Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Introduction To Capacitance

4,140 views

Published on

olhnisnhsohn

Published in: Business, Technology
  • Be the first to comment

Introduction To Capacitance

  1. 1. <ul><li>Capacitors </li></ul>
  2. 2. What is a capacitor? <ul><li>Electronic component </li></ul><ul><li>Two conducting surfaces separated by an insulating material </li></ul><ul><li>Stores charge </li></ul><ul><li>Uses </li></ul><ul><ul><li>Time delays </li></ul></ul><ul><ul><li>Filters </li></ul></ul><ul><ul><li>Tuned circuits </li></ul></ul>
  3. 3. Capacitor construction <ul><li>Two metal plates </li></ul><ul><li>Separated by insulating material </li></ul><ul><li>‘ Sandwich’ construction </li></ul><ul><li>‘ Swiss roll’ structure </li></ul><ul><li>Capacitance set by... </li></ul>
  4. 4. Defining capacitance <ul><li>‘ Good’ capacitors store a lot of charge… </li></ul><ul><li>… when only a small voltage is applied </li></ul><ul><li>Capacitance is charge stored per volt </li></ul><ul><li>Capacitance is measured in farads F </li></ul><ul><ul><li>Big unit so nF, mF and  F are used </li></ul></ul>
  5. 5. Graphical representation <ul><li>Equating to the equation of a straight line </li></ul>Gradient term is the capacitance of the capacitor Charge stored is directly proportional to the applied voltage Q V
  6. 6. Energy stored by a capacitor <ul><li>By general definition E=QV </li></ul><ul><ul><li>product of charge and voltage </li></ul></ul><ul><li>By graphical consideration... </li></ul>Area term is the energy stored in the capacitor Q V
  7. 7. Other expressions for energy <ul><li>By substitution of Q=CV </li></ul>
  8. 8. Charging a capacitor <ul><li>Current flow </li></ul><ul><li>Initially </li></ul><ul><ul><li>High </li></ul></ul><ul><li>Finally </li></ul><ul><ul><li>Zero </li></ul></ul><ul><li>Exponential model </li></ul><ul><li>Charging factors </li></ul><ul><ul><li>Capacitance </li></ul></ul><ul><ul><li>Resistance </li></ul></ul>I t
  9. 9. Discharging a capacitor <ul><li>Current flow </li></ul><ul><li>Initially </li></ul><ul><ul><li>High </li></ul></ul><ul><ul><li>Opposite to charging </li></ul></ul><ul><li>Finally </li></ul><ul><ul><li>Zero </li></ul></ul><ul><li>Exponential model </li></ul><ul><li>Discharging factors </li></ul><ul><ul><li>Capacitance </li></ul></ul><ul><ul><li>Resistance </li></ul></ul>I t
  10. 10. Voltage and charge characteristics <ul><li>Charging Discharging </li></ul>V or Q t V or Q t
  11. 11. <ul><li>Product of </li></ul><ul><ul><li>Capacitance of the capacitor being charged </li></ul></ul><ul><ul><li>Resistance of the charging circuit </li></ul></ul><ul><ul><li>CR </li></ul></ul><ul><li>Symbol  ‘Tau’ </li></ul><ul><li>Unit seconds </li></ul>Time constant
  12. 12. When t equals tau during discharge <ul><li>At t = tau the capacitor has fallen to 37% of its original value. </li></ul><ul><li>By a similar analysis tau can be considered to be the time taken for the capacitor to reach 63% of full charge. </li></ul>
  13. 13. Graphical determination of tau <ul><li>V at 37% </li></ul><ul><li>Q at 37% </li></ul><ul><li>Compared to initial maximum discharge </li></ul>V or Q t
  14. 14. Logarithmic discharge analysis <ul><li>Mathematical consideration of discharge </li></ul><ul><li>Exponential relationship </li></ul><ul><li>Taking natural logs equates expression to ‘y=mx+c’ </li></ul><ul><li>Gradient is -1/Tau </li></ul>
  15. 15. Logarithmic discharge graph Gradient term is the -1/Tau lnV t
  16. 16. www.search for... <ul><li>Capacitors </li></ul>

×