SlideShare a Scribd company logo
1 of 13
Download to read offline
OPSE: Online Per-Scene Encoding for Adaptive HTTP Live
Streaming
Vignesh V Menon1, Hadi Amirpour1, Christian Feldmann2, Mohammad Ghanbari1,3, and
Christian Timmerer1
1
Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria
2
Bitmovin, Klagenfurt, Austria
3
School of Computer Science and Electronic Engineering, University of Essex, UK
21 July 2022
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 1
Outline
1 Introduction
2 OPSE
3 Evaluation
4 Q & A
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 2
Introduction
Motivation
Per-scene encoding schemes are based on the fact that each resolution performs better
than others in a scene for a given bitrate range, and these regions depend on the video
complexity.
Increase the Quality of Experience (QoE) or decrease the bitrate of the representations as
introduced for VoD services.1
Figure: The bitrate ladder prediction envisioned using OPSE.
1
J. De Cock et al. “Complexity-based consistent-quality encoding in the cloud”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016,
pp. 1484–1488. doi: 10.1109/ICIP.2016.7532605.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 3
Introduction
Why not in live yet?
Though per-title encoding schemes2 enhance the quality of video delivery, determining
the convex-hull is computationally expensive, making it suitable for only VoD streaming
applications.
Some methods pre-analyze the video contents3.
Katsenou et al.4
introduced a content-gnostic method that employs machine learning to find
the bitrate range for each resolution that outperforms other resolutions. Bhat et al.5
proposed
a Random Forest (RF) classifier to decide encoding resolution best suited over different quality
ranges and studied machine learning based adaptive resolution prediction.
However, these approaches still yield latency much higher than the accepted latency in live
streaming.
2
De Cock et al., “Complexity-based consistent-quality encoding in the cloud”; Hadi Amirpour et al. “PSTR: Per-Title Encoding Using Spatio-Temporal
Resolutions”. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). 2021, pp. 1–6. doi: 10.1109/ICME51207.2021.9428247.
3
https://bitmovin.com/whitepapers/Bitmovin-Per-Title.pdf, last access: May 10, 2022.
4
A. V. Katsenou et al. “Content-gnostic Bitrate Ladder Prediction for Adaptive Video Streaming”. In: 2019 Picture Coding Symposium (PCS). 2019. doi:
10.1109/PCS48520.2019.8954529.
5
Madhukar Bhat et al. “Combining Video Quality Metrics To Select Perceptually Accurate Resolution In A Wide Quality Range: A Case Study”. In: 2021 IEEE
International Conference on Image Processing (ICIP). 2021, pp. 2164–2168. doi: 10.1109/ICIP42928.2021.9506310.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 4
OPSE
OPSE
Input Video
Video Complexity
Feature Extraction
Scene Detection
Resolution
Prediction
Resolutions (R)
Bitrates (B)
Per-Scene
Encoding
(E, h, ϵ)
(E, h)
Scenes (ˆ
r, b)
Figure: OPSE architecture.
E, h, and ϵ features are extracted using VCA open-source video complexity analyzer software.6
6
Vignesh V Menon et al. “VCA: Video Complexity Analyzer”. In: Proceedings of the 13th ACM Multimedia Systems Conference. 2022. isbn: 9781450392839.
doi: 10.1145/3524273.3532896. url: https://doi.org/10.1145/3524273.3532896.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 5
OPSE
Online Per-Scene Encoding (OPSE)
Phase 1: Feature Extraction
Compute texture energy per block
A DCT-based energy function is used to determine the block-wise feature of each frame
defined as:
Hk =
w−1
X
i=0
w−1
X
j=0
e|( ij
wh
)2−1|
|DCT(i, j)| (1)
where wxw is the size of the block, and DCT(i, j) is the (i, j)th DCT component when
i + j > 0, and 0 otherwise.
The energy values of blocks in a frame is averaged to determine the energy per frame.7
E =
C−1
X
k=0
Hp,k
C · w2
(2)
7
Michael King et al. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on Multimedia and Expo. 2007,
pp. 1647–1650. doi: 10.1109/ICME.2007.4284983.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 6
OPSE
OPSE
Phase 1: Feature Extraction
hp: SAD of the block level energy values of frame p to that of the previous frame p − 1.
hp =
C−1
X
k=0
| Hp,k, Hp−1,k |
C · w2
(3)
where C denotes the number of blocks in frame p.
The gradient of h per frame p, ϵp is also defined, which is given by:
ϵp =
hp−1 − hp
hp−1
(4)
Latency
Speed of feature extraction = 1480fps for Full HD (1080p) video with 8 CPU threads and x86
SIMD optimization
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 7
OPSE
OPSE
Phase 2: Scene Detection
Objective:
Detect the first picture of each shot and encode it as an Instantaneous Decoder Refresh
(IDR) frame.
Encode the subsequent frames of the new shot based on the first one via motion compen-
sation and prediction.
Shot transitions can be present in two ways:
hard shot-cuts
gradual shot transitions
The detection of gradual changes is much more difficult owing to the fact it is difficult to
determine the change in the visual information in a quantitative format.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 8
OPSE
OPSE
Phase 2: Scene Detection
Step 1: while Parsing all video frames do
if ϵk > T1 then
k ← IDR-frame, a new shot.
else if ϵk ≤ T2 then
k ← P-frame or B-frame, not a new shot.
T1 , T2 : maximum and minimum threshold for ϵk
f : video fps
Q : Q : set of frames where T1 ≥ ϵ > T2 and ∆h > T3
q0: current frame number in the set Q
q−1: previous frame number in the set Q
q1: next frame number in the set Q
Step 2: while Parsing Q do
if q0 − q−1 > f and q1 − q0 > f then
q0 ← IDR-frame, a new shot.
Eliminate q0 from Q.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 9
OPSE
OPSE
Phase 3: Resolution Prediction
For each detected scene, the optimized bitrate ladder is predicted using the E and h features
of the first GOP of each scene and the sets R and B. The optimized resolution ˆ
r is predicted
for each target bitrate b ∈ B. The resolution scaling factor s is defined as:
s =
 r
rmax

; r ∈ R (5)
where rmax is the maximum resolution in R.
Hidden Layer
E R4
Hidden Layer
E R4
Input Layer
E R3
Output Layer
E R1
E
h
log(b)
ŝ
Figure: Neural network structure to predict optimized resolution scaling factor ŝ for a maximum
resolution rmax and framerate f .
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 10
Evaluation
Evaluation
R = {360p, 432p, 540p, 720p, 1080p}
B = {145, 300, 600, 900, 1600, 2400, 3400, 4500, 5800, 8100}.
Figure: BDRV results for scenes characterized by various average E and h.
BDRV : Bjøntegaard delta rate8 refers to the average increase in bitrate of the representations
compared with that of the fixed bitrate ladder encoding to maintain the same VMAF.
8
G. Bjontegaard. “Calculation of average PSNR differences between RD-curves”. In: VCEG-M33 (2001).
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 11
Evaluation
Evaluation
(a) Scene1 (b) Scene2
Figure: Comparison of RD curves for encoding two sample scenes, Scene1 (E = 31.96, h = 11.12) and
Scene2 (E = 67.96, h = 5.12) using the fixed bitrate ladder and OPSE.
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 12
Q  A
Q  A
Thank you for your attention!
Vignesh V Menon (vignesh.menon@aau.at)
Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 13

More Related Content

Similar to OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming

Green_VCA_presentation.pdf
Green_VCA_presentation.pdfGreen_VCA_presentation.pdf
Green_VCA_presentation.pdfVignesh V Menon
 
VCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdfVCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdfVignesh V Menon
 
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...Alpen-Adria-Universität
 
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdfETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdfVignesh V Menon
 
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live StreamingETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live StreamingAlpen-Adria-Universität
 
Efficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streamingEfficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streamingMinh Nguyen
 
CODA_presentation.pdf
CODA_presentation.pdfCODA_presentation.pdf
CODA_presentation.pdfJunZhao68
 
LiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfLiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfVignesh V Menon
 
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVCIEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVCVignesh V Menon
 
INCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVCINCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVCAlpen-Adria-Universität
 
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...Vignesh V Menon
 
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...Vignesh V Menon
 
Online Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC StreamingOnline Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC StreamingVignesh V Menon
 
Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...IJECEIAES
 
Introduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainIntroduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainVideoguy
 
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive StreamingMachine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive StreamingAlpen-Adria-Universität
 
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...Ijripublishers Ijri
 
Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet CoefficientsMotion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet CoefficientsIJERA Editor
 

Similar to OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming (20)

Green_VCA_presentation.pdf
Green_VCA_presentation.pdfGreen_VCA_presentation.pdf
Green_VCA_presentation.pdf
 
VCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdfVCIP_MCBE_presentation.pdf
VCIP_MCBE_presentation.pdf
 
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
 
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdfETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
 
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live StreamingETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
 
Efficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streamingEfficient bitrate ladder construction for live video streaming
Efficient bitrate ladder construction for live video streaming
 
CODA_presentation.pdf
CODA_presentation.pdfCODA_presentation.pdf
CODA_presentation.pdf
 
LiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfLiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdf
 
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVCIEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
 
INCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVCINCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVC
 
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
 
JASLA_presentation.pdf
JASLA_presentation.pdfJASLA_presentation.pdf
JASLA_presentation.pdf
 
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
IEEE ICIP'22:Efficient Content-Adaptive Feature-based Shot Detection for HTTP...
 
Online Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC StreamingOnline Bitrate ladder prediction for Adaptive VVC Streaming
Online Bitrate ladder prediction for Adaptive VVC Streaming
 
Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...Optimal coding unit decision for early termination in high efficiency video c...
Optimal coding unit decision for early termination in high efficiency video c...
 
Introduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainIntroduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag Jain
 
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive StreamingMachine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
 
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
 
Cuda project paper
Cuda project paperCuda project paper
Cuda project paper
 
Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet CoefficientsMotion Compensation With Prediction Error Using Ezw Wavelet Coefficients
Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients
 

More from Alpen-Adria-Universität

VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instancesVEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instancesAlpen-Adria-Universität
 
GREEM: An Open-Source Energy Measurement Tool for Video Processing
GREEM: An Open-Source Energy Measurement Tool for Video ProcessingGREEM: An Open-Source Energy Measurement Tool for Video Processing
GREEM: An Open-Source Energy Measurement Tool for Video ProcessingAlpen-Adria-Universität
 
VEEP: Video Encoding Energy and CO₂ Emission Prediction
VEEP: Video Encoding Energy and CO₂ Emission PredictionVEEP: Video Encoding Energy and CO₂ Emission Prediction
VEEP: Video Encoding Energy and CO₂ Emission PredictionAlpen-Adria-Universität
 
Content-adaptive Video Coding for HTTP Adaptive Streaming
Content-adaptive Video Coding for HTTP Adaptive StreamingContent-adaptive Video Coding for HTTP Adaptive Streaming
Content-adaptive Video Coding for HTTP Adaptive StreamingAlpen-Adria-Universität
 
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...Alpen-Adria-Universität
 
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Vid...
Empowerment of Atypical Viewers  via Low-Effort Personalized Modeling  of Vid...Empowerment of Atypical Viewers  via Low-Effort Personalized Modeling  of Vid...
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Vid...Alpen-Adria-Universität
 
Optimizing Video Streaming for Sustainability and Quality: The Role of Prese...
Optimizing Video Streaming  for Sustainability and Quality: The Role of Prese...Optimizing Video Streaming  for Sustainability and Quality: The Role of Prese...
Optimizing Video Streaming for Sustainability and Quality: The Role of Prese...Alpen-Adria-Universität
 
Machine Learning Based Resource Utilization Prediction in the Computing Conti...
Machine Learning Based Resource Utilization Prediction in the Computing Conti...Machine Learning Based Resource Utilization Prediction in the Computing Conti...
Machine Learning Based Resource Utilization Prediction in the Computing Conti...Alpen-Adria-Universität
 
Evaluation of Quality of Experience of ABR Schemes in Gaming Stream
Evaluation of Quality of Experience of ABR Schemes in Gaming StreamEvaluation of Quality of Experience of ABR Schemes in Gaming Stream
Evaluation of Quality of Experience of ABR Schemes in Gaming StreamAlpen-Adria-Universität
 
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...Alpen-Adria-Universität
 
Multi-access Edge Computing for Adaptive Video Streaming
Multi-access Edge Computing for Adaptive Video StreamingMulti-access Edge Computing for Adaptive Video Streaming
Multi-access Edge Computing for Adaptive Video StreamingAlpen-Adria-Universität
 
Policy-Driven Dynamic HTTP Adaptive Streaming Player Environment
Policy-Driven Dynamic HTTP Adaptive Streaming Player EnvironmentPolicy-Driven Dynamic HTTP Adaptive Streaming Player Environment
Policy-Driven Dynamic HTTP Adaptive Streaming Player EnvironmentAlpen-Adria-Universität
 
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...Alpen-Adria-Universität
 
Energy Consumption in Video Streaming: Components, Measurements, and Strategies
Energy Consumption in Video Streaming: Components, Measurements, and StrategiesEnergy Consumption in Video Streaming: Components, Measurements, and Strategies
Energy Consumption in Video Streaming: Components, Measurements, and StrategiesAlpen-Adria-Universität
 
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...Alpen-Adria-Universität
 
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine LearningVideo Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine LearningAlpen-Adria-Universität
 
Optimizing QoE and Latency of Live Video Streaming Using Edge Computing a...
Optimizing  QoE and Latency of  Live Video Streaming Using  Edge Computing  a...Optimizing  QoE and Latency of  Live Video Streaming Using  Edge Computing  a...
Optimizing QoE and Latency of Live Video Streaming Using Edge Computing a...Alpen-Adria-Universität
 
SARENA: SFC-Enabled Architecture for Adaptive Video Streaming Applications
SARENA: SFC-Enabled Architecture for Adaptive Video Streaming ApplicationsSARENA: SFC-Enabled Architecture for Adaptive Video Streaming Applications
SARENA: SFC-Enabled Architecture for Adaptive Video Streaming ApplicationsAlpen-Adria-Universität
 
Immersive Video Delivery: From Omnidirectional Video to Holography
Immersive Video Delivery: From Omnidirectional Video to HolographyImmersive Video Delivery: From Omnidirectional Video to Holography
Immersive Video Delivery: From Omnidirectional Video to HolographyAlpen-Adria-Universität
 
LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...
LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...
LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...Alpen-Adria-Universität
 

More from Alpen-Adria-Universität (20)

VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instancesVEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
 
GREEM: An Open-Source Energy Measurement Tool for Video Processing
GREEM: An Open-Source Energy Measurement Tool for Video ProcessingGREEM: An Open-Source Energy Measurement Tool for Video Processing
GREEM: An Open-Source Energy Measurement Tool for Video Processing
 
VEEP: Video Encoding Energy and CO₂ Emission Prediction
VEEP: Video Encoding Energy and CO₂ Emission PredictionVEEP: Video Encoding Energy and CO₂ Emission Prediction
VEEP: Video Encoding Energy and CO₂ Emission Prediction
 
Content-adaptive Video Coding for HTTP Adaptive Streaming
Content-adaptive Video Coding for HTTP Adaptive StreamingContent-adaptive Video Coding for HTTP Adaptive Streaming
Content-adaptive Video Coding for HTTP Adaptive Streaming
 
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
 
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Vid...
Empowerment of Atypical Viewers  via Low-Effort Personalized Modeling  of Vid...Empowerment of Atypical Viewers  via Low-Effort Personalized Modeling  of Vid...
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Vid...
 
Optimizing Video Streaming for Sustainability and Quality: The Role of Prese...
Optimizing Video Streaming  for Sustainability and Quality: The Role of Prese...Optimizing Video Streaming  for Sustainability and Quality: The Role of Prese...
Optimizing Video Streaming for Sustainability and Quality: The Role of Prese...
 
Machine Learning Based Resource Utilization Prediction in the Computing Conti...
Machine Learning Based Resource Utilization Prediction in the Computing Conti...Machine Learning Based Resource Utilization Prediction in the Computing Conti...
Machine Learning Based Resource Utilization Prediction in the Computing Conti...
 
Evaluation of Quality of Experience of ABR Schemes in Gaming Stream
Evaluation of Quality of Experience of ABR Schemes in Gaming StreamEvaluation of Quality of Experience of ABR Schemes in Gaming Stream
Evaluation of Quality of Experience of ABR Schemes in Gaming Stream
 
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
 
Multi-access Edge Computing for Adaptive Video Streaming
Multi-access Edge Computing for Adaptive Video StreamingMulti-access Edge Computing for Adaptive Video Streaming
Multi-access Edge Computing for Adaptive Video Streaming
 
Policy-Driven Dynamic HTTP Adaptive Streaming Player Environment
Policy-Driven Dynamic HTTP Adaptive Streaming Player EnvironmentPolicy-Driven Dynamic HTTP Adaptive Streaming Player Environment
Policy-Driven Dynamic HTTP Adaptive Streaming Player Environment
 
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
 
Energy Consumption in Video Streaming: Components, Measurements, and Strategies
Energy Consumption in Video Streaming: Components, Measurements, and StrategiesEnergy Consumption in Video Streaming: Components, Measurements, and Strategies
Energy Consumption in Video Streaming: Components, Measurements, and Strategies
 
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
 
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine LearningVideo Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
 
Optimizing QoE and Latency of Live Video Streaming Using Edge Computing a...
Optimizing  QoE and Latency of  Live Video Streaming Using  Edge Computing  a...Optimizing  QoE and Latency of  Live Video Streaming Using  Edge Computing  a...
Optimizing QoE and Latency of Live Video Streaming Using Edge Computing a...
 
SARENA: SFC-Enabled Architecture for Adaptive Video Streaming Applications
SARENA: SFC-Enabled Architecture for Adaptive Video Streaming ApplicationsSARENA: SFC-Enabled Architecture for Adaptive Video Streaming Applications
SARENA: SFC-Enabled Architecture for Adaptive Video Streaming Applications
 
Immersive Video Delivery: From Omnidirectional Video to Holography
Immersive Video Delivery: From Omnidirectional Video to HolographyImmersive Video Delivery: From Omnidirectional Video to Holography
Immersive Video Delivery: From Omnidirectional Video to Holography
 
LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...
LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...
LLL-CAdViSE: Live Low-Latency Cloud-based Adaptive Video Streaming Evaluation...
 

Recently uploaded

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 

Recently uploaded (20)

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 

OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming

  • 1. OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming Vignesh V Menon1, Hadi Amirpour1, Christian Feldmann2, Mohammad Ghanbari1,3, and Christian Timmerer1 1 Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria 2 Bitmovin, Klagenfurt, Austria 3 School of Computer Science and Electronic Engineering, University of Essex, UK 21 July 2022 Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 1
  • 2. Outline 1 Introduction 2 OPSE 3 Evaluation 4 Q & A Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 2
  • 3. Introduction Motivation Per-scene encoding schemes are based on the fact that each resolution performs better than others in a scene for a given bitrate range, and these regions depend on the video complexity. Increase the Quality of Experience (QoE) or decrease the bitrate of the representations as introduced for VoD services.1 Figure: The bitrate ladder prediction envisioned using OPSE. 1 J. De Cock et al. “Complexity-based consistent-quality encoding in the cloud”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016, pp. 1484–1488. doi: 10.1109/ICIP.2016.7532605. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 3
  • 4. Introduction Why not in live yet? Though per-title encoding schemes2 enhance the quality of video delivery, determining the convex-hull is computationally expensive, making it suitable for only VoD streaming applications. Some methods pre-analyze the video contents3. Katsenou et al.4 introduced a content-gnostic method that employs machine learning to find the bitrate range for each resolution that outperforms other resolutions. Bhat et al.5 proposed a Random Forest (RF) classifier to decide encoding resolution best suited over different quality ranges and studied machine learning based adaptive resolution prediction. However, these approaches still yield latency much higher than the accepted latency in live streaming. 2 De Cock et al., “Complexity-based consistent-quality encoding in the cloud”; Hadi Amirpour et al. “PSTR: Per-Title Encoding Using Spatio-Temporal Resolutions”. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). 2021, pp. 1–6. doi: 10.1109/ICME51207.2021.9428247. 3 https://bitmovin.com/whitepapers/Bitmovin-Per-Title.pdf, last access: May 10, 2022. 4 A. V. Katsenou et al. “Content-gnostic Bitrate Ladder Prediction for Adaptive Video Streaming”. In: 2019 Picture Coding Symposium (PCS). 2019. doi: 10.1109/PCS48520.2019.8954529. 5 Madhukar Bhat et al. “Combining Video Quality Metrics To Select Perceptually Accurate Resolution In A Wide Quality Range: A Case Study”. In: 2021 IEEE International Conference on Image Processing (ICIP). 2021, pp. 2164–2168. doi: 10.1109/ICIP42928.2021.9506310. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 4
  • 5. OPSE OPSE Input Video Video Complexity Feature Extraction Scene Detection Resolution Prediction Resolutions (R) Bitrates (B) Per-Scene Encoding (E, h, ϵ) (E, h) Scenes (ˆ r, b) Figure: OPSE architecture. E, h, and ϵ features are extracted using VCA open-source video complexity analyzer software.6 6 Vignesh V Menon et al. “VCA: Video Complexity Analyzer”. In: Proceedings of the 13th ACM Multimedia Systems Conference. 2022. isbn: 9781450392839. doi: 10.1145/3524273.3532896. url: https://doi.org/10.1145/3524273.3532896. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 5
  • 6. OPSE Online Per-Scene Encoding (OPSE) Phase 1: Feature Extraction Compute texture energy per block A DCT-based energy function is used to determine the block-wise feature of each frame defined as: Hk = w−1 X i=0 w−1 X j=0 e|( ij wh )2−1| |DCT(i, j)| (1) where wxw is the size of the block, and DCT(i, j) is the (i, j)th DCT component when i + j > 0, and 0 otherwise. The energy values of blocks in a frame is averaged to determine the energy per frame.7 E = C−1 X k=0 Hp,k C · w2 (2) 7 Michael King et al. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on Multimedia and Expo. 2007, pp. 1647–1650. doi: 10.1109/ICME.2007.4284983. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 6
  • 7. OPSE OPSE Phase 1: Feature Extraction hp: SAD of the block level energy values of frame p to that of the previous frame p − 1. hp = C−1 X k=0 | Hp,k, Hp−1,k | C · w2 (3) where C denotes the number of blocks in frame p. The gradient of h per frame p, ϵp is also defined, which is given by: ϵp = hp−1 − hp hp−1 (4) Latency Speed of feature extraction = 1480fps for Full HD (1080p) video with 8 CPU threads and x86 SIMD optimization Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 7
  • 8. OPSE OPSE Phase 2: Scene Detection Objective: Detect the first picture of each shot and encode it as an Instantaneous Decoder Refresh (IDR) frame. Encode the subsequent frames of the new shot based on the first one via motion compen- sation and prediction. Shot transitions can be present in two ways: hard shot-cuts gradual shot transitions The detection of gradual changes is much more difficult owing to the fact it is difficult to determine the change in the visual information in a quantitative format. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 8
  • 9. OPSE OPSE Phase 2: Scene Detection Step 1: while Parsing all video frames do if ϵk > T1 then k ← IDR-frame, a new shot. else if ϵk ≤ T2 then k ← P-frame or B-frame, not a new shot. T1 , T2 : maximum and minimum threshold for ϵk f : video fps Q : Q : set of frames where T1 ≥ ϵ > T2 and ∆h > T3 q0: current frame number in the set Q q−1: previous frame number in the set Q q1: next frame number in the set Q Step 2: while Parsing Q do if q0 − q−1 > f and q1 − q0 > f then q0 ← IDR-frame, a new shot. Eliminate q0 from Q. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 9
  • 10. OPSE OPSE Phase 3: Resolution Prediction For each detected scene, the optimized bitrate ladder is predicted using the E and h features of the first GOP of each scene and the sets R and B. The optimized resolution ˆ r is predicted for each target bitrate b ∈ B. The resolution scaling factor s is defined as: s = r rmax ; r ∈ R (5) where rmax is the maximum resolution in R. Hidden Layer E R4 Hidden Layer E R4 Input Layer E R3 Output Layer E R1 E h log(b) ŝ Figure: Neural network structure to predict optimized resolution scaling factor ŝ for a maximum resolution rmax and framerate f . Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 10
  • 11. Evaluation Evaluation R = {360p, 432p, 540p, 720p, 1080p} B = {145, 300, 600, 900, 1600, 2400, 3400, 4500, 5800, 8100}. Figure: BDRV results for scenes characterized by various average E and h. BDRV : Bjøntegaard delta rate8 refers to the average increase in bitrate of the representations compared with that of the fixed bitrate ladder encoding to maintain the same VMAF. 8 G. Bjontegaard. “Calculation of average PSNR differences between RD-curves”. In: VCEG-M33 (2001). Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 11
  • 12. Evaluation Evaluation (a) Scene1 (b) Scene2 Figure: Comparison of RD curves for encoding two sample scenes, Scene1 (E = 31.96, h = 11.12) and Scene2 (E = 67.96, h = 5.12) using the fixed bitrate ladder and OPSE. Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 12
  • 13. Q A Q A Thank you for your attention! Vignesh V Menon (vignesh.menon@aau.at) Vignesh V Menon OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming 13