SlideShare a Scribd company logo
1 of 1
Download to read offline
Grip Force Fatigue in Lead & Boulder Climbing
Rock	
  climbing	
  is	
  a	
  sport	
  with	
  two	
  main	
  styles:	
  bouldering	
  and	
  
lead	
  climbing.	
  The	
  former	
  has	
  short	
  technical	
  routes,	
  and	
  the	
  
la<er	
   has	
   longer	
   routes,	
   requiring	
   higher	
   endurance.	
   The	
  
difference	
  in	
  style	
  leads	
  to	
  different	
  kinds	
  of	
  strength	
  (Fanchini	
  
et	
   al,	
   2013).	
   In	
   this	
   study,	
   we	
   look	
   for	
   evidence	
   of	
   basic	
  
physiological	
   differences	
   in	
   bouldering	
   and	
   lead	
   climbing	
   by	
  
comparing	
   the	
   grip	
   force	
   of	
   each	
   type	
   of	
   climber.	
   Ca2+	
   is	
   a	
  
limiJng	
  factor	
  in	
  aerobic	
  metabolism	
  that	
  causes	
  force	
  faJgue	
  
in	
   skeletal	
   muscle	
   (Vollestad,	
   1988).	
   Therefore,	
   those	
   who	
  
have	
  be<er	
  metabolic	
  pathways	
  for	
  cycling	
  Ca2+	
  through	
  the	
  
myoplasm	
   back	
   into	
   the	
   sarcoplasmic	
   reJculum	
   will	
   faJgue	
  
less	
   quickly	
   than	
   those	
   who	
   don’t.	
   Endurance	
   training	
   can	
  
train	
  gene	
  expression	
  
Methods
Results Discussion
Demi Glidden, Charlotte Laube, & Bobby Brandt
Is	
  there	
  a	
  difference	
  in	
  force	
  grip	
  faJgue	
  between	
  
lead	
  climbers	
  and	
  boulderers?	
  
We	
   hypothesized	
   that	
   lead	
   climbers	
   will	
   have	
  
more	
   efficient	
   Ca2+	
   cycling	
   than	
   boulderers	
   due	
  
to	
   endurance	
   training,	
   such	
   that	
   they	
   fa>gue	
  
more	
  slowly.	
  
Max	
   grip	
   force	
   recorded	
   aSer	
   a	
   20-­‐30	
  
minute	
  warm-­‐up,	
  at	
  the	
  beginning	
  of	
  a	
  
grip	
  faJgue	
  curve.	
  The	
  curve	
  measured	
  
grip	
  force	
  aSer	
  5	
  squeezes	
  of	
  a	
  medium	
  
grip	
   strength	
   trainer,	
   repeated	
   4-­‐5	
  
Jmes.	
  Grip	
  force	
  faJgue	
  was	
  measured	
  
directly	
  aSer	
  each	
  climb	
  by	
  maintaining	
  
force	
  unJl	
  it	
  dropped	
  below	
  50%	
  of	
  the	
  
max	
   force	
   aSer	
   that	
   parJcular	
   climb.	
  
The	
  Jme	
  to	
  faJgue	
  was	
  used	
  as	
  a	
  proxy	
  
for	
  force	
  faJgue.	
  
Introduction
	
  of	
  metabolic	
  
proteins	
  
(Dubouchaud	
  et	
  al,	
  
2000).	
  Thus,	
  training	
  
could	
  affect	
  Ca2+	
  
cycling.	
  
Acknowledgements	
  
We	
   would	
   like	
   to	
   thank	
   the	
   Circuit	
   Gym,	
   our	
   climbers,	
   Cate	
   Turner,	
   Miles	
  
Crabill,	
  and	
  Jake	
  Oram,	
  for	
  parJcipaJng	
  in	
  this	
  study	
  and	
  Dr.	
  Kellar	
  Autumn	
  for	
  
his	
  help	
  with	
  designing	
  the	
  the	
  project.	
  A	
  special	
  thanks	
  to	
  River	
  Menanno	
  for	
  
climbing	
  for	
  us	
  and	
  his	
  guidance	
  through	
  the	
  technical	
  and	
  pracJcal	
  side	
  of	
  
this	
  project.	
  	
  
h<p://ajpcell.physiology.org/content/308/9/C697	
  
Our	
   data	
   show	
   that	
   lead	
   climbers	
   grips	
   faJgued	
   less	
   quickly	
  
than	
  boulderers.	
  This	
  seems	
  to	
  be	
  the	
  effect	
  of	
  the	
  endurance	
  
training	
   that	
   lead	
   climbers	
   have	
   which	
   boulderers	
   do	
   not.	
  
Given	
  that	
  Ca2+	
  cycling	
  is	
  the	
  main	
  cause	
  of	
  faJgue	
  (Vollestad,	
  
1988),	
  it	
  seems	
  likely	
  that	
  Ca2+	
  is	
  playing	
  a	
  role	
  in	
  the	
  faJgue	
  of	
  
the	
   climbers,	
   so	
   that	
   lead	
   climbers	
   faJgue	
   less	
   quickly	
   than	
  
boulderers.	
  	
  
The	
  data	
  show	
  that	
  grip	
  faJgued	
  most	
  quickly	
  aSer	
  the	
  slope	
  
climb	
   (Figure	
   2).	
   The	
   literature	
   suggests	
   that	
   the	
   mean	
  
fingerJp	
  force	
  is	
  greater	
  for	
  slopers	
  than	
  crimps	
  (Vigouroux	
  et	
  
al,	
  2005),	
  which	
  would	
  be	
  consistent	
  with	
  our	
  data	
  that	
  show	
  a	
  
faster	
  faJgue	
  aSer	
  slope	
  climbs.	
  This	
  could	
  be	
  an	
  indicator	
  of	
  
depleted	
  SR	
  Ca2+	
  stores,	
  which	
  would	
  cause	
  climbers	
  to	
  faJgue	
  
more	
  quickly	
  aSer	
  a	
  sloper	
  climb	
  than	
  a	
  crimp	
  climb.	
  However,	
  
the	
  slope	
  climb	
  was	
  the	
  last	
  in	
  the	
  series,	
  and	
  this	
  could	
  be	
  
another	
  explanaJon	
  for	
  why	
  faJgue	
  occurred	
  more	
  quickly	
  for	
  
this	
  climb.	
  
Boulder	
  climbers	
  were	
  found	
  to	
  have	
  a	
  greater	
  maximum	
  force	
  
grip	
  compared	
  to	
  lead	
  climbers,	
  with	
  an	
  average	
  max	
  force	
  of	
  
423	
  newtons	
  (N),	
   	
  whereas	
  lead	
  climbers	
  had	
  and	
  an	
  average	
  
max	
  force	
  of	
  313	
  N.	
  In	
  a	
  2013	
  study,	
  Fanchini	
  et	
  al.	
  concluded	
  
that	
   crimp	
   and	
   open	
   crimp	
   holds,	
   boulderers	
   produced	
   a	
  
higher	
  maximum	
  voluntary	
  contracJon	
  compared	
  
Discussion	
  
Figure	
  4:	
  Maximal	
  voluntary	
  contracJon	
  (MVC)	
  for	
  boulderer	
  (BC),	
  lead	
  climbers	
  (LC),	
  and	
  
non	
  climbers	
  (NC)	
  on	
  crimp	
  and	
  open	
  crimp	
  holds.	
  Fanchini	
  et	
  al.	
  found	
  that	
  boulders	
  
produced	
  a	
  higher	
  maximum	
  force	
  on	
  both	
  types	
  of	
  holds.	
  In	
  our	
  study,	
  boulderers	
  had	
  a	
  
26%	
  percent	
  higher	
  maximum	
  force	
  compared	
  to	
  lead	
  climbers.	
  	
  
Results	
  
Figure	
  1:	
  Force	
  output	
  (Newtons)	
  over	
  Jme	
  for	
  boulder	
  1	
  climber	
  aSer	
  an	
  overhang	
  climb.	
  
Linear	
  regression	
  and	
  R2	
  value	
  calculated	
  using	
  Excel.	
  Slope	
  of	
  regression	
  line	
  was	
  used	
  as	
  a	
  
proxy	
  for	
  the	
  rate	
  of	
  faJgue	
  for	
  the	
  climber.	
  
Figure	
  2:	
  Average	
  rate	
  of	
  faJgue	
  (N/second)	
  in	
  boulder	
  and	
  lead	
  climbers	
  for	
  different	
  
types	
  of	
  climbs.	
  Boulderers	
  faJgued	
  more	
  quickly	
  than	
  lead	
  climbers	
  in	
  all	
  cases.	
  
Figure	
  3:	
  Average	
  rate	
  of	
  faJgue	
  (N/second)	
  across	
  different	
  climbs	
  for	
  individual	
  
climbers.	
  On	
  average	
  lead	
  climbers	
  faJgued	
  less	
  quickly	
  than	
  boulderers.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  lead	
  
climbers	
  (Figure	
  
4).	
  Our	
  results	
  
are	
  consistent	
  
with	
  Fanchini	
  et	
  
al.	
  
Work	
  Cited	
  
Dubouchaud,	
  H.,	
  Bu<erfield,	
  G.	
  E.,	
  Wolfel,	
  E.	
  E.,	
  Bergman,	
  B.	
  C.,	
  &	
  Brooks,	
  G.	
  A.	
  (2000).	
  Endurance	
  training,	
  expression,	
  and	
  physiology	
  of	
  LDH,	
  MCT1,	
  and	
  MCT4	
  
in	
  human	
  skeletal	
  muscle.	
  American	
  Journal	
  of	
  Physiology-­‐Endocrinology	
  And	
  Metabolism,	
  278(4),	
  E571-­‐E579.	
  
Fanchini,	
  M.,	
  Viole<e,	
  F.,	
  Impellizzeri,	
  F.	
  M.,	
  &	
  Maffiulem,	
  N.	
  A.	
  (2013).	
  Differences	
  in	
  climbing-­‐specific	
  strength	
  between	
  boulder	
  and	
  lead	
  rock	
  climbers.	
  The	
  
Journal	
  of	
  Strength	
  &	
  CondiJoning	
  Research,	
  27(2),	
  310-­‐314.	
  
Vigouroux,	
  L.,	
  Quaine,	
  F.,	
  Labarre-­‐Vila,	
  A.,	
  &	
  Moutet,	
  F.	
  (2006).	
  EsJmaJon	
  of	
  finger	
  muscle	
  tendon	
  tensions	
  and	
  pulley	
  forces	
  during	
  specific	
  sport-­‐climbing	
  grip	
  
techniques.	
  Journal	
  of	
  biomechanics,	
  39(14),	
  2583-­‐2592.	
  
Vollestad,	
  N.	
  K.,	
  &	
  Sejersted,	
  O.	
  (1988).	
  Biochemical	
  correlates	
  of	
  faJgue.	
  A	
  brief	
  review.	
  European	
  journal	
  of	
  applied	
  physiology	
  and	
  occupaJonal	
  physiology,	
  
57(3),	
  336-­‐347.	
  
h<p://climb4fitness.com/slap.html	
  
h<ps://sendjournal.wordpress.com/
2014/04/17/get-­‐a-­‐grip/	
  

More Related Content

What's hot

Phys of ex presentation
Phys of ex presentationPhys of ex presentation
Phys of ex presentation
Nick Cheatham
 
Phys of ex presentation
Phys of ex presentationPhys of ex presentation
Phys of ex presentation
Nick Cheatham
 
Effects of long term
Effects of long termEffects of long term
Effects of long term
guest9680f8d
 
2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...
2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...
2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...
Brian Bazzell, PharmD
 
The effects of post-activation potentiation on rate of force development in N...
The effects of post-activation potentiation on rate of force development in N...The effects of post-activation potentiation on rate of force development in N...
The effects of post-activation potentiation on rate of force development in N...
Patrick Peterson
 
Examination of the Relationship between Speed, Agility & Measures of Strength...
Examination of the Relationship between Speed, Agility & Measures of Strength...Examination of the Relationship between Speed, Agility & Measures of Strength...
Examination of the Relationship between Speed, Agility & Measures of Strength...
Donal Doyle
 
EBL poster FINAL!!! PDF
EBL poster FINAL!!! PDFEBL poster FINAL!!! PDF
EBL poster FINAL!!! PDF
Joshua Booth
 
Power training methods v2 1
Power training methods v2 1Power training methods v2 1
Power training methods v2 1
Conor Graham
 
Takahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffnessTakahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffness
Neelam Modi
 
DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12
Anthony Hessel
 

What's hot (20)

Post-activation Potentiation
Post-activation PotentiationPost-activation Potentiation
Post-activation Potentiation
 
Phys of ex presentation
Phys of ex presentationPhys of ex presentation
Phys of ex presentation
 
Phys of ex presentation
Phys of ex presentationPhys of ex presentation
Phys of ex presentation
 
Effects of long term
Effects of long termEffects of long term
Effects of long term
 
Lt what does it really mean
Lt  what does it really meanLt  what does it really mean
Lt what does it really mean
 
Comparative Analysis of Hip Muscle Activation During Common Closed-Chain Reha...
Comparative Analysis of Hip Muscle Activation During Common Closed-Chain Reha...Comparative Analysis of Hip Muscle Activation During Common Closed-Chain Reha...
Comparative Analysis of Hip Muscle Activation During Common Closed-Chain Reha...
 
2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...
2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...
2015 Sujkowski, Bazzell, et al endurance exercise and selective breeding exte...
 
The effects of post-activation potentiation on rate of force development in N...
The effects of post-activation potentiation on rate of force development in N...The effects of post-activation potentiation on rate of force development in N...
The effects of post-activation potentiation on rate of force development in N...
 
Monitoring training
Monitoring trainingMonitoring training
Monitoring training
 
Examination of the Relationship between Speed, Agility & Measures of Strength...
Examination of the Relationship between Speed, Agility & Measures of Strength...Examination of the Relationship between Speed, Agility & Measures of Strength...
Examination of the Relationship between Speed, Agility & Measures of Strength...
 
EBL poster FINAL!!! PDF
EBL poster FINAL!!! PDFEBL poster FINAL!!! PDF
EBL poster FINAL!!! PDF
 
Physiological bases for training colorado springs
Physiological bases for training   colorado springsPhysiological bases for training   colorado springs
Physiological bases for training colorado springs
 
Relative study of explosive strength and maximum leg strength between nationa...
Relative study of explosive strength and maximum leg strength between nationa...Relative study of explosive strength and maximum leg strength between nationa...
Relative study of explosive strength and maximum leg strength between nationa...
 
Power training methods v2 1
Power training methods v2 1Power training methods v2 1
Power training methods v2 1
 
The relationship between different types of strength and flexibility on verti...
The relationship between different types of strength and flexibility on verti...The relationship between different types of strength and flexibility on verti...
The relationship between different types of strength and flexibility on verti...
 
Effect of the plyometric electrical training on developing the explosive stre...
Effect of the plyometric electrical training on developing the explosive stre...Effect of the plyometric electrical training on developing the explosive stre...
Effect of the plyometric electrical training on developing the explosive stre...
 
Takahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffnessTakahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffness
 
Training Principles for Power
Training Principles for PowerTraining Principles for Power
Training Principles for Power
 
DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12
 
The importance of a sport specific stimulus for training agility
The importance of a sport specific stimulus for training agilityThe importance of a sport specific stimulus for training agility
The importance of a sport specific stimulus for training agility
 

Similar to Grip Force Poster

Acute effects of the power snatch on vertical jump performance [Autosaved]
Acute effects of the power snatch on vertical jump performance [Autosaved]Acute effects of the power snatch on vertical jump performance [Autosaved]
Acute effects of the power snatch on vertical jump performance [Autosaved]
Nicholas Diaz
 
Squat jump Biomechanics
Squat jump BiomechanicsSquat jump Biomechanics
Squat jump Biomechanics
Daniel Yazbek
 
ASCA Poster Presentation Submission
ASCA Poster Presentation SubmissionASCA Poster Presentation Submission
ASCA Poster Presentation Submission
Barry Shillabeer
 
Transfer of strength and power training to sports performance
Transfer of strength and power training  to sports performance Transfer of strength and power training  to sports performance
Transfer of strength and power training to sports performance
Fernando Farias
 
BiomechanicsPoster to Print
BiomechanicsPoster to PrintBiomechanicsPoster to Print
BiomechanicsPoster to Print
Jamie Cozens
 

Similar to Grip Force Poster (20)

Acute effects of the power snatch on vertical jump performance [Autosaved]
Acute effects of the power snatch on vertical jump performance [Autosaved]Acute effects of the power snatch on vertical jump performance [Autosaved]
Acute effects of the power snatch on vertical jump performance [Autosaved]
 
Middlesex poster_JE
Middlesex poster_JEMiddlesex poster_JE
Middlesex poster_JE
 
ISBS_2015_Gal-2
ISBS_2015_Gal-2ISBS_2015_Gal-2
ISBS_2015_Gal-2
 
Anaerobic power in rowing
Anaerobic power in rowingAnaerobic power in rowing
Anaerobic power in rowing
 
Rowing ergometers as an aide to on-water training pros and cons
Rowing ergometers as an aide to on-water training pros and consRowing ergometers as an aide to on-water training pros and cons
Rowing ergometers as an aide to on-water training pros and cons
 
phy212308
phy212308phy212308
phy212308
 
Dynamic correspondence
Dynamic correspondence   Dynamic correspondence
Dynamic correspondence
 
Squat jump Biomechanics
Squat jump BiomechanicsSquat jump Biomechanics
Squat jump Biomechanics
 
ASCA Poster Presentation Submission
ASCA Poster Presentation SubmissionASCA Poster Presentation Submission
ASCA Poster Presentation Submission
 
Crimson Publishers-High Intensity Exercise: Lessons from the Past, Implicatio...
Crimson Publishers-High Intensity Exercise: Lessons from the Past, Implicatio...Crimson Publishers-High Intensity Exercise: Lessons from the Past, Implicatio...
Crimson Publishers-High Intensity Exercise: Lessons from the Past, Implicatio...
 
Poster 2
Poster 2Poster 2
Poster 2
 
Suplex - Poster
Suplex - PosterSuplex - Poster
Suplex - Poster
 
WISENC-15
WISENC-15WISENC-15
WISENC-15
 
normal Gait
normal Gaitnormal Gait
normal Gait
 
Bone Loss in Long-Duration Spaceflight: Measurements and Countermeasures
Bone Loss in Long-Duration Spaceflight: Measurements and CountermeasuresBone Loss in Long-Duration Spaceflight: Measurements and Countermeasures
Bone Loss in Long-Duration Spaceflight: Measurements and Countermeasures
 
ICPES 2011 posters
ICPES 2011 postersICPES 2011 posters
ICPES 2011 posters
 
Transfer of strength and power training to sports performance
Transfer of strength and power training  to sports performance Transfer of strength and power training  to sports performance
Transfer of strength and power training to sports performance
 
BiomechanicsPoster to Print
BiomechanicsPoster to PrintBiomechanicsPoster to Print
BiomechanicsPoster to Print
 
Nice Legs, Great Squat
Nice Legs, Great SquatNice Legs, Great Squat
Nice Legs, Great Squat
 
WorldCongPrez
WorldCongPrezWorldCongPrez
WorldCongPrez
 

Grip Force Poster

  • 1. Grip Force Fatigue in Lead & Boulder Climbing Rock  climbing  is  a  sport  with  two  main  styles:  bouldering  and   lead  climbing.  The  former  has  short  technical  routes,  and  the   la<er   has   longer   routes,   requiring   higher   endurance.   The   difference  in  style  leads  to  different  kinds  of  strength  (Fanchini   et   al,   2013).   In   this   study,   we   look   for   evidence   of   basic   physiological   differences   in   bouldering   and   lead   climbing   by   comparing   the   grip   force   of   each   type   of   climber.   Ca2+   is   a   limiJng  factor  in  aerobic  metabolism  that  causes  force  faJgue   in   skeletal   muscle   (Vollestad,   1988).   Therefore,   those   who   have  be<er  metabolic  pathways  for  cycling  Ca2+  through  the   myoplasm   back   into   the   sarcoplasmic   reJculum   will   faJgue   less   quickly   than   those   who   don’t.   Endurance   training   can   train  gene  expression   Methods Results Discussion Demi Glidden, Charlotte Laube, & Bobby Brandt Is  there  a  difference  in  force  grip  faJgue  between   lead  climbers  and  boulderers?   We   hypothesized   that   lead   climbers   will   have   more   efficient   Ca2+   cycling   than   boulderers   due   to   endurance   training,   such   that   they   fa>gue   more  slowly.   Max   grip   force   recorded   aSer   a   20-­‐30   minute  warm-­‐up,  at  the  beginning  of  a   grip  faJgue  curve.  The  curve  measured   grip  force  aSer  5  squeezes  of  a  medium   grip   strength   trainer,   repeated   4-­‐5   Jmes.  Grip  force  faJgue  was  measured   directly  aSer  each  climb  by  maintaining   force  unJl  it  dropped  below  50%  of  the   max   force   aSer   that   parJcular   climb.   The  Jme  to  faJgue  was  used  as  a  proxy   for  force  faJgue.   Introduction  of  metabolic   proteins   (Dubouchaud  et  al,   2000).  Thus,  training   could  affect  Ca2+   cycling.   Acknowledgements   We   would   like   to   thank   the   Circuit   Gym,   our   climbers,   Cate   Turner,   Miles   Crabill,  and  Jake  Oram,  for  parJcipaJng  in  this  study  and  Dr.  Kellar  Autumn  for   his  help  with  designing  the  the  project.  A  special  thanks  to  River  Menanno  for   climbing  for  us  and  his  guidance  through  the  technical  and  pracJcal  side  of   this  project.     h<p://ajpcell.physiology.org/content/308/9/C697   Our   data   show   that   lead   climbers   grips   faJgued   less   quickly   than  boulderers.  This  seems  to  be  the  effect  of  the  endurance   training   that   lead   climbers   have   which   boulderers   do   not.   Given  that  Ca2+  cycling  is  the  main  cause  of  faJgue  (Vollestad,   1988),  it  seems  likely  that  Ca2+  is  playing  a  role  in  the  faJgue  of   the   climbers,   so   that   lead   climbers   faJgue   less   quickly   than   boulderers.     The  data  show  that  grip  faJgued  most  quickly  aSer  the  slope   climb   (Figure   2).   The   literature   suggests   that   the   mean   fingerJp  force  is  greater  for  slopers  than  crimps  (Vigouroux  et   al,  2005),  which  would  be  consistent  with  our  data  that  show  a   faster  faJgue  aSer  slope  climbs.  This  could  be  an  indicator  of   depleted  SR  Ca2+  stores,  which  would  cause  climbers  to  faJgue   more  quickly  aSer  a  sloper  climb  than  a  crimp  climb.  However,   the  slope  climb  was  the  last  in  the  series,  and  this  could  be   another  explanaJon  for  why  faJgue  occurred  more  quickly  for   this  climb.   Boulder  climbers  were  found  to  have  a  greater  maximum  force   grip  compared  to  lead  climbers,  with  an  average  max  force  of   423  newtons  (N),    whereas  lead  climbers  had  and  an  average   max  force  of  313  N.  In  a  2013  study,  Fanchini  et  al.  concluded   that   crimp   and   open   crimp   holds,   boulderers   produced   a   higher  maximum  voluntary  contracJon  compared   Discussion   Figure  4:  Maximal  voluntary  contracJon  (MVC)  for  boulderer  (BC),  lead  climbers  (LC),  and   non  climbers  (NC)  on  crimp  and  open  crimp  holds.  Fanchini  et  al.  found  that  boulders   produced  a  higher  maximum  force  on  both  types  of  holds.  In  our  study,  boulderers  had  a   26%  percent  higher  maximum  force  compared  to  lead  climbers.     Results   Figure  1:  Force  output  (Newtons)  over  Jme  for  boulder  1  climber  aSer  an  overhang  climb.   Linear  regression  and  R2  value  calculated  using  Excel.  Slope  of  regression  line  was  used  as  a   proxy  for  the  rate  of  faJgue  for  the  climber.   Figure  2:  Average  rate  of  faJgue  (N/second)  in  boulder  and  lead  climbers  for  different   types  of  climbs.  Boulderers  faJgued  more  quickly  than  lead  climbers  in  all  cases.   Figure  3:  Average  rate  of  faJgue  (N/second)  across  different  climbs  for  individual   climbers.  On  average  lead  climbers  faJgued  less  quickly  than  boulderers.                    to  lead   climbers  (Figure   4).  Our  results   are  consistent   with  Fanchini  et   al.   Work  Cited   Dubouchaud,  H.,  Bu<erfield,  G.  E.,  Wolfel,  E.  E.,  Bergman,  B.  C.,  &  Brooks,  G.  A.  (2000).  Endurance  training,  expression,  and  physiology  of  LDH,  MCT1,  and  MCT4   in  human  skeletal  muscle.  American  Journal  of  Physiology-­‐Endocrinology  And  Metabolism,  278(4),  E571-­‐E579.   Fanchini,  M.,  Viole<e,  F.,  Impellizzeri,  F.  M.,  &  Maffiulem,  N.  A.  (2013).  Differences  in  climbing-­‐specific  strength  between  boulder  and  lead  rock  climbers.  The   Journal  of  Strength  &  CondiJoning  Research,  27(2),  310-­‐314.   Vigouroux,  L.,  Quaine,  F.,  Labarre-­‐Vila,  A.,  &  Moutet,  F.  (2006).  EsJmaJon  of  finger  muscle  tendon  tensions  and  pulley  forces  during  specific  sport-­‐climbing  grip   techniques.  Journal  of  biomechanics,  39(14),  2583-­‐2592.   Vollestad,  N.  K.,  &  Sejersted,  O.  (1988).  Biochemical  correlates  of  faJgue.  A  brief  review.  European  journal  of  applied  physiology  and  occupaJonal  physiology,   57(3),  336-­‐347.   h<p://climb4fitness.com/slap.html   h<ps://sendjournal.wordpress.com/ 2014/04/17/get-­‐a-­‐grip/