Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

金融予測アルゴリズムのより良い評価手法について

2,688 views

Published on

「金融予測アルゴリズムを評価するときに、あまり一般的ではないけども自分としては皆に気にかけてほしいこと」を伝えたいと思い MarketTech Meetup #01 (https://alpaca.connpass.com/event/108066/) で話したときのスライドです

Published in: Economy & Finance
  • Be the first to comment

金融予測アルゴリズムのより良い評価手法について

  1. 1. 金融予測アルゴリズムのより良 い評価手法について @imos
  2. 2. 金融アルゴリズムの評価手法2018/12/17 自己紹介 ソフトウェアエンジニア 所属: Preferred Networks (2018-) Google (2013-2018) 趣味: 趣味で為替予測の研究をしていた 金融アルゴリズムの評価手法 1
  3. 3. 金融アルゴリズムの評価手法2018/12/17 伝えたいこと(金融アルゴリズムの理想) • 利益率/分散が大事 • 売り買いではなく出力はレバレッジであるべき • 予測モデルの評価は価格や上下ではなく 実際の利益率であるべき 2
  4. 4. 金融アルゴリズムの評価手法2018/12/17 もくじ • はじめに • 金融予測アルゴリズム評価の難しさとは • 2つの通貨問題から見るレバレッジと期待値の関係 • 収益率の分散を抑えるには • 投資ファンドを用いた評価実験 • まとめ 金融アルゴリズムの評価手法 3
  5. 5. はじめに 予測アルゴリズムに本当に必要だったもの(前提編)
  6. 6. 金融アルゴリズムの評価手法2018/12/17 予測アルゴリズムに本当に必要だったもの 価格の上下や価格を予測してはならない ⇒ 本当に必要なことは総収益の価格分布の改善 5
  7. 7. 金融アルゴリズムの評価手法2018/12/17 なぜ価格の上下を予測してはならないのか 90%の確率で+10円、10%の確率で-100円になる状況で 本当にその商品を買うべきなのか ⇒ 中央値自体には価値はない 6
  8. 8. 金融アルゴリズムの評価手法2018/12/17 なぜ価格も予測してはならないのか 最強の価格予測モデルが出来上がっても 実際にはほぼ変動は読めない ⇒ 本当に欲しかったものは 今買うべきか売るべきかを判断できるモデル 7
  9. 9. 金融予測アルゴリズム評価の 何が難しいのか 市場の効率性による難しさと評価の難しさについて
  10. 10. 金融アルゴリズムの評価手法2018/12/17 ランダムウォークの相関 2つのランダムウォークの間には見せかけの回帰が現れる 為替レートとの相関が 0.8 あるシグナルが見つかったとしても それは即座には信頼できない 9 前半は正で後半は負であり 強い正の相関が出ている
  11. 11. 金融アルゴリズムの評価手法2018/12/17 過学習 毎年10%収益がでるパラメータは簡単に見つけられる ドルが上がるか下がるかを毎年どちらかに賭けるアルゴリズムが64 種類以上あれば6年間毎年運良く予想が当たる方に賭け られるパターンが存在する (※毎年10%程度の変動は存在する) 10
  12. 12. 金融アルゴリズムの評価手法2018/12/17 トラップリピート問題 +1%で利益確定、-40%で損切りするアルゴリズムの評価 (※ 1.0151 × 0.6 ≒ 1) 51回に50回利益確定が起こる。これを毎月行ったとすると、 約80%の確率で年利12%となり、約20%の確率で年利-33%となるが、 気をつけないと高い確率でかなり有益な手法と勘違いしてしまう。 11
  13. 13. 2つの通貨問題からみる レバレッジと期待値の関係 2つの通貨問題の考察からわかる理論について
  14. 14. 金融アルゴリズムの評価手法2018/12/17 2つの通貨問題 資産を円で持つのと外貨で持つのには期待値に差がでるのか という思考問題 【直感】 資金を外貨でもっても為替リスクにさらしているだけで 有利になるはずがないのではないか? ← これは偽 この問題をまじめに考察すると 「期待値とは何か」「適正なレバレッジとは何か」がわかる 13
  15. 15. 金融アルゴリズムの評価手法2018/12/17 為替レートがX倍になる確率と1/X倍になる確率は同じである 2つの通貨問題 ― 確率 日本からの視点 アメリカからの視点 100円 ドルを買う 125円 利益確定 80円 損切り 等確率 0.8$ 損切り 1.25$ 利益確定 1$ 円を買う 等確率 ×1.25 ×0.8 ×0.8 ×1.25 14
  16. 16. 金融アルゴリズムの評価手法2018/12/17 期待値は1.025倍で儲かることになるが直感と何が異なるか 2つの通貨問題 ― 期待値 日本からの視点 アメリカからの視点 評価額 100円 125円 80円 平均102.5円 0.8$ 1.25$ 評価額 1$平均1.025$ ×1.25 ×0.8 ×0.8 ×1.25 15
  17. 17. 金融アルゴリズムの評価手法2018/12/17 レバレッジをかけると期待値が上がるが直感と何が異なるか 2つの通貨問題 ― レバレッジ 5倍レバレッジをかけたときの評価額変動 評価額 100円 225円 0円 平均112.5円 0$ 2.25$ 評価額 1$平均1.125$ 125円 80円 0.8$ 1.25$ 16
  18. 18. 金融アルゴリズムの評価手法2018/12/17 2つの通貨問題 ― 期待値の種類 高めたいものは長期的な期待値であり短期的な期待値ではない 投資は繰り返すもので足し算ではなく掛け算 (資産が -50% になるともとに戻るには +100% が必要) 対数での期待値も重要 17
  19. 19. 金融アルゴリズムの評価手法2018/12/17 2つの通貨問題 ― レバレッジと期待値の関係 0.5倍のとき 対数期待値が最大となる 期待値は倍率が無限に 高いほど高くなる 18
  20. 20. 金融アルゴリズムの評価手法2018/12/17 インデックス投資のレバレッジと期待値 2倍レバレッジで 期待値は2倍になる 2倍レバレッジでも 対数期待値は高くなっていない 19
  21. 21. 金融アルゴリズムの評価手法2018/12/17 対数期待値はどのように上げるのか 2つの完全に独立な銘柄があったとき、それぞれに投資すると 収益率の分散は小さくなり、対数期待値は期待値に近づく (無限に独立な銘柄があったとき、それぞれに均等に分散投資をすると収益率の分散はな くなり、対数期待値は期待値と一致する) 分散に対する収益率を上げると対数期待値が上げられる 20
  22. 22. 金融アルゴリズムの評価手法2018/12/17 分散投資による収益率の変化 インデックス投資は 1.5倍程度で最大 分散投資をすれば収益率が安定 高いレバレッジもかけられる 単体の株を買っても 利益を出すのは難しい 21
  23. 23. 収益率の分散を抑えるには 収益率の分散を抑えることによる収益機会の増加について
  24. 24. 金融アルゴリズムの評価手法2018/12/17 インデックス投資とアクティブ投資 • インデックス投資は日経平均等の指標と連動した証券に 投資する手法 • アクティブ投資はより高い利回りを目指し投資する手法 ほとんどのアクティブ投資はインデックス投資に期待値で勝てないと いう事実があるが意味はないのか? 為替と株の予測の話 23
  25. 25. 金融アルゴリズムの評価手法2018/12/17 アクティブ投資のシミュレーション 為替と株の予測の話 24 基準値 アクティブ投資(100日平均線を 上回っているときのみ投資する手法)では 大きな下落が避けられている
  26. 26. 金融アルゴリズムの評価手法2018/12/17 日経平均株価における期待値とレバレッジ • インデックス投資の期待値は7%前後と言われており 対数期待値も+4.1%前後あるが、年間の分散が25%程度あり、 レバレッジ1.2倍で対数期待値が最大化され+4.2%、 この時の期待値は+8.4%となる • アクティブ投資の期待値も7%前後とすると、 対数期待値が+5%前後で、年間の分散が半減され、 レバレッジ1.5倍で対数期待値が最大化され+5.4%、 この時の期待値は+10.4%となる 為替と株の予測の話 25
  27. 27. 金融アルゴリズムの評価手法2018/12/17 アメリカ株の日本株を用いたヘッジ 為替と株の予測の話 26 基準値 日本株で分散を最小化すると 25年で2倍(年2.8%)の差
  28. 28. 金融アルゴリズムの評価手法2018/12/17 収益率の分布の操作 利益確定・損切りの幅で収益率の歪みの操作ができる • 損切りを早く利益確定を遅くすれば 多くの期間は損するが利益は大きくなる • 損切りを遅く利益確定を早くすれば 多くの期間は利益がでるが損が大きくなる 為替と株の予測の話 27
  29. 29. 金融アルゴリズムの評価手法2018/12/17 恐怖指数 為替と株の予測の話 28 大幅に価格が上がることがあるが 指数的に価格が下落する
  30. 30. 金融アルゴリズムの評価手法2018/12/17 恐怖指数売りによる収益率分布の操作 ※リスクが高い手法なので理解せずに手は出さないこと 恐怖指数売りは短期の大きなリスクを元手に 多くの期間において定常的に利益が出せる (保険会社を運用している状態になる) 少ない証拠金でリスクを買って利益率が高められる 為替と株の予測の話 29
  31. 31. 投資ファンドを用いた 評価実験 予測アルゴリズムのかわりに投資ファンドを使った評価実験
  32. 32. 金融アルゴリズムの評価手法2018/12/17 投資ファンドの評価 投資ファンドの価値を測る方法の一つとして 日経平均からどの程度価値のある動きができているかを考える 投資ファンド = 日経平均×α + ランダムウォーク + ドリフト ドリフト / 分散(ランダムウォーク) が真の価値 (日経平均×-αでヘッジすれば真の価値を取り出せる) 31
  33. 33. 金融アルゴリズムの評価手法2018/12/17 とある投信の評価 32 1年あたりのリワードリスク比 (2008年〜2018年) 日経先物1倍 … 0.26 投信1倍 … 0.78 投信1倍、日経先物-0.5倍 … 0.97 (少なくとも過去については) アクティブ投資として価値がある 日経先物のレバレッジ とある投信のレバレッジ -2.0倍 0.0倍 2.0倍 2.0倍0.0倍-2.0倍 図: リワード/リスク比 (青…マイナス、赤…プラス)
  34. 34. まとめ
  35. 35. 金融アルゴリズムの評価手法2018/12/17 まとめ • レバレッジは、取りたいリスクの幅とリワードが決まれば、 自動的に決まってくるもの • 1倍レバレッジに特別良いリワードの スイートスポットがあるわけではない • アルゴリズムの価値はリワード/リスク比 • インデックスや為替ヘッジによってリワード/リスク比が 高められることがあるが、それこそが真の価値 34

×