GAM models for Day-Ahead and Intra-Day Electricity Consumption Forecasts




                                                       Temperature Effect




                         65000


                         60000


                          55000
                         z



                             50000


                             45000
                                                                                              50
                                                                                           40
                                     0                                                30




                                                                                              d
                                                                                           .in
                                                                                        ek
                                         we 10                                   20




                                                                                      we
                                           ek.t
                                                em
                                                   p
                                                           20               10




                                            Yannig Goude
                                     EDF R&D - Clamart
  ( EDF R&D - Clamart)                                                                             March 15, 2012   1 / 24
Motivation of Electricity Load Forecasting




Electricity can not be stored, thus forecast-
ing elec. consumption:

     to avoid blackouts on the grid
     to avoid financial penalties
     to optimize the management of
     production units and electricity
     trading

Managing a wild variety of production
units:
     nuclear plants
     fuel, coal and gas plants
     renewable energy: water dams, wind
     farms, solar panels...




   ( EDF R&D - Clamart)                                   March 15, 2012   2 / 24
Motivation of Electricity Load Forecasting




       Short-term load forecasting: from 1 day to a few hours horizon




( EDF R&D - Clamart)                                           March 15, 2012   3 / 24
(Generalized) Additive smooth models




     consider a univariate response y and corresponding predictors x1 , ..., xp
     an additive smooth model has the following structure:

                        yi = Xi β + f1 (x1,i ) + f2 (x2,i ) + f3 (x3,i , x4,i ) + ... + εi
     Xi β is the linear part of the model
     functions fj are supposed to be smooth
     εi :
            iid
            E (εi ) = 0,V (εi ) = σ 2
            normality if needed (tests...)
More precisely, we want to solve the following pb:


    minβ,fj ||y − X β − f1 (x1 ) − f2 (x2 ) + ...)2 + λ1       f1 (x)2 dx + λ2        f2 (x)2 dx + ...




     ( EDF R&D - Clamart)                                                              March 15, 2012    4 / 24
(Generalized) Additive smooth models




     Estimation of the fj : basis expansion in a spline basis

                                                         kj

                                             fj (x) =          aj,q (x)βj,q
                                                         q=1

     Then the additive model becomes

                                        k1                        k2
                       yi = Xi β +           a1,q (x)β1,q +            a2,q (x)β2,q + ... + εi
                                       q=1                       q=1

Unknowns:

     choice of the spline basis, number-position of knots kj
     β and aj,q
⇒ take large kj and proceed to penalized regression (ridge)




     ( EDF R&D - Clamart)                                                                  March 15, 2012   5 / 24
(Generalized) Additive smooth models




Then the initial problem


    minβ,fj ||y − X β − f1 (x1 ) − f2 (x2 ) + ...)2 + λ1      f1 (x)2 dx + λ2   f2 (x)2 dx + ...

becomes a linear regression problem:

                                  minβ ||y − X β||2 +        λ j β T Sj β

     as     fj (x)2 dx can be written as β T Sj β
     absorbing aj,q (xi ) into Xi

Solution:

                                  βλ = (X T X +          λj Sj )−1 X T y




     ( EDF R&D - Clamart)                                                       March 15, 2012     6 / 24
(Generalized) Additive smooth models




How to choose the penalization parameter λ?

     without any penalisation: β0 = (X T X )−1 X T y
     regularised: βλ = (X T X +               λj Sj )−1 X T y
     β λ = Fλ β 0

Where
                                    Fλ = (X T X +           λj Sj )−1 X T X


tr (Fλ ): estimated degrees of freedom




     ( EDF R&D - Clamart)                                                     March 15, 2012   7 / 24
(Generalized) Additive smooth models




How to choose the penalization parameter λ?




     ( EDF R&D - Clamart)                                March 15, 2012   8 / 24
(Generalized) Additive smooth models


     Ordinary Cross Validation
           leave one observation yi
           estimate a model µ−i on the new data set
           forecast yi with µ−i
                             i
           do that for all i
           choose the λ that minimizes the OCV score:
                                                         n
                                           V0 (λ) =           (yi − µ−i )2 /n
                                                                     i
                                                        i=1

        Pb: calculation time
     Generalized Cross Validation [Craven and Wahba (1979)]

                                 Vg (λ) = n y − X βλ |2 /(n − tr (Fλ ))2

Advantages of GCV:

     λ is obtained by numerical minimization of Vg (few comp. cost)
     Vg (λ) is invariant when doing useful transf. of the data (on-line update, big data)

⇒ Software: R, package mgcv (see[Wood (2001)] and [Wood (2006)])
    ( EDF R&D - Clamart)                                                        March 15, 2012   9 / 24
From GAM to BAM




                               BAM: Big Additive Models

⇒ for huge data sets (more than 10 000 observations) we use the QR decomposition:


     X = QR, f = Q T y and denote ||r ||2 = ||y ||2 − ||f ||2
            Q orth. matrix, R upper triang.
     then we have:
                                           n||f − R βλ ||2 + ||r ||2
                                Vg (λ) =
                                               (n − tr (Fλ ))2
     where Fλ is now (R T R +      λj Sj )−1 R T R

⇒ Once we have R, f and ||r ||2 , X plays no further part




     ( EDF R&D - Clamart)                                              March 15, 2012   10 / 24
From GAM to BAM




⇒ Application for large data sets:
                                              X0                       y0
     X is too big and has to be split:               , similarly y =
                                              X1                       y1
                                             R0
     form QR dec. X 0 = Q0 X0 and                   = Q1 R see section 12.5 of
                                             X1
     [Golub and Van Loan (1996)]
                                                                        T
                                   Q0    0                             Q0 y0
     then X = QR with Q =                         Q1 and Q T y = Q1
                                                                  T
                                   0     I                              y1
⇒ On-line update

     X0 , y0 past data, X1 , y1 last observations
     Use the new data X1 , y1 to update R, f and ||r ||2
     Re-estimate λ and βλ (previous values can be used as starting values for the
     numerical optimization)




     ( EDF R&D - Clamart)                                                   March 15, 2012   11 / 24
( EDF R&D - Clamart)
                                    40000   50000   60000   70000   80000   90000

                         1/9/2002
                        13/1/2003
                        28/5/2003
                        9/10/2003
                        21/2/2004
                         4/7/2004
                       16/11/2004
                        31/3/2005
                                                                                            Application to Electricity Load Data




                        12/8/2005
                       25/12/2005
                                                                                    Trend




                         8/5/2006
                        20/9/2006
                         1/2/2007
                        16/6/2007
                       28/10/2007
                                                                                            Electricity Data




                        10/3/2008
                        23/7/2008
                        4/12/2008
                        18/4/2009
                        31/8/2009
March 15, 2012
12 / 24
( EDF R&D - Clamart)
                                    30000   40000   50000   60000   70000   80000

                         1/1/2006
                        20/1/2006
                         8/2/2006
                        27/2/2006
                        18/3/2006
                         7/4/2006
                        26/4/2006
                        15/5/2006
                                                                                                     Application to Electricity Load Data




                         3/6/2006
                        22/6/2006
                        12/7/2006
                        31/7/2006
                        19/8/2006
                                                                                    Yearly Pattern




                         7/9/2006
                        26/9/2006
                                                                                                     Electricity Data




                       16/10/2006
                        4/11/2006
                       23/11/2006
                       12/12/2006
                       31/12/2006
March 15, 2012
13 / 24
( EDF R&D - Clamart)
                                   35000   40000   45000   50000   55000

                        1/6/2006
                        2/6/2006
                        4/6/2006
                        5/6/2006
                        7/6/2006
                        8/6/2006
                       10/6/2006
                       12/6/2006
                                                                                            Application to Electricity Load Data




                       13/6/2006
                       15/6/2006
                       16/6/2006
                       18/6/2006
                       19/6/2006
                                                                           Weekly Pattern




                       21/6/2006
                       23/6/2006
                                                                                            Electricity Data




                       24/6/2006
                       26/6/2006
                       27/6/2006
                       29/6/2006
                       30/6/2006
March 15, 2012
14 / 24
Application to Electricity Load Data     Electricity Data


                                           Daily Pattern




                       70000
                                          Mo      Fr
                                          Tu      Sa

                       65000
                                          We      Su
                       60000
                       55000              Th
                Load

                       50000
                       45000
                       40000




                               0     10          20             30         40

                                                      Instant




( EDF R&D - Clamart)                                                            March 15, 2012   15 / 24
Load (MW)

                                        60000      65000         70000      75000                    80000




                                   0
                                   10
                                                                                         Normal




( EDF R&D - Clamart)
                                   20

                         Instant
                                   30
                                                                                         Special Tariff




                                   40
                                                                                                                            Application to Electricity Load Data




                                         55000   60000   65000   70000   75000   80000               85000
                                                                                                             Special Days




                       20/12/2007
                       20/12/2007
                       21/12/2007
                                                                                                                            Electricity Data




                       22/12/2007
                       23/12/2007
                       24/12/2007
                       25/12/2007
                       25/12/2007
                       26/12/2007
                       27/12/2007
                       28/12/2007
                       29/12/2007
                       30/12/2007
                       30/12/2007
                       31/12/2007
                         1/1/2008
                         2/1/2008
                         3/1/2008
                         4/1/2008
                         4/1/2008
March 15, 2012
16 / 24
Application to Electricity Load Data   Electricity Data



                                      Load-Temperature




( EDF R&D - Clamart)                                                     March 15, 2012   17 / 24
Application to Electricity Load Data   Electricity Data




             75000
                                                         Load-Cloud Cover




                                                                                            8
             70000




                                                                                            6
                                                                     Cloud cover (Octets)
 Load (MW)

             65000




                                                                                            4
                                                                                            2
             60000




                                                                                            0
                     0   10         20             30   40                                      0   10   20             30       40

                                         Instant                                                              Instant




( EDF R&D - Clamart)                                                                                                         March 15, 2012   18 / 24
Application to Electricity Load Data   Model




    Lt    =    f1 (Lt−48 , It ) IHH +f2 (Lt−48 , It ) IHW +f3 (Lt−48 , It ) IWH +f4 (Lt−48 , It ) IWW
          +    g1 (Tt , It ) + g2 (Tt−48 , Tt−96 ) + g3 (Cloudt )
          +    h(Toyt , It )
                   48
          +        i=1 γi Spec.Tarift
                   11
          +        j=1 αj
          +    s(t)
          +    εt

     fj s: lagged load effects
     gj s: meteo. effects
     hs: yearly pattern, Toy is time of year
     γi : special tariff effect by half-hour of the day
     αj mean load for: sunday, monday, tuesday,...,saturday, HH,HW,WH and WW days
     s(t) is the trend

Estimation period: september 2002 - august 2008
Forecasting period: september 2008 - august 2009

     ( EDF R&D - Clamart)                                                           March 15, 2012      19 / 24
Application to Electricity Load Data                                                                Model


                                                                                                          GAM Model




                                                                                                                               10000
                                                          Temperature Effect




                                                                                                                               5000
                         70000


                          65000




                                                                                                                   Load (MW)

                                                                                                                               0
                          L[t]
                           60000




                                                                                                                               −5000
                             55000


                                 50000                                                               40

                                         30                                                      30




                                                                                                                               −10000
                                               20                                           20




                                                                                             I[t]
                                                   T[t     10                                                                                                  Mo          Fr        Su
                                                      ]                                10
                                                                    0                                                                                          we          Sa

                                                                               0
                                                                                                                                        0          10          20               30           40

                                                                                                                                                                     Hour




                                                                Yearly Cycle                                                                                        Trend




                                                                                                                               10000
                 80000




                  70000




                                                                                                                               5000
                   60000
                  z




                                                                                                                               0
                      50000



                      40000
                                                                                                                               −5000


                                                                                                              40
                           0.0                                                                           30
                                   0.2
                                             0.4                                                 20
                                                                                                        nt




                                         Po
                                                                                                     sta




                                            san           0.6
                                                                                                    In




                                                                                            10
                                                                                                                               −10000




                                                                   0.8

                                                                                   0
                                                                                                                                        120000   140000   160000    180000      200000    220000   240000

                                                                                                                                                                       t




( EDF R&D - Clamart)                                                                                                                                                                                        March 15, 2012   20 / 24
Application to Electricity Load Data                    Model


                                Lagged Load Effect, WW                                                Lagged Load Effect, WH



             80000
                                                                                  70000
              70000
                                                                                   60000




              L[t]
               60000




                                                                                   L[t]
                                                                                     50000
                 50000
                                                                                         40000
                     40000

                                                                         40               30000                                               40
                         80000                                        30                      80000                                        30
                            70000                                20                              70000                                20
                                60000                                                                60000




                                                                     ]




                                                                                                                                          ]
                                                                 I[t




                                                                                                                                      I[t
                                 L[t 50000                  10                                        L[t 50000                  10
                                    −1                                                                   −1
                                       ]  40000                                                             ]  40000
                                                  30000 0                                                              30000 0




                                 Lagged Load Effect, HW                                               Lagged Load Effect, HH


                                                                                 30000


                                                                                  20000
              80000




                                                                                  L[t]
                                                                                   10000
               L[t]




                 60000                                                                    0


                                                                                      −10000
                      40000
                                                                         40                                                                   40
                         80000                                        30                      80000                                        30
                            70000                                20                              70000                                20
                                60000                                                                60000
                                                                    ]




                                                                                                                                         ]
                                                                 I[t




                                                                                                                                      I[t
                                 L[t 50000                  10                                        L[t 50000                  10
                                    −1                                                                   −1
                                       ]  40000                                                             ]  40000
                                                  30000 0                                                              30000 0




( EDF R&D - Clamart)                                                                                                                            March 15, 2012   21 / 24
RMSE (MW)

                            −8000   −4000   0   2000   4000   6000                        500     1000         1500         2000




                                                                               0
                 9/1/2002
                                                                                                                                   Figure:




        12/19/2002
                 4/8/2003




( EDF R&D - Clamart)
            8/12/2003




                                                                               10
            12/4/2003
            3/22/2004
            7/26/2004
        11/17/2004




                                                                               20
                 3/7/2005
                 7/6/2005
                                                                                      Tu

                                                                                      Th
                                                                                      Mo

                                                                                      We
        10/23/2005




                                                                     Instant
            2/18/2006




                                                                               30
            6/20/2006
                                                                                          Fr




            10/8/2006
                                                                                          Su
                                                                                          Sa




                 2/3/2007
                 6/4/2007
                                                                               40

            9/21/2007
            1/17/2008
                 5/6/2008
            8/31/2008
                                                                                                                                                                                                                     Application to Electricity Load Data




                                                                                                  MAPE (%)

                            −8000   −4000   0   2000   4000   6000                  0.5    1.0   1.5     2.0          2.5   3.0
                                                                                                                                                                                                                     Model




                       0
                                                                               0




                       10
                                                                               10




                       20
                                                                               20

                                                                     Instant




                       30
                                                                               30
                                                                                    Tu

                                                                                    Th
                                                                                    Mo

                                                                                    We




                       40
                                                                               40
                                                                                      Fr

                                                                                      Su
                                                                                      Sa
                                                                                                                                   Top: half hourly RMSE (left) and MAPE (right) by type of day. Bottom: residuals




March 15, 2012
22 / 24
Application to Electricity Load Data   Model




                                          Performances




                           Model         RMSE (MW)      MAPE (%)     RGCV score
                       Estimation set
                             m0             831               1.17      882
                             m1             1024              1.46      806
                       Forecasting set
                             m0             1220              1.87
                         On-line m0         1048              1.49
                             m1             1156              1.62
                         On-line m1         1109              1.53




( EDF R&D - Clamart)                                                              March 15, 2012   23 / 24
Application to Electricity Load Data                                                                                                        Model


                                                                                                                   Residuals




                               0
                               −100
                               −200
                               −300
                                                                                         m0
                                                                                         m1
                                                                                         On−line update
                               −400
                               −500
                               −600

                                      9/1/2008
                                                 9/17/2008
                                                             10/4/2008
                                                                         10/21/2008
                                                                                      11/15/2008
                                                                                                   12/2/2008
                                                                                                               12/19/2008
                                                                                                                            1/13/2009
                                                                                                                                        1/30/2009
                                                                                                                                                    2/16/2009
                                                                                                                                                                3/4/2009
                                                                                                                                                                           3/21/2009
                                                                                                                                                                                       4/7/2009
                                                                                                                                                                                                  4/28/2009
                                                                                                                                                                                                              5/27/2009
                                                                                                                                                                                                                          6/17/2009
                                                                                                                                                                                                                                      7/4/2009
                                                                                                                                                                                                                                                 7/25/2009
                                                                                                                                                                                                                                                             8/11/2009
                                                                                                                                                                                                                                                                         8/31/2009
Figure:   Cumulative residuals (right) for models m0 (black), m1 (red), and their on-line updated version (dashed lines).




   ( EDF R&D - Clamart)                                                                                                                                                                                                                                                              March 15, 2012   24 / 24
Application to Electricity Load Data   Model

Craven and Wahba (1979) ”Smoothing noisy data with spline functions: estimated the correct degree of smoothing by
the method of general cross validation”. Numerische Mathematik 31, 377-403.

Golub and Van Loan (1996) ”Matrix Computations, 3rd edition”. John Hopkins Studies in the Mathematical Sciences.

Green and Silverman (1994) ”Nonparametric Regression and Generalized Linear Models”. Chapman and Hall.

Hastie and Tibshirani (1990) ” Generalized Additive Models”. Chapman and Hall.

Pierrot and Goude (2011) ”Short-Term Electricity Load Forecasting With Generalized Additive Models”, Proceedings of
ISAP power 2011.

Wahba (1990) ”Spline Models of Observational Data”. SIAM

Wood (2001) mgcv:GAMs and Generalized Ridge Regression for R. R News 1(2):20-25

Wood and Augustin (2002) ”GAMs with integrated model selection using penalized regression splines and applications to
environmental modelling”. Ecological Modelling 157:157-177

Wood (2006)Generalized Additive Models, An Introduction with R (Chapman and Hall, 2006)




( EDF R&D - Clamart)                                                                       March 15, 2012      24 / 24

Prévision de consommation électrique avec adaptive GAM

  • 1.
    GAM models forDay-Ahead and Intra-Day Electricity Consumption Forecasts Temperature Effect 65000 60000 55000 z 50000 45000 50 40 0 30 d .in ek we 10 20 we ek.t em p 20 10 Yannig Goude EDF R&D - Clamart ( EDF R&D - Clamart) March 15, 2012 1 / 24
  • 2.
    Motivation of ElectricityLoad Forecasting Electricity can not be stored, thus forecast- ing elec. consumption: to avoid blackouts on the grid to avoid financial penalties to optimize the management of production units and electricity trading Managing a wild variety of production units: nuclear plants fuel, coal and gas plants renewable energy: water dams, wind farms, solar panels... ( EDF R&D - Clamart) March 15, 2012 2 / 24
  • 3.
    Motivation of ElectricityLoad Forecasting Short-term load forecasting: from 1 day to a few hours horizon ( EDF R&D - Clamart) March 15, 2012 3 / 24
  • 4.
    (Generalized) Additive smoothmodels consider a univariate response y and corresponding predictors x1 , ..., xp an additive smooth model has the following structure: yi = Xi β + f1 (x1,i ) + f2 (x2,i ) + f3 (x3,i , x4,i ) + ... + εi Xi β is the linear part of the model functions fj are supposed to be smooth εi : iid E (εi ) = 0,V (εi ) = σ 2 normality if needed (tests...) More precisely, we want to solve the following pb: minβ,fj ||y − X β − f1 (x1 ) − f2 (x2 ) + ...)2 + λ1 f1 (x)2 dx + λ2 f2 (x)2 dx + ... ( EDF R&D - Clamart) March 15, 2012 4 / 24
  • 5.
    (Generalized) Additive smoothmodels Estimation of the fj : basis expansion in a spline basis kj fj (x) = aj,q (x)βj,q q=1 Then the additive model becomes k1 k2 yi = Xi β + a1,q (x)β1,q + a2,q (x)β2,q + ... + εi q=1 q=1 Unknowns: choice of the spline basis, number-position of knots kj β and aj,q ⇒ take large kj and proceed to penalized regression (ridge) ( EDF R&D - Clamart) March 15, 2012 5 / 24
  • 6.
    (Generalized) Additive smoothmodels Then the initial problem minβ,fj ||y − X β − f1 (x1 ) − f2 (x2 ) + ...)2 + λ1 f1 (x)2 dx + λ2 f2 (x)2 dx + ... becomes a linear regression problem: minβ ||y − X β||2 + λ j β T Sj β as fj (x)2 dx can be written as β T Sj β absorbing aj,q (xi ) into Xi Solution: βλ = (X T X + λj Sj )−1 X T y ( EDF R&D - Clamart) March 15, 2012 6 / 24
  • 7.
    (Generalized) Additive smoothmodels How to choose the penalization parameter λ? without any penalisation: β0 = (X T X )−1 X T y regularised: βλ = (X T X + λj Sj )−1 X T y β λ = Fλ β 0 Where Fλ = (X T X + λj Sj )−1 X T X tr (Fλ ): estimated degrees of freedom ( EDF R&D - Clamart) March 15, 2012 7 / 24
  • 8.
    (Generalized) Additive smoothmodels How to choose the penalization parameter λ? ( EDF R&D - Clamart) March 15, 2012 8 / 24
  • 9.
    (Generalized) Additive smoothmodels Ordinary Cross Validation leave one observation yi estimate a model µ−i on the new data set forecast yi with µ−i i do that for all i choose the λ that minimizes the OCV score: n V0 (λ) = (yi − µ−i )2 /n i i=1 Pb: calculation time Generalized Cross Validation [Craven and Wahba (1979)] Vg (λ) = n y − X βλ |2 /(n − tr (Fλ ))2 Advantages of GCV: λ is obtained by numerical minimization of Vg (few comp. cost) Vg (λ) is invariant when doing useful transf. of the data (on-line update, big data) ⇒ Software: R, package mgcv (see[Wood (2001)] and [Wood (2006)]) ( EDF R&D - Clamart) March 15, 2012 9 / 24
  • 10.
    From GAM toBAM BAM: Big Additive Models ⇒ for huge data sets (more than 10 000 observations) we use the QR decomposition: X = QR, f = Q T y and denote ||r ||2 = ||y ||2 − ||f ||2 Q orth. matrix, R upper triang. then we have: n||f − R βλ ||2 + ||r ||2 Vg (λ) = (n − tr (Fλ ))2 where Fλ is now (R T R + λj Sj )−1 R T R ⇒ Once we have R, f and ||r ||2 , X plays no further part ( EDF R&D - Clamart) March 15, 2012 10 / 24
  • 11.
    From GAM toBAM ⇒ Application for large data sets: X0 y0 X is too big and has to be split: , similarly y = X1 y1 R0 form QR dec. X 0 = Q0 X0 and = Q1 R see section 12.5 of X1 [Golub and Van Loan (1996)] T Q0 0 Q0 y0 then X = QR with Q = Q1 and Q T y = Q1 T 0 I y1 ⇒ On-line update X0 , y0 past data, X1 , y1 last observations Use the new data X1 , y1 to update R, f and ||r ||2 Re-estimate λ and βλ (previous values can be used as starting values for the numerical optimization) ( EDF R&D - Clamart) March 15, 2012 11 / 24
  • 12.
    ( EDF R&D- Clamart) 40000 50000 60000 70000 80000 90000 1/9/2002 13/1/2003 28/5/2003 9/10/2003 21/2/2004 4/7/2004 16/11/2004 31/3/2005 Application to Electricity Load Data 12/8/2005 25/12/2005 Trend 8/5/2006 20/9/2006 1/2/2007 16/6/2007 28/10/2007 Electricity Data 10/3/2008 23/7/2008 4/12/2008 18/4/2009 31/8/2009 March 15, 2012 12 / 24
  • 13.
    ( EDF R&D- Clamart) 30000 40000 50000 60000 70000 80000 1/1/2006 20/1/2006 8/2/2006 27/2/2006 18/3/2006 7/4/2006 26/4/2006 15/5/2006 Application to Electricity Load Data 3/6/2006 22/6/2006 12/7/2006 31/7/2006 19/8/2006 Yearly Pattern 7/9/2006 26/9/2006 Electricity Data 16/10/2006 4/11/2006 23/11/2006 12/12/2006 31/12/2006 March 15, 2012 13 / 24
  • 14.
    ( EDF R&D- Clamart) 35000 40000 45000 50000 55000 1/6/2006 2/6/2006 4/6/2006 5/6/2006 7/6/2006 8/6/2006 10/6/2006 12/6/2006 Application to Electricity Load Data 13/6/2006 15/6/2006 16/6/2006 18/6/2006 19/6/2006 Weekly Pattern 21/6/2006 23/6/2006 Electricity Data 24/6/2006 26/6/2006 27/6/2006 29/6/2006 30/6/2006 March 15, 2012 14 / 24
  • 15.
    Application to ElectricityLoad Data Electricity Data Daily Pattern 70000 Mo Fr Tu Sa 65000 We Su 60000 55000 Th Load 50000 45000 40000 0 10 20 30 40 Instant ( EDF R&D - Clamart) March 15, 2012 15 / 24
  • 16.
    Load (MW) 60000 65000 70000 75000 80000 0 10 Normal ( EDF R&D - Clamart) 20 Instant 30 Special Tariff 40 Application to Electricity Load Data 55000 60000 65000 70000 75000 80000 85000 Special Days 20/12/2007 20/12/2007 21/12/2007 Electricity Data 22/12/2007 23/12/2007 24/12/2007 25/12/2007 25/12/2007 26/12/2007 27/12/2007 28/12/2007 29/12/2007 30/12/2007 30/12/2007 31/12/2007 1/1/2008 2/1/2008 3/1/2008 4/1/2008 4/1/2008 March 15, 2012 16 / 24
  • 17.
    Application to ElectricityLoad Data Electricity Data Load-Temperature ( EDF R&D - Clamart) March 15, 2012 17 / 24
  • 18.
    Application to ElectricityLoad Data Electricity Data 75000 Load-Cloud Cover 8 70000 6 Cloud cover (Octets) Load (MW) 65000 4 2 60000 0 0 10 20 30 40 0 10 20 30 40 Instant Instant ( EDF R&D - Clamart) March 15, 2012 18 / 24
  • 19.
    Application to ElectricityLoad Data Model Lt = f1 (Lt−48 , It ) IHH +f2 (Lt−48 , It ) IHW +f3 (Lt−48 , It ) IWH +f4 (Lt−48 , It ) IWW + g1 (Tt , It ) + g2 (Tt−48 , Tt−96 ) + g3 (Cloudt ) + h(Toyt , It ) 48 + i=1 γi Spec.Tarift 11 + j=1 αj + s(t) + εt fj s: lagged load effects gj s: meteo. effects hs: yearly pattern, Toy is time of year γi : special tariff effect by half-hour of the day αj mean load for: sunday, monday, tuesday,...,saturday, HH,HW,WH and WW days s(t) is the trend Estimation period: september 2002 - august 2008 Forecasting period: september 2008 - august 2009 ( EDF R&D - Clamart) March 15, 2012 19 / 24
  • 20.
    Application to ElectricityLoad Data Model GAM Model 10000 Temperature Effect 5000 70000 65000 Load (MW) 0 L[t] 60000 −5000 55000 50000 40 30 30 −10000 20 20 I[t] T[t 10 Mo Fr Su ] 10 0 we Sa 0 0 10 20 30 40 Hour Yearly Cycle Trend 10000 80000 70000 5000 60000 z 0 50000 40000 −5000 40 0.0 30 0.2 0.4 20 nt Po sta san 0.6 In 10 −10000 0.8 0 120000 140000 160000 180000 200000 220000 240000 t ( EDF R&D - Clamart) March 15, 2012 20 / 24
  • 21.
    Application to ElectricityLoad Data Model Lagged Load Effect, WW Lagged Load Effect, WH 80000 70000 70000 60000 L[t] 60000 L[t] 50000 50000 40000 40000 40 30000 40 80000 30 80000 30 70000 20 70000 20 60000 60000 ] ] I[t I[t L[t 50000 10 L[t 50000 10 −1 −1 ] 40000 ] 40000 30000 0 30000 0 Lagged Load Effect, HW Lagged Load Effect, HH 30000 20000 80000 L[t] 10000 L[t] 60000 0 −10000 40000 40 40 80000 30 80000 30 70000 20 70000 20 60000 60000 ] ] I[t I[t L[t 50000 10 L[t 50000 10 −1 −1 ] 40000 ] 40000 30000 0 30000 0 ( EDF R&D - Clamart) March 15, 2012 21 / 24
  • 22.
    RMSE (MW) −8000 −4000 0 2000 4000 6000 500 1000 1500 2000 0 9/1/2002 Figure: 12/19/2002 4/8/2003 ( EDF R&D - Clamart) 8/12/2003 10 12/4/2003 3/22/2004 7/26/2004 11/17/2004 20 3/7/2005 7/6/2005 Tu Th Mo We 10/23/2005 Instant 2/18/2006 30 6/20/2006 Fr 10/8/2006 Su Sa 2/3/2007 6/4/2007 40 9/21/2007 1/17/2008 5/6/2008 8/31/2008 Application to Electricity Load Data MAPE (%) −8000 −4000 0 2000 4000 6000 0.5 1.0 1.5 2.0 2.5 3.0 Model 0 0 10 10 20 20 Instant 30 30 Tu Th Mo We 40 40 Fr Su Sa Top: half hourly RMSE (left) and MAPE (right) by type of day. Bottom: residuals March 15, 2012 22 / 24
  • 23.
    Application to ElectricityLoad Data Model Performances Model RMSE (MW) MAPE (%) RGCV score Estimation set m0 831 1.17 882 m1 1024 1.46 806 Forecasting set m0 1220 1.87 On-line m0 1048 1.49 m1 1156 1.62 On-line m1 1109 1.53 ( EDF R&D - Clamart) March 15, 2012 23 / 24
  • 24.
    Application to ElectricityLoad Data Model Residuals 0 −100 −200 −300 m0 m1 On−line update −400 −500 −600 9/1/2008 9/17/2008 10/4/2008 10/21/2008 11/15/2008 12/2/2008 12/19/2008 1/13/2009 1/30/2009 2/16/2009 3/4/2009 3/21/2009 4/7/2009 4/28/2009 5/27/2009 6/17/2009 7/4/2009 7/25/2009 8/11/2009 8/31/2009 Figure: Cumulative residuals (right) for models m0 (black), m1 (red), and their on-line updated version (dashed lines). ( EDF R&D - Clamart) March 15, 2012 24 / 24
  • 25.
    Application to ElectricityLoad Data Model Craven and Wahba (1979) ”Smoothing noisy data with spline functions: estimated the correct degree of smoothing by the method of general cross validation”. Numerische Mathematik 31, 377-403. Golub and Van Loan (1996) ”Matrix Computations, 3rd edition”. John Hopkins Studies in the Mathematical Sciences. Green and Silverman (1994) ”Nonparametric Regression and Generalized Linear Models”. Chapman and Hall. Hastie and Tibshirani (1990) ” Generalized Additive Models”. Chapman and Hall. Pierrot and Goude (2011) ”Short-Term Electricity Load Forecasting With Generalized Additive Models”, Proceedings of ISAP power 2011. Wahba (1990) ”Spline Models of Observational Data”. SIAM Wood (2001) mgcv:GAMs and Generalized Ridge Regression for R. R News 1(2):20-25 Wood and Augustin (2002) ”GAMs with integrated model selection using penalized regression splines and applications to environmental modelling”. Ecological Modelling 157:157-177 Wood (2006)Generalized Additive Models, An Introduction with R (Chapman and Hall, 2006) ( EDF R&D - Clamart) March 15, 2012 24 / 24