Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기

7,033 views

Published on

생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기

Published in: Technology
  • D.I.Y. 10-Second Carb Ritual Strips Away Fat...  http://t.cn/AiYhcYmI
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Slim Down in Just 1 Minute? What if I told you, you've been lied to for nearly all of your life? CLICK HERE TO SEE THE TRUTH ★★★ https://tinyurl.com/1minweight4u
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Do This Simple 2-Minute Ritual To Loss 1 Pound Of Belly Fat Every 72 Hours ●●● https://tinyurl.com/y6qaaou7
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기

  1. 1. 생체 이해에 기반한 로봇 김용재 Ph.D. IRIM Lab. Koreatech 고성능 로봇에게 인간의 유연함과 안정성 부여하기
  2. 2. PROFESSIONAL EXPERINECE 2014.3 - Present Assistant Professor, KoreaTech 2012.3 - 2014.3 Research Staff Member, Intelligent Robot Group, SAIT 2011. 3 - 2012.2 Principal Engineer and Visiting Engineer of MIT Manufacturing Tech. Center, Samsung Electronics 2003. 3 - 2011.2 Senior Engineer, Robot Technology Team Manufacturing Tech. Center, Samsung Electronics Education : ~2003, Ph.D in KAIST ~1998, M.S in KAIST ~1996, B.S in KAIST Major: Electrical Engineering and Computer Science Yong Jae Kim, Ph.D. RESEARCH INTERESTS - Mechanism design and Control of Wearable Robots, Surgical Robots, Humanoid & Interactive Mobile Robots - Design and Analysis of Flexible Robots and Backdrivable Mechanisms - Compliance Control for Backdrivable Mechanism & Redundant manipulators - Idea Generation of Novel Robot System (22 US patents, TRIZ expert Level II)
  3. 3. ※ Ref: ABB Yumi Personal Robot Public Robot “iMaro-PSR” Humanoid “RoboRay” Single Port Surgical Robot Samsung Cleaning robot 2004 2005 2006 20102007 2009 2012 2013 Samsung Robot Commercialization TF Cobot “Rayarm” Walking Assist Robot SAMSUNG ELECTRONICS (2003-2013)
  4. 4. Flexible Human Assist Robot (Confidential Project) (2014) Compliant Gripper (미래부) •2016~ Compression support frame Kevlar Belt Ni-Ti Cable Non-stretchable Fabric Conduit Power Assist Glove •2016~2004 2005 2006 2015 2016 2017 High-Payload Gravity Compensation Manipulator (Confidential Project) Torque sensing Manipulator (Confidential Project) •2015~2004 2005 2006 20152014 2016 DARPA Robotics Challenge (산자부) (2014-15) LIMS: Highly Interactive Manipulator (2014 ~) Anthropomorphic dual arm robot for High speed Interaction (LAVER LABS) •2009 •2012 •2013 •2010 2012 2014 2015 2016 20172010 Interactive Robotics & Innovative Mechanism LabIRIM •2014 KOREATECH(2014-2017)
  5. 5. TABLE OF CONTENTS 1_ 인간의 몸과 로봇 메커니즘 “산업용 로봇은 왜 박수를 칠 수 없을까?” 2_ 생체 이해에 기반한 로봇 핸드 “유연성과 정밀성을 모두 갖춘 로봇이 가능할까?” 2.1_ RoboRay Hand: 고자유도 휴머노이드 핸드 2.2_ TATH Glove : 파지력 증강 소프트 글러브 2.3_ Soft Parallel Gripper: 정밀 유연 그리퍼 3_ 생체 이해에 기반한 로봇 팔 “하이 파이브가 가능한 로봇의 조건은?” 3.1_중력보상 로봇, 가변강성 로봇 3.2_ LIMS2–AMBIDEX: 경량 고강성 로봇 팔 4_ 인간과 협력하는 로봇
  6. 6. 1.인간의 몸과 로봇 메커니즘 “산업용 로봇은 왜 박수를 칠 수 없을까?”
  7. 7. Robot Manipulators vs. Human Arms Weight : Joint speed : TCP speed : Payload : Rotational inertia : Stiffness : Repeatability : Control frequency : 23.9 kg 90 ~180 deg/sec Approx. 1.5m/sec 7 kg over 5kgm2 10,000~40,000 Nm/rad 0.1 mm 1kHz ( 3~4kHz, joint control) Weight : Joint speed : TCP speed : Payload : Rotational inertia : Stiffness : Repeatability : Control frequency : 3.9 kg 400 ~ 1200 deg/sec over 15m/sec - 0.49kgm2 350 Nm/rad (elbow) ? 10Hz (40Hz, uncond. reflex) Video Ref: ABB Robotics - Fanta Can Challenge- Level II - Superior Motion Control https://www.youtube.com/watch?v=SOESSCXGhFo Video Ref: Last 5 Minutes of Super Bowl 51 https://www.youtube.com/watch?v=iN8Rfwr6L2U Pull Up & Chin Up Progression Guide incl. 10+ Exercises https://m.youtube.com/watch?v=CdtrfXK7bcg Men's Archery Individual Gold Medal Match | Rio 2016 Replay https://www.youtube.com/watch?v=rzj4FFi7wt8
  8. 8. Robot Grippers vs. Human Hands Weight : Degrees of Freedom : Joint speed : Fingertip force : Grasp force : No. of Muscles : 1.5 kg 23 DOF Over 500 deg/sec 43 N (index, straight pose) 370 N over 30 muscles Video Ref.: Grasping different objects quickly https://www.youtube.com/watch?v=ZNjbyCWt93k Flexible Robot Gripper: 2-finger Adaptive Electric Robot Gripper by Robotiq https://www.youtube.com/watch?v=nkGuI4uiSLM Soft Robotics Inc. - Adaptive Grasping of Common E-Commerce Items https://www.youtube.com/watch?v=vRQZ5bqwDbg Video Ref.: Barbell Deadlift Bent Row Complex https://www.youtube.com/watch?v=PUNxkzCjWNk World's most complicated watch https://www.youtube.com/watch?v=I1L15xehfEA Slow Motion Rubik's Cube Solve https://www.youtube.com/watch?v=gEPgcWx1JMs
  9. 9. Contact materials? Sensors? Control Algorithm? … Robot Grippers vs. Human Hands Actuation - More than 30 muscles - Highly redundant! - Tendon driven Actuation - 1~ 16 motors - Difficult to increase DOF. - Gear or wire driven 인체는 구동기의 증가에 대한 부담 이 없다!! Lubrication - Lub. by Synovial fluid - Friction coeff.: 0.003~0.01 Lubrication - Bearing Friction coeff.: approx. 0.026 - Teflon : 0.04 베어링 대비 2.6~8.6 분의 1 저마찰 윤활유가 평생 공급된다!! Contact materials? Sensors? Control Algorithm? … 생체 모양만 모사하는 것은 무의미하다! 어느 level에서 모사해야 할까? Joints - Rolling & sliding - Aligned by ligaments Joints - Revolute joints - Bearing for low frictions - Vulnerable to Impact Maintenance Free!! 평생 장력이 유지 되는 인대구조.
  10. 10. 인간의 능력을 모사하는 로봇들 Precise, High Payload High Speed Soft/flexible, Interactive, Compliant 유연한 로봇은 정밀한 로봇이 될 수 없는가? 인간은 어디에 위치하는가? Industrial Robot + force sensors + contact detection + … Soft Robot + Increase payload + Position sensors + …
  11. 11. 2. 생체 이해에 기반한 로봇 핸드 “유연성과 정밀성을 모두 갖춘 로봇이 가능할까?”
  12. 12. C6M Shadow Robotics 3-Finger Gripping Hand Schunk 5-Finger Hand Schunk i-Limb Ultra Touch Bionics Robonaut hand NASA Barrett hand Barrett Corp. Human Hand 27 Bones, 23 DOF, Over 30 muscles Industrial Prosthetic Research & General purpose C6M DLR RoboRay hand Samsung Humanoid The goal : Precise Manipulation + Compliant Power Grasping 인간과 유사한 크기/모양/무게, 마찰 최소화 및 역구동성 최대화 RoboRay Hand ( Samsung Project, published in ICRA2014 )
  13. 13. RoboRay Hand : Highly backdrivable Life-Size Robotic Hand – 1.59kg, 12 DOF for fingers and 2 DOF for the wrist – Fingertip force 15N / Contact force detection 0.196N – Tendon-driven mechanism actuated by ball screws and BLDC motors Weight 1.59kg (including wrist and forearm) Dimensions Hand 160 x 80 x 45 mm Forearm 186 x 76 x 83 mm DOF Fingers 12 DOF / 5 Fingers Wrist 2 DOF Payload Peak Fingertip Force 15N (Stretched Pose) Speed/ Reduction Ratio MPR joint 800deg/sec, 47:1 MPP joint 700deg/sec, 57:1 PIP joint 450deg/sec, 82:1 Sensing Minimum Force Detection with compensation : 0.196N w.o. compensation : 0.735N Actuation Tendon driven, actuated by ball screws and BLDC Motors Electronics DC 12V, DSP TMS320F2812 EtherCAT Communication 2.1 RoboRay Hand- Specification ( Samsung Project, published in ICRA2014 )
  14. 14. RoboRay Hand - Samsung Project - Published in ICRA2014 “RoboRay Hand : A Highly Backdrivable Robotic Hand with Sensorless Contact Force Measurements” Yong-Jae Kim, et al, ICRA2014
  15. 15. Orangutan Baboon Human RoboRay 40 57-58 60 App. 100 Opposability among primates Metacarpus of the thumb 1. Biomimetic Design based on functionality of human hands 2.1 Mechanical Design - Configuration High Opposability – Human thumb is highly opposable due to mobile metacarpus Finger Design Considering Opposability
  16. 16. 2. Actuator Configuration Based on the Grasping Functions Precise Manipulation Grasp motor fixed Pose motor in motion - Fixing the grasp motor and actuating pose motor enable precise adjustment. Compliant Grasping Pose motor off Grasp motor In motion - Turning the pose motor off and actuating the grasp motor make compliant grasping High force grasp motor in the forearm Small Pose Motor in the Palm Proposed Configuration MP joint PIP joint DIP joint Underactuated Hands - Inherent mechanical compliance - Difficult to manipulate object precisely Dexterous Hands - Fully controllable, Precise manipulation - Subject to be bulky, or slow and weak 2.1 Mechanical Design – Finger Actuation Concept
  17. 17. 3. Tension Decoupling Wrist Mechanism using Rolling Joint Transmission using Conduits - Saving space, High force - Frictional, Limited Range of Motion Built-in Actuators in the Palm - Relatively Simple - Subject to be bulky, weak or slow Proposed Wrist Mechanism Wrist Pitch Motion Wrist Roll Motion Pitch Direction Roll Direction 2p 1p r Rolling Joint for Wrist Pitch Offset Pivot for Wrist Roll Composed 2-DOF Joint Rolling Joint 2.1 Mechanical Design - Wrist Decoupling Concept
  18. 18. Stand-alone Performance Test Gestrure and Grasping Test (Prototype of RoboRay hand) Gesture and Manipulation Test (RoboRay hand without Covers) Performance back-drivability - backdrivable force : 0.735N - Mechanical Efficiency : App. 89.5% - Stiffness : App. 1.7N/mm Bearing Efficiency 97.0% No. Radius (mm) Angle (deg) Efficiency (%) 1 3.2 90 99.4 2 4.0 180 99.4 3 10.0 180 99.7 4 10.0 180 99.7 5 4.0 90 99.5 6 4.0 180 99.4 7 10.0 90 99.8 Ball Screw Efficiency 95% Actuator Bushing Efficiency 95% Total Efficiency 89.4% 2.1 Mechanical Design - Wrist Decoupling Concept
  19. 19. Flexible/Soft and Safe Rigid, Precise and Strong Human hand - 유연성 + 정밀성 - 기능 수준의 생체 모사 - 기존의 기계적인 요소품 사용 2.1 RoboRay Hand
  20. 20. 2.1 Flexible/Soft but Strong? Flexible/Soft and Safe Rigid, Precise and Strong Human hand Flexible/Soft + High payload ? - 유연한 구조인 동시에 강한 힘을 전달할 수 있다면...
  21. 21. FDC Structure (Force Distributing Compliant Structure) - 말단부의 강성을 높이거나 조절 가능 - 구조에 따라 규제되는 자유도를 선택가능 Vertical & Lateral Motion Restricted torsional motion permitted Fin-Gripper (FESTO. Co) Vertical Motion Restricted Lateral & torsional motion permitted Compliant to side force Vertical & torsional Motion Restricted Lateral motion permitted It can withstand Vertical & torsional Loads! 기존 구조물 Cantilever Beam - Stiff proximal part - Soft distal part High Stiffness Low Stiffness 2.2 New Opportunities by FDC structure It can withstand Vertical, lateral & torsional Loads! All 3 motions restricted 단순 Cantilever Beam
  22. 22. Flexible beam Flexible beam Dovetails for prismatic motion Walking Assist Robot, GEMS Younbaek lee, IROS2017 SAIT, Samsung electronics GEMS (SAIT, Samsung) Small deformationF Large deflection F Fin-gripper, Festo. Fin-gripper (FESTO Co.) 2.2 New Opportunities by FDC structure FDC Structure Fin-Gripper (FESTO. Co) tension Except finger bones, all other parts receive tensile force! FDC Structure in Human Fingers
  23. 23. The FDC structure for one-side force direction and curvature can be composed only using soft fabric and belt except one flexible frame. The proposed structure facilitates transfer of tactile sensation because there are soft fabric and belt between the object and human hand. Tension Compre -ssion Tension Tension - Only the right flexible frame receives compressive force. - The others can be replaced by soft materials! Human finger case Tension Moment Assist Flexible frame (ABS+NiTi wire) Belt (Kevlar) Non- stretchable Fabric (Polyester) Only soft materials between the object and the finger!! Wearable FDC Structure for the Moment Assisting Glove 2.2 FDC Structures for Moment Assisting Devices
  24. 24. TActily Transparent High-Force Assist Glove (TATH Glove) : 촉감 전달이 가능한 파지력 증강 글러브 2-Finger Test Mechanism Palm side of finger Compression support frame Conduit Kevlar Belt Nitinol Wire Low-stretchable Fabric Conceptual Design of 5-Finger TATH Glove Concept Proof Mechanism Loading Test (7kg) 2.2 TATH Glove using FDC Structure
  25. 25. Customized FSR Sensor 2.2 TATH Glove using FDC Structure
  26. 26. 전기전자통신공학부 Interactive Robotics & Innovative Mechanism Lab 2.1 Flexible/Soft but Strong? Flexible/Soft and Safe Rigid, Precise and Strong Human hand Flexible/Soft + High payload ?
  27. 27. Flexible/Soft and Safe Rigid, Precise and Strong Human hand Precise parallel pinching Parallel pinching Compliant Grasping 손가락은 부드럽게 감아 쥐지만 손끝은 평행한 정밀파지가 가능? Compliant grasping 2.2 Precise parallel pinching + compliant grasping?
  28. 28. Parallel pinching Motion Compliant Grasping Motion Fingertip은 수평을 유지하는 동시에, finger body는 flexible한 구조로 물체를 감싸는 동작이 가능함Finger body 유연 파지 Fingertip 평행 핀칭 Triangular structure Parallel structure 2.2 Gripper with Precise Parallel Pinching & Compliant Grasping Soft Parallel Gripper : 정밀 평행 파지가 가능한 유연 그리퍼
  29. 29. 생체 이해에 기반한 로봇 핸드 -로봇이 유연성과 정밀성을 모두 가지려면 • 생체 이해에 기반한 로봇 핸드 – RoboRay Hand : 정밀조작과 유연 고하중 파지가 가능한 로봇 핸드 – THAT Glove : 촉감전달이 가능한 파지력 증강 글러브 – Soft Parallel Gripper : 정밀 평행 파지가 가능한 유연 그리퍼 • 생체모사는 형상모사가 아니다. 원리와 기능 레벨에서의 생체 모사가 필요하다 • 유연성과 고하중/정밀성은 trade-off 가 아니다. 양쪽을 다 만족하는 구조 도출 Organic mechanism Fundamental principle Robot Application Organic mechanism Fundamental principle Robot Applications
  30. 30. 전기전자통신공학부 Interactive Robotics & Innovative Mechanism Lab 3. 생체 이해에 기반한 로봇 팔 “하이 파이브가 가능한 로봇의 조건”
  31. 31. Ave. Inertia : 0.49kgm2 Ave. Mass : 3.9kg Estimated Inertia : over 5kgm2 Mass : 23.9kg Kinetic and potential energy : make a big difference to the safety !! Stiffness/strength : critical to control performance !! 인간의 팔과 로봇 팔의 안전성과 성능 차이 High-five motion 7.13 m/sec Throwing Motion 15.61 m/secPrecise, Strong, but dangerous Inherently safe and still strong, precise and fast VS. Ev = mv2 1 2 Ep = mgh 운동에너지 위치에너지 높은 강도/강성/정밀도  높은 제어 성능 낮은 질량, 높은 역구동성 근본적인 안정성
  32. 32. Design Philosophy and Basic Idea Motors with gears in base frame Tendons for joint actuation Reduction gears Motors Motors in base frame Reduction gears Tendons for joint actuation Conventional Mechanism : Stiff but Heavy Tendon Driven Mechanism : light weight but low stiffness Hybrid mechanism : light and Stiff, light-weight gear mechanism is required! 1) Extremely low inertia to minimize stored kinetic energy. 2) Extremely low mass. Conventional industrial robots consume most of the motor torque for supporting their own weight. 3) High stiffness comparable to industrial robots. 4) High strength comparable to industrial robots. 5) Efficiency and backdrivability. In order to apply right amount of energy to the robot, efficient mechanism with minimal friction is required. It enables sensing of external force without expensive force or torque sensors. Stiffness 350Nm/rad Ave. Inertia : 0.49kgm2 Ave. Mass : 3.9kg 근본적인 안전성과 높은 제어성능을 가지기 위한 조건
  33. 33. 170 mm 340 mm370 mm 3D-Printed ABS frames Aluminum alloy, machining parts 인간과 동일한 7 자유도 팔 유연파지가 가능한 핸드 3-DOF Wrist 1-DOF Elbow 3-DOF Shoulder 4-DOF Hand 3-DOF Neck Pan, Tilt and Translation 4 Actuators for Wrist and Elbow 3 Actuators with Capstan Reduction for shoulder 무거운 구동모터들 Body 근처에 배치 Joints with Tension Amplification Mechanisms 강성을 증폭하는 경량 감속 메커니즘 LIMS2-AMBIDEX ( Low Inertia Manipulator with High Stiffness and Strength )
  34. 34. OVERALL MOTION -Arm span 2.1m -7 DOF per arm -3 DOF per head -Wrist Yaw ROM: 670 deg
  35. 35. 35 ARM WEIGHT Total : 2,628 g Wrist : 446 g Forearm : 171 g Elbow : 533 g Upper arm:1,478 g
  36. 36. HIGH SPEED MOTION TEST
  37. 37. Strength and Stiffness Analysis (LIMS1 Results) z Stiffness: Stiffness/Inertia: >  10,000 Nm/rad 8,333 m/rad 1,410 Nm/rad 7,233 m/rad 350 Nm/rad 2,059 Nm/rad > > • 산업용 로봇과 유사한 동적 제어 성능 – 강성/질량 % Anthropomorphic Low-Inertia High- Stiffness Manipulator for High-Speed Safe Interaction, IEEE Trans. on Robotics, 2017 • 반복 정밀도 0.426mm (산업용 로봇 0.1mm) P2P3 P4 P5 P1 500×500×500mm (a) (b) P2 P3 P4 P5 P1 TABLE V POSITIONING REPEATABILITY TEST RESULTS Pose Mean (mm) Std. Dev. (mm) 3-Sigma (mm) P1 0.138 0.066 0.335 P2 0.148 0.074 0.369 P3 0.103 0.048 0.247 P4 0.187 0.113 0.528 P5 0.189 0.116 0.536 Total 0.153 0.091 0.426 TABLE V POSITIONING REPEATABILITY TEST RESULTS Pose Mean (mm) Std. Dev. (mm) 3-Sigma (mm) P1 0.138 0.066 0.335 P2 0.148 0.074 0.369 P3 0.103 0.048 0.247 P4 0.187 0.113 0.528 P5 0.189 0.116 0.536 Total 0.153 0.091 0.426 • Payload 3kg
  38. 38. (a) (b) 0 10 20 30 40 50 0 100 200 300 400 500 600 700 800 900 1000 HIC 36 (m robot ) Effective mass of robots (kg) HIC36 1m/sec 2m/sec 3m/sec 4m/sec 5m/sec 6m/sec 7m/sec 8m/sec 9m/sec 10m/sec 0 2 4 6 8 10 2 3 4 5 6 7 8 9 10 Effective mass (kg) Speed(m/sec) HIC36= 100 HIC36= 200 HIC36= 300 HIC36= 500 HIC36= 1000 1.47kg • HIC (Head Injury Criteria) : a safety criteria derived from the average acceleration of a human head and the application time. mmotor n : 1 m1ink k khead mhead Motor side mass Reducer Link side mass Under 2m/sec, mass is not a dominant factor of safety ( Any mass satisfy HIC100). At 6m/sec, effective mass 10kg can cause almost HIC1000 ! To be safe (HIC100) up to 5m/sec, the effective mass must be under 1.47kg !                  5.2 12 12 , 2 121 1 )(max dtx tt ttHIC t t H tt  HIC 100 : non-life-threatening to the brain, HIC 1000 : life-threatening injuries Influence of Mass and Speed to the Safety 10kg, 6m/sec HIC 958 !! 10kg, 2m/sec HIC 61 Ev = mv2 1 2 0 10 0 100 200 300 400 H 100 200 105 (a) 0 10 20 30 40 50 0 100 200 300 400 500 600 700 800 900 1000 HIC 36 (m robot ) Effective mass of robots (kg) HIC36 1m/sec 2m/sec 3m/sec 4m/sec 5m/sec 6m/sec 7m/sec 8m/sec 9m/sec 10m/sec 0 2 3 4 5 6 7 8 9 10 Speed(m/sec) 1.1kg, 6m/sec HIC 100
  39. 39. INTERACTION TEST : high-five motion
  40. 40. HIGH SPEED IMPACT TEST : Clapping
  41. 41. • Inertia & Stiffness – Shoulder to Hand Inertia : 0.502 kgm2 – Elbow Stiffness : 1,410 Nm/rad • Speed & peak torque – Shoulder roll pitch: 499deg/s, 42.5~82Nm – Shoulder Yaw: 749deg/s, 28.4~54.6Nm – Elbow : 590deg/s, 69.4Nm – Wrist roll pitch: 1179deg/s, 34.7Nm – Wrist yaw: 1634deg/s, 25Nm Specifications Stiffness 350 Nm/rad Inertia : 0.49 kgm2 Mass : 3.9 kg Stiffness 10,000 Nm/rad Estimated Inertia : 5 kgm2 Mass : 23.9 kg Inertia : 0.50 kgm2 Mass : 2.63 kg Stiffness 1,410 Nm/rad AMBIDEX - LIMS2 Human Arm Industrial Robot (iiwa) • Degrees of Freedom – 7 DOF / Arm Shoulder 3, elbow 1, wrist 3 – 3 DOF for Neck Pan, tilt and translation • Weight – Arm moving part : 2.63 kg – Shoulder : 4.17 kg – Hand : 0.633 kg LIMS1 LIMS2-AMBIDEX
  42. 42. • Block and Tackle - light weight reduction mechanism 1-DOF Tension Amplification Joint Motor for Wire Motion Rolling Joint Spring Coefficient of wire K Wire Tension Tin Output Tension Tout Actuator Block and Tackle outxinx ,inout nTT  inout x n x  1 in in in out out out Kn x T n x T K 22      Amplified torque Reduced motion Motor for Wire Motion Motor for Wire Motion Motor for Wire Motion Pulley – Symmetric wire motion – High Friction – Limited Range of motion • Tension amplification mechanism for revolute joints Strength : amplified by n times! Stiffness : amplified by n2 times! – Symmetric wire motion – Low Friction – Wide Range of motion ※“An Innovative Trans-umbilical Single-Port Surgical Robot” ICRA2014
  43. 43. z 2   w w leftl rightl d • Joint Design Elbow Joint using the 1-DOF Tension Amplification Joint Relationship between wire motion & joint angle Developed Elbow Joint n=6  Stiffness is 36 times higher! Wire pair for wrist actuation Wrist wire length is decoupled with the wrist motion!! 2 sin  nwll rightleft  Symmetric wire motion! 2  n lleft baseleftl _ baseleftl _ 2 leftl 2 leftl al bl cl dl prpr Simplified and actual wire path )2( dactualsimple lrll   Constant The same motion! for even number of winding
  44. 44. 2-DOF Tension Amplification Joint Two 1-DOF Joints – Suitable for miniaturization – Frictional wire transmission – Limited workspace due to extended wrist ※“An Innovative Trans-umbilical Single-Port Surgical Robot” ICRA2014 Serial Connection of the 1-DOF tension amplification joint – How to realize spherical rolling contact without slip – Symmetricity of 2 wire pairs should be verified Extension to 2-DOF Mechanism 1-DOF Joint 2-DOF Concept Challenging points z 1-DOF Concept
  45. 45. 2-DOF Tension Amplification Joint z Link 1 Link 2 d leftPl _ rightTl _ rightPl _ leftTl _ w a  sinw cosw  sinw cosw b a b a b Bending Plane Symmetric relationship between wires 2 sincos 2 sinsin __ __     nwll nwll rightTleftT rightPleftP   Motion of each wire of the wire pairs is symmetric! Link 1 2p 1p 2t 1t distp Link 2 proxp Ideal Model 0 Link 1 Link 2 1p 2p 2t 1t distp proxp LIMS1 : 구면 rolling 모션 모사 LIMS2 : 3개 link로 단순화, 내구성 향상
  46. 46. Link Type Rolling Joint를 이용한 wrist 개선 Wire for wrist actuation : n=4 Stiffness is 16 times higher! Cross roller Planetary gear Universal Joint Wrist 말단부 관절 동력전달 및 감속 구조
  47. 47. • 3-finger 4-DOF 핸드 – 파지 물체에 따라 적절히 변형하는 underactuation 구조 – Thumb 자세를 변경하는 추가자유도로 grasping  pinching 변환 가능 LIMS Hand 개발
  48. 48. 안전한 로봇 메커니즘 +  괜찮아 들어와.. 정말로 안 아파… 응? 어쩐지 어색해.
  49. 49. Summary and Future Work 인간과 협력하는 로봇
  50. 50. Summary and Future Work • 생체 이해에 기반한 로봇 팔 “하이 파이브가 가능한 로봇의 조건은?” – LIMS2–AMBIDEX: 안전성과 높은 제어 성능을 가진 로봇 팔 • 생활 속에 로봇이 들어오려면 … Video Ref.: How Smartphones Are Assembled & Manufactured In China. https://www.youtube.com/watch?v=gBL-u53sy_o&t=1s 2013 Artistic Gymnastics World Championships https://www.youtube.com/watch?v=O4pSYZNFej0 The Best Female Rock Climber In the World is 14 Years Old https://m.youtube.com/watch?v=D4zBVD0sL7Y
  51. 51. 전기전자통신공학부 Interactive Robotics & Innovative Mechanism Lab Thank you for your attention! 김종인 전형석 정용준 이덕원 장우석 Interactive Robotics & Innovative Mechanism Lab

×