΟ• ∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫ Ο€ ∫ 2Ο€ ∫ 1 r2 (r2 sin ΞΈ dΞΈ dΟ• dr) 0 0 0 Limits of r ∢ Limits of ΞΈ ∢ Limits of Ο• ∢ r = 0 to r = 1 ΞΈ = 0 to ΞΈ = Ο€ Ο• = 0 to Ο• = 2Ο€ ∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫ Ο€ ∫ 2Ο€ ∫ 1 r2 (r2 sin ΞΈ dΞΈ dΟ• dr) 0 0 0 = [∫ 1 r4 dr] [∫ Ο€ sin ΞΈ dΞΈ] [∫ 2Ο€ dΟ•] 0 0 0 r5 1 0 Ο€ = [ 5 ] 0 [– cos ΞΈ] [Ο•]2Ο€ 0 5 = ( 1 βˆ’ 0) (1 + 1) (2Ο€ βˆ’ 0) = ( 1 ) (2) (2Ο€) = 4Ο€ 5 5 ENGG MATHS-II DOUBLE INTEGRATION