The document discusses generalized additive models (GAM) for short-term electricity load forecasting. GAMs are smooth additive models that decompose a response variable into additive components like trends, cyclic patterns, and nonlinear effects. They summarize how GAMs can model various drivers of electricity consumption, including temperature effects, day-of-week patterns, and lagged load values. Big additive models (BAM) allow applying GAMs to large electricity load datasets. BAMs use QR decomposition and online updating to efficiently estimate high-dimensional additive models.